活动介绍

df_train = pd.read_csv(args.train_data)

时间: 2025-07-09 19:48:52 AIGC 浏览: 26
<think>嗯,用户想知道如何用pandas的read_csv函数加载训练数据到DataFrame,并且需要指定参数。首先,我需要回忆一下read_csv常用的参数有哪些。比如sep或者delimiter用来指定分隔符,header是否包含标题行,names可以指定列名,还有dtype设置数据类型,parse_dates处理日期,na_values处理缺失值,encoding处理编码问题,还有nrows读取部分数据等等。 用户提到了训练数据集,可能是指机器学习中的训练数据,所以可能有需要处理缺失值或者分类变量。比如引用[1]中提到将'?'替换为NaN,这可以通过na_values参数来实现。比如引用[2]中的例子,处理标签列,可能需要读取后转换,或者在读取时指定dtype。例如,如果数据中有分类标签,可能需要提前设置数据类型,避免pandas自动推断错误。 接下来,我需要组织步骤。首先,基本用法,用read_csv加载数据,然后介绍常用参数。比如sep,如果数据是csv,默认逗号分隔,但如果是tsv,就需要指定sep='\t'。header参数,如果数据没有标题行,就需要设置header=None,然后用names指定列名。dtype参数可以指定某些列为特定类型,比如字符串或者整数,避免自动转换出错。比如在引用[1]中,clicks列因为混合类型导致pandas无法正确解析,所以在读取时指定dtype可能有助于避免这个问题。 然后,处理缺失值,na_values参数可以指定哪些值被视为缺失,比如将'?'或'NA'替换为NaN。引用[1]中提到将0和'?'转换为NaN,所以在read_csv时就可以用na_values=['?',0],但要注意是否所有0都需要替换,可能需要更谨慎的处理,比如只针对特定列。 编码问题,如果文件是utf-8以外的编码,比如中文常用的gbk,就需要指定encoding='gbk',否则会报错。parse_dates可以将某些列解析为日期类型,比如指定列名或列索引。nrows用于读取前几行,快速检查数据。usecols选择需要的列,节省内存。 接下来,给出示例代码。比如加载带有分隔符、处理缺失值、指定列类型的情况。然后结合引用中的例子,比如将某些值转换为NaN,或者处理标签列。比如,在读取数据后,用户可能需要像引用[2]中那样转换标签列为0和1,但这一步可能在读取之后进行。 还要注意错误处理,比如文件路径是否正确,是否有权限问题,这些可能需要try-except块,但用户的问题可能只需要基本用法。最后,总结关键参数,并提醒注意事项,比如大数据集使用chunksize,或者处理混合数据类型时指定dtype。 可能的相关问题,用户可能接下来会问如何处理缺失值,如何转换数据类型,或者如何读取大文件分块处理。所以相关问题可以包括这些方面。</think>要将训练数据集加载到pandas DataFrame中,可以通过`pd.read_csv()`函数实现。以下是具体步骤和常用参数说明: --- ### **1. 基础用法** ```python import pandas as pd # 基本读取(假设文件路径正确) df = pd.read_csv("train_data.csv") ``` --- ### **2. 关键参数详解** #### **(1) 分隔符设置** - `sep`/`delimiter`:指定列分隔符(默认`,`) ```python df = pd.read_csv("data.tsv", sep="\t") # 读取TSV文件 ``` #### **(2) 列名处理** - `header`:指定标题行位置(默认`0`) ```python df = pd.read_csv("data.csv", header=None) # 无标题行 ``` - `names`:自定义列名 ```python df = pd.read_csv("data.csv", names=["id", "text", "label"]) ``` #### **(3) 数据类型控制** - `dtype`:强制指定列数据类型 ```python df = pd.read_csv("data.csv", dtype={"age": "float32", "label": "category"}) ``` #### **(4) 缺失值处理** - `na_values`:定义哪些值视为缺失(如引用[1]中的`?`) ```python df = pd.read_csv("data.csv", na_values=["?", "NA", 0]) ``` #### **(5) 编码格式** - `encoding`:处理非UTF-8编码文
阅读全文

相关推荐

import pandas as pd import numpy as np import torch from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments from sklearn.model_selection import train_test_split from torch.utils.data import Dataset, DataLoader # 自定义数据集类 class CommentDataset(Dataset): def __init__(self, texts, labels, weights): self.texts = texts self.labels = labels self.weights = weights self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') self.max_len = 128 def __len__(self): return len(self.texts) def __getitem__(self, idx): text = str(self.texts[idx]) encoding = self.tokenizer.encode_plus( text, add_special_tokens=True, max_length=self.max_len, padding='max_length', truncation=True, return_attention_mask=True, return_tensors='pt', ) return { 'input_ids': encoding['input_ids'].flatten(), 'attention_mask': encoding['attention_mask'].flatten(), 'labels': torch.tensor(self.labels[idx], dtype=torch.long), 'weights': torch.tensor(self.weights[idx], dtype=torch.float) } # 数据预处理函数 def preprocess_data(file_path): # 读取数据 df = pd.read_csv(file_path) # 清洗数据:去除无评分的记录 df = df.dropna(subset=['RATING']) # 创建标签映射 df['label'] = df['RATING'].apply(lambda x: 2 if x >=4 else 1 if x ==3 else 0) # 创建样本权重(votes + 1) df['weight'] = df['VOTES'] + 1 # 划分训练集和测试集 train_df, test_df = train_test_split( df, test_size=0.2, stratify=df['label'], random_state=42 ) return train_df, test_df # 自定义训练器(支持样本权重) class WeightedTrainer(Trainer): def compute_loss(self, model, inputs, return_outputs=False): labels = inputs.get("labels") weights = inputs.get("weights") outputs = model(**inputs) logits = outputs.get('logits') loss_fct = torch.nn.CrossEntropyLoss(reduction='none') loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1)) weighted_loss = torch.mean(loss * weights) return (weighted_loss, outputs) if return_outputs else weighted_loss # 主程序 def main(): # 数据预处理 train_df, test_df = preprocess_data('comments.csv') # 创建数据集 train_dataset = CommentDataset( texts=train_df['CONTENT'].values, labels=train_df['label'].values, weights=train_df['weight'].values ) test_dataset = CommentDataset( texts=test_df['CONTENT'].values, labels=test_df['label'].values, weights=test_df['weight'].values ) # 初始化模型 model = BertForSequenceClassification.from_pretrained( 'bert-base-uncased', num_labels=3, problem_type="single_label_classification" ) # 训练参数配置 training_args = TrainingArguments( output_dir='./results', num_train_epochs=3, per_device_train_batch_size=16, per_device_eval_batch_size=16, warmup_steps=500, weight_decay=0.01, logging_dir='./logs', fp16=True, # 启用混合精度训练 evaluation_strategy='epoch', save_strategy='epoch', load_best_model_at_end=True ) # 初始化训练器 trainer = WeightedTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=test_dataset, compute_metrics=lambda p: { 'accuracy': (np.argmax(p.predictions, axis=1) == p.label_ids).mean() } ) # 训练模型 trainer.train() # 保存最终模型 model.save_pretrained('./sentiment_model') trainer.tokenizer.save_pretrained('./sentiment_model') if __name__ == '__main__': main() 请给出基于此代码改良后的完整代码

import tensorflow as tf import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import os # 1. 数据预处理 (保持不变) def load_and_preprocess_data(csv_path): """加载并预处理双色球历史数据""" df = pd.read_csv(csv_path) red_balls = df.iloc[:, 0:6].values.astype(np.float32) blue_balls = df.iloc[:, 6:].values.reshape(-1, 1).astype(np.float32) red_scaler = MinMaxScaler(feature_range=(0, 1)).fit(red_balls) blue_scaler = MinMaxScaler(feature_range=(0, 1)).fit(blue_balls) red_normalized = red_scaler.transform(red_balls) blue_normalized = blue_scaler.transform(blue_balls) combined = np.hstack((red_normalized, blue_normalized)) X_train, _ = train_test_split(combined, test_size=0.2, random_state=42) return X_train, red_scaler, blue_scaler # 2. 重构GAN模型 class DualColorGAN(tf.keras.Model): def __init__(self, latent_dim=100): super(DualColorGAN, self).__init__() self.latent_dim = latent_dim # 生成器 self.generator = tf.keras.Sequential([ tf.keras.layers.Dense(256, activation='relu', input_dim=latent_dim), tf.keras.layers.BatchNormalization(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Dense(1024, activation='relu'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Dense(7, activation='sigmoid') ]) # 判别器 self.discriminator = tf.keras.Sequential([ tf.keras.layers.Dense(512, activation='relu', input_dim=7), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) # 分离优化器 (关键修复) self.g_optimizer = tf.keras.optimizers.Adam(0.0002, beta_1=0.5) self.d_optimizer = tf.keras.optimizers.Adam(0.0002, beta_1=0.5) self.loss_fn = tf.keras.losses.BinaryCrossentropy() def compile(self, **kwargs): super().compile(**kwargs) # 重构训练步骤 def train_step(self, real_data): batch_size = tf.shape(real_data)[0] # 训练判别器 with tf.GradientTape() as d_tape: noise = tf.random.normal([batch_size, self.latent_dim]) generated_data = self.generator(noise, training=False) real_output = self.discriminator(real_data, training=True) fake_output = self.discriminator(generated_data, training=True) # 损失计算 real_loss = self.loss_fn(tf.ones_like(real_output), real_output) fake_loss = self.loss_fn(tf.zeros_like(fake_output), fake_output) d_loss = (real_loss + fake_loss) / 2 # 仅更新判别器变量 d_grads = d_tape.gradient(d_loss, self.discriminator.trainable_variables) self.d_optimizer.apply_gradients(zip(d_grads, self.discriminator.trainable_variables)) # 训练生成器 with tf.GradientTape() as g_tape: noise = tf.random.normal([batch_size, self.latent_dim]) generated_data = self.generator(noise, training=True) fake_output = self.discriminator(generated_data, training=True) g_loss = self.loss_fn(tf.ones_like(fake_output), fake_output) # 仅更新生成器变量 g_grads = g_tape.gradient(g_loss, self.generator.trainable_variables) self.g_optimizer.apply_gradients(zip(g_grads, self.generator.trainable_variables)) return {"d_loss": d_loss, "g_loss": g_loss} # 3. 训练与预测 def train_and_predict(csv_path, epochs=5000, batch_size=32): X_train, red_scaler, blue_scaler = load_and_preprocess_data(csv_path) dataset = tf.data.Dataset.from_tensor_slices(X_train).shuffle(1000).batch(batch_size) gan = DualColorGAN(latent_dim=100) gan.compile() # 训练前构建模型 (避免变量延迟创建) dummy_input = tf.random.normal([1, 100]) _ = gan.generator(dummy_input) _ = gan.discriminator(dummy_input) for epoch in range(epochs): for batch in dataset: metrics = gan.train_step(batch) if epoch % 500 == 0: print(f"Epoch {epoch}, D Loss: {metrics['d_loss']:.4f}, G Loss: {metrics['g_loss']:.4f}") # 生成预测号码 (保持不变) def generate_numbers(n=5): noise = tf.random.normal(shape=(n, 100)) generated = gan.generator(noise).numpy() red_generated = generated[:, :6] blue_generated = generated[:, 6:] red_denorm = red_scaler.inverse_transform(red_generated) blue_denorm = blue_scaler.inverse_transform(blue_generated) red_denorm = np.clip(red_denorm, 1, 33).astype(int) blue_denorm = np.clip(blue_denorm, 1, 16).astype(int) results = [] for i in range(n): unique_red = np.unique(red_denorm[i]) while len(unique_red) < 6: new_red = np.random.randint(1, 34, 6 - len(unique_red)) unique_red = np.unique(np.concatenate([unique_red, new_red])) sorted_red = np.sort(unique_red[:6]) results.append({ "红球": sorted_red.tolist(), "蓝球": int(blue_denorm[i][0]) }) return results return generate_numbers() # 4. 使用示例 if __name__ == "__main__": csv_path = "D:/worker/lottery_results7.csv" predictions = train_and_predict(csv_path, epochs=300) print("\n双色球预测号码:") for i, pred in enumerate(predictions, 1): print(f"预测组 {i}: 红球: {pred['红球']}, 蓝球: {pred['蓝球']}") C:\Users\power\AppData\Roaming\Python\Python39\site-packages\keras\src\layers\core\dense.py:87: UserWarning: Do not pass an input_shape/input_dim argument to a layer. When using Sequential models, prefer using an Input(shape) object as the first layer in the model instead. super().__init__(activity_regularizer=activity_regularizer, **kwargs) --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[1], line 145 143 if __name__ == "__main__": 144 csv_path = "D:/worker/lottery_results7.csv" --> 145 predictions = train_and_predict(csv_path, epochs=300) 147 print("\n双色球预测号码:") 148 for i, pred in enumerate(predictions, 1): Cell In[1], line 103, in train_and_predict(csv_path, epochs, batch_size) 101 dummy_input = tf.random.normal([1, 100]) 102 _ = gan.generator(dummy_input) --> 103 _ = gan.discriminator(dummy_input) 105 for epoch in range(epochs): 106 for batch in dataset: File ~\AppData\Roaming\Python\Python39\site-packages\keras\src\utils\traceback_utils.py:122, in filter_traceback.<locals>.error_handler(*args, **kwargs) 119 filtered_tb = _process_traceback_frames(e.__traceback__) 120 # To get the full stack trace, call: 121 # keras.config.disable_traceback_filtering() --> 122 raise e.with_traceback(filtered_tb) from None 123 finally: 124 del filtered_tb File ~\AppData\Roaming\Python\Python39\site-packages\keras\src\layers\input_spec.py:227, in assert_input_compatibility(input_spec, inputs, layer_name) 222 for axis, value in spec.axes.items(): 223 if value is not None and shape[axis] not in { 224 value, 225 None, 226 }: --> 227 raise ValueError( 228 f'Input {input_index} of layer "{layer_name}" is ' 229 f"incompatible with the layer: expected axis {axis} " 230 f"of input shape to have value {value}, " 231 "but received input with " 232 f"shape {shape}" 233 ) 234 # Check shape. 235 if spec.shape is not None: ValueError: Exception encountered when calling Sequential.call(). Input 0 of layer "dense_4" is incompatible with the layer: expected axis -1 of input shape to have value 7, but received input with shape (1, 100) Arguments received by Sequential.call(): • inputs=tf.Tensor(shape=(1, 100), dtype=float32) • training=None • mask=None 根据ValueError的要求修改完善代码

import tensorflow as tf import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import os # 1. 数据预处理 (保持不变) def load_and_preprocess_data(csv_path): """加载并预处理双色球历史数据""" df = pd.read_csv(csv_path) red_balls = df.iloc[:, 0:6].values.astype(np.float32) blue_balls = df.iloc[:, 6:].values.reshape(-1, 1).astype(np.float32) red_scaler = MinMaxScaler(feature_range=(0, 1)).fit(red_balls) blue_scaler = MinMaxScaler(feature_range=(0, 1)).fit(blue_balls) red_normalized = red_scaler.transform(red_balls) blue_normalized = blue_scaler.transform(blue_balls) combined = np.hstack((red_normalized, blue_normalized)) X_train, _ = train_test_split(combined, test_size=0.2, random_state=42) return X_train, red_scaler, blue_scaler # 2. 重构GAN模型 class DualColorGAN(tf.keras.Model): def __init__(self, latent_dim=100): super(DualColorGAN, self).__init__() self.latent_dim = latent_dim # 生成器 self.generator = tf.keras.Sequential([ tf.keras.layers.Dense(256, activation='relu', input_dim=latent_dim), tf.keras.layers.BatchNormalization(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Dense(1024, activation='relu'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Dense(7, activation='sigmoid') ]) # 判别器 self.discriminator = tf.keras.Sequential([ tf.keras.layers.Dense(512, activation='relu', input_dim=7), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) # 分离优化器 (关键修复) self.g_optimizer = tf.keras.optimizers.Adam(0.0002, beta_1=0.5) self.d_optimizer = tf.keras.optimizers.Adam(0.0002, beta_1=0.5) self.loss_fn = tf.keras.losses.BinaryCrossentropy() def compile(self, **kwargs): super().compile(**kwargs) # 重构训练步骤 def train_step(self, real_data): batch_size = tf.shape(real_data)[0] # 训练判别器 with tf.GradientTape() as d_tape: noise = tf.random.normal([batch_size, self.latent_dim]) generated_data = self.generator(noise, training=False) real_output = self.discriminator(real_data, training=True) fake_output = self.discriminator(generated_data, training=True) # 损失计算 real_loss = self.loss_fn(tf.ones_like(real_output), real_output) fake_loss = self.loss_fn(tf.zeros_like(fake_output), fake_output) d_loss = (real_loss + fake_loss) / 2 # 仅更新判别器变量 d_grads = d_tape.gradient(d_loss, self.discriminator.trainable_variables) self.d_optimizer.apply_gradients(zip(d_grads, self.discriminator.trainable_variables)) # 训练生成器 with tf.GradientTape() as g_tape: noise = tf.random.normal([batch_size, self.latent_dim]) generated_data = self.generator(noise, training=True) fake_output = self.discriminator(generated_data, training=True) g_loss = self.loss_fn(tf.ones_like(fake_output), fake_output) # 仅更新生成器变量 g_grads = g_tape.gradient(g_loss, self.generator.trainable_variables) self.g_optimizer.apply_gradients(zip(g_grads, self.generator.trainable_variables)) return {"d_loss": d_loss, "g_loss": g_loss} # 3. 训练与预测 def train_and_predict(csv_path, epochs=5000, batch_size=32): X_train, red_scaler, blue_scaler = load_and_preprocess_data(csv_path) dataset = tf.data.Dataset.from_tensor_slices(X_train).shuffle(1000).batch(batch_size) gan = DualColorGAN(latent_dim=100) gan.compile() # 训练前构建模型 (避免变量延迟创建) dummy_input = tf.random.normal([1, 100]) _ = gan.generator(dummy_input) _ = gan.discriminator(dummy_input) for epoch in range(epochs): for batch in dataset: metrics = gan.train_step(batch) if epoch % 500 == 0: print(f"Epoch {epoch}, D Loss: {metrics['d_loss']:.4f}, G Loss: {metrics['g_loss']:.4f}") # 生成预测号码 (保持不变) def generate_numbers(n=5): noise = tf.random.normal(shape=(n, 100)) generated = gan.generator(noise).numpy() red_generated = generated[:, :6] blue_generated = generated[:, 6:] red_denorm = red_scaler.inverse_transform(red_generated) blue_denorm = blue_scaler.inverse_transform(blue_generated) red_denorm = np.clip(red_denorm, 1, 33).astype(int) blue_denorm = np.clip(blue_denorm, 1, 16).astype(int) results = [] for i in range(n): unique_red = np.unique(red_denorm[i]) while len(unique_red) < 6: new_red = np.random.randint(1, 34, 6 - len(unique_red)) unique_red = np.unique(np.concatenate([unique_red, new_red])) sorted_red = np.sort(unique_red[:6]) results.append({ "红球": sorted_red.tolist(), "蓝球": int(blue_denorm[i][0]) }) return results return generate_numbers() # 4. 使用示例 if __name__ == "__main__": csv_path = "D:/worker/lottery_results7.csv" predictions = train_and_predict(csv_path, epochs=300) print("\n双色球预测号码:") for i, pred in enumerate(predictions, 1): print(f"预测组 {i}: 红球: {pred['红球']}, 蓝球: {pred['蓝球']}") C:\Users\power\AppData\Roaming\Python\Python39\site-packages\keras\src\layers\core\dense.py:87: UserWarning: Do not pass an input_shape/input_dim argument to a layer. When using Sequential models, prefer using an Input(shape) object as the first layer in the model instead. super().__init__(activity_regularizer=activity_regularizer, **kwargs) --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[1], line 145 143 if __name__ == "__main__": 144 csv_path = "D:/worker/lottery_results7.csv" --> 145 predictions = train_and_predict(csv_path, epochs=300) 147 print("\n双色球预测号码:") 148 for i, pred in enumerate(predictions, 1): Cell In[1], line 103, in train_and_predict(csv_path, epochs, batch_size) 101 dummy_input = tf.random.normal([1, 100]) 102 _ = gan.generator(dummy_input) --> 103 _ = gan.discriminator(dummy_input) 105 for epoch in range(epochs): 106 for batch in dataset: File ~\AppData\Roaming\Python\Python39\site-packages\keras\src\utils\traceback_utils.py:122, in filter_traceback.<locals>.error_handler(*args, **kwargs) 119 filtered_tb = _process_traceback_frames(e.__traceback__) 120 # To get the full stack trace, call: 121 # keras.config.disable_traceback_filtering() --> 122 raise e.with_traceback(filtered_tb) from None 123 finally: 124 del filtered_tb File ~\AppData\Roaming\Python\Python39\site-packages\keras\src\layers\input_spec.py:227, in assert_input_compatibility(input_spec, inputs, layer_name) 222 for axis, value in spec.axes.items(): 223 if value is not None and shape[axis] not in { 224 value, 225 None, 226 }: --> 227 raise ValueError( 228 f'Input {input_index} of layer "{layer_name}" is ' 229 f"incompatible with the layer: expected axis {axis} " 230 f"of input shape to have value {value}, " 231 "but received input with " 232 f"shape {shape}" 233 ) 234 # Check shape. 235 if spec.shape is not None: ValueError: Exception encountered when calling Sequential.call(). Input 0 of layer "dense_4" is incompatible with the layer: expected axis -1 of input shape to have value 7, but received input with shape (1, 100) Arguments received by Sequential.call(): • inputs=tf.Tensor(shape=(1, 100), dtype=float32) • training=None • mask=None 根据ValueError的要求修改完善代码,并生成完整代码

import json import torch from typing import Dict, List from torch.utils.data import Dataset import transformers from peft import LoraConfig, TaskType, get_peft_model from torch.utils.data import DataLoader, SequentialSampler from transformers import Trainer, TrainingArguments from lora_plus import LoraPlusTrainer from torch.utils.data import RandomSampler from swanlab.integration.transformers import SwanLabCallback import swanlab import numpy as np import pandas as pd import re from typing import Dict, List import torch from tqdm import tqdm from transformers import PreTrainedTokenizer from transformers import AutoTokenizer import torch.nn as nn swanlab.init("Finetune-Llama3.2-with-Encoder") swanlab_callback = SwanLabCallback( project="Finetune-Llama3.2-with-Encoder", experiment_name="Finetune-Llama3.2-with-Encoder" ) # 常量定义 CHEM_FORMULA_SIZE = "([A-Z][a-z]*)([0-9]*)" VALID_ELEMENTS = ["C", "N", "P", "O", "S", "Si", "I", "H", "Cl", "F", "Br", "B", "Se", "Fe", "Co", "As", "K", "Na"] ELEMENT_VECTORS = np.eye(len(VALID_ELEMENTS)) element_to_position = dict(zip(VALID_ELEMENTS, ELEMENT_VECTORS)) # 化学式转密集向量 def formula_to_dense(chem_formula: str) -> np.ndarray: total_onehot = [] for (chem_symbol, num) in re.findall(CHEM_FORMULA_SIZE, chem_formula): num = 1 if num == "" else int(num) one_hot = element_to_position[chem_symbol].reshape(1, -1) one_hot_repeats = np.repeat(one_hot, repeats=num, axis=0) total_onehot.append(one_hot_repeats) if len(total_onehot) == 0: dense_vec = np.zeros(len(VALID_ELEMENTS)) else: dense_vec = np.vstack(total_onehot).sum(0) return dense_vec # 正弦嵌入 def sine_embed(v, max_count=256): num_freqs = int(np.ceil(np.log2(max_count))) freqs = 0.5 ** torch.arange(num_freqs, dtype=torch.float32) * np.pi v_tensor = torch.tensor(v, dtype=torch.float32)[:, None] embedded = torch.sin(v_tensor * freqs[None, :]) return torch.abs(embedded).numpy() def positional_encoding(max_position, d_model, min_freq=1e-6): position = np.arange(max_position) freqs = min_freq **(2 * (np.arange(d_model) // 2) / d_model) pos_enc = position.reshape(-1, 1) * freqs.reshape(1, -1) pos_enc[:, ::2] = np.cos(pos_enc[:, ::2]) pos_enc[:, 1::2] = np.sin(pos_enc[:, 1::2]) return pos_enc # 生成位置编码 P = positional_encoding(2000000, 256, min_freq=1e2) # 转换为PyTorch张量以便后续使用 P = torch.tensor(P, dtype=torch.float32) dimn = 255 # 质谱数据编码(修复后) def encoding(rag_tensor, P, dimn): to_pad = [] for sample in rag_tensor: # 直接使用列表(因为sample[0]和sample[1]是Python列表) all_dim = [sample[0]] # 移除.tolist(),因为本身就是列表 # 处理位置编码(sample[1]是列表,直接遍历) pos_enc = [P[int(i)-1] for i in sample[1]] for dim_idx in range(dimn): dim_vals = [i[dim_idx].item() for i in pos_enc] all_dim.append(dim_vals) to_pad.append(all_dim) # 使用PyTorch进行序列填充 padded = [] for i in to_pad: # 转换为张量 tensor = torch.tensor(i, dtype=torch.float32) # 计算需要填充的长度 pad_length = max(0, 501 - tensor.size(1)) # 进行后向填充 padded_tensor = torch.nn.functional.pad(tensor, (0, pad_length), mode='constant', value=0) # 如果长度超过501,则截断 if padded_tensor.size(1) > 501: padded_tensor = padded_tensor[:, :501] padded.append(padded_tensor) # 堆叠并交换轴 to_pad = torch.stack(padded) to_pad = to_pad.permute(0, 2, 1) # 相当于numpy的swapaxes(to_pad, 1, -1) return to_pad # 质谱数据预处理(PyTorch实现) def prepro_specs_train(df): df = df.reset_index(drop=True) valid = [] mz_intensity = df['Spectrum'].to_list() def process_line(line): pairs = line.split() mz_list = [] intensity_list = [] for pair in pairs: mz, intensity = pair.split(':') mz_list.append(float(mz)) intensity_list.append(float(intensity)) return mz_list, intensity_list for idx, intensities in tqdm(enumerate(mz_intensity)): mz_list, intensity_list = process_line(intensities) # 添加总精确质量和0强度值 mz_list.append(float(df.at[idx, 'Total Exact Mass'])) intensity_list.append(0.0) # 四舍五入处理 round_mz_list = [round(float(mz), 2) for mz in mz_list] round_intensity_list = [round(float(intensity), 2) for intensity in intensity_list] valid.append([round_mz_list, round_intensity_list]) return valid # 返回列表的列表 # 自定义数据集类 class CSVDataset(torch.utils.data.Dataset): def __init__(self, csv_path, tokenizer: PreTrainedTokenizer, max_selfies_len=512): self.df = pd.read_csv(csv_path) self.tokenizer = tokenizer self.max_selfies_len = max_selfies_len # 预处理质谱数据 spec_df = self.df[['Total Exact Mass', 'Spectrum']].copy() self.rag_tensor = prepro_specs_train(spec_df) self.spec_encoded = encoding(self.rag_tensor, P, dimn) def __len__(self): return len(self.df) def __getitem__(self, idx) -> Dict[str, torch.Tensor]: # 1. 处理分子式 formula = self.df.iloc[idx]['Molecular Formula'] formula_vec = formula_to_dense(formula) # 形状: (18,) # 2. 处理质谱数据 spec_matrix = self.spec_encoded[idx] # 形状: (501, 257) # 3. 处理SELFIES - 添加attention_mask selfies_str = self.df.iloc[idx]['SELFIES'] # 编码时同时获取input_ids和attention_mask encoding_result = self.tokenizer.encode_plus( selfies_str, add_special_tokens=True, # 添加[CLS]和[SEP] max_length=self.max_selfies_len, padding='max_length', truncation=True, return_attention_mask=True, return_tensors='pt' ) input_ids = encoding_result['input_ids'].squeeze(0) attention_mask = encoding_result['attention_mask'].squeeze(0) return { 'formula_vec': torch.tensor(formula_vec, dtype=torch.float32), 'spec_matrix': spec_matrix, # 已为tensor,无需重复转换 'selfies_ids': input_ids, 'attention_mask': attention_mask } # 初始化tokenizer tokenizer = AutoTokenizer.from_pretrained('/root/workspace/checkpoint-2500') # 创建数据集 dataset = CSVDataset('/root/workspace/SELFIES-SFT.csv', tokenizer) data_collator = transformers.DataCollatorForSeq2Seq( tokenizer=tokenizer) # 定义带额外Encoder的自定义模型 class LlamaWithEncoder(nn.Module): def __init__(self, base_model, encoder1_dim=18, encoder2_dim=256, hidden_dim=512): super().__init__() self.base_model = base_model # 第一个Transformer Encoder encoder1_layer = nn.TransformerEncoderLayer( d_model=encoder1_dim, nhead=3, dim_feedforward=hidden_dim, batch_first=True ) self.encoder1 = nn.TransformerEncoder(encoder1_layer, num_layers=2) # 第二个Transformer Encoder encoder2_layer = nn.TransformerEncoderLayer( d_model=encoder2_dim, nhead=8, dim_feedforward=hidden_dim, batch_first=True ) self.encoder2 = nn.TransformerEncoder(encoder2_layer, num_layers=2) # 投影层 self.proj1 = nn.Linear(encoder1_dim, base_model.config.hidden_size) self.proj2 = nn.Linear(encoder2_dim, base_model.config.hidden_size) # 融合层 self.fusion = nn.Linear(2 * base_model.config.hidden_size, base_model.config.hidden_size) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): return self.base_model.prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, **kwargs ) def forward( self, input_ids=None, attention_mask=None, encoder1_inputs=None, encoder2_inputs=None, labels=None, past_key_values=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs ): # 处理编码器输入 enc1_out = self.encoder1(encoder1_inputs) enc1_out = enc1_out.mean(dim=1) enc1_proj = self.proj1(enc1_out) enc2_out = self.encoder2(encoder2_inputs) enc2_out = enc2_out.mean(dim=1) enc2_proj = self.proj2(enc2_out) # 融合编码器输出 fused = self.fusion(torch.cat([enc1_proj, enc2_proj], dim=1)) fused = fused.unsqueeze(1) # 获取嵌入层输出 embeddings = self.base_model.get_input_embeddings()(input_ids) # 将融合结果与第一个token的嵌入结合 if embeddings.size(1) > 0: embeddings[:, 0, :] = (embeddings[:, 0, :] + fused[:, 0, :]) / 2 # 使用修改后的嵌入调用基础模型 return self.base_model( inputs_embeds=embeddings, attention_mask=attention_mask, labels=labels, past_key_values=past_key_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs ) # 加载预训练模型 base_model = transformers.AutoModelForCausalLM.from_pretrained( "/root/workspace/checkpoint-2500", trust_remote_code=True, torch_dtype=torch.bfloat16, ) model = LlamaWithEncoder(base_model) lora_config = LoraConfig( r=8, lora_alpha=16, target_modules="all-linear", # 目标注意力层 lora_dropout=0.0, bias="none", task_type="CAUSAL_LM" ) model = get_peft_model(model, lora_config) model.print_trainable_parameters() # 输出示例:0.3% 参数可训练 training_args = TrainingArguments( output_dir="./llama3.2-SELFIES-SFT", per_device_train_batch_size=16, gradient_accumulation_steps=16, num_train_epochs=10, learning_rate=5.0e-05, optim="adamw_torch", logging_steps=10, bf16=True, save_strategy="steps", lr_scheduler_type='cosine', max_grad_norm=1.0, save_steps=2000, warmup_steps=0 ) class CustomTrainer(LoraPlusTrainer): def get_train_dataloader(self) -> DataLoader: """ Returns the training dataloader using a random sampler to shuffle the dataset. """ return DataLoader( self.train_dataset, batch_size=self.args.train_batch_size, shuffle=True, collate_fn=self.data_collator, drop_last=False, ) # 使用修改后的 CustomTrainer lp_trainer = CustomTrainer( model, training_args, train_dataset=dataset, tokenizer=tokenizer, data_collator=data_collator, callbacks=[swanlab_callback], ) lp_trainer.train() lp_trainer.save_model(output_dir='./llama3.2-SELFIES-SFT') 修改代码,确保添加的Encoder可以顺利进行lora微调

from transformers import AutoTokenizer,AutoModelForSequenceClassification,Trainer,TrainingArguments,pipeline from datasets import load_dataset import pandas as pd import numpy as np import seaborn as sn import matplotlib.pyplot as plt plt.switch_backend('agg') from sklearn.metrics import roc_auc_score,f1_score,confusion_matrix from sklearn.model_selection import train_test_split import torch from pprint import pprint #读取文件 df = pd.read_csv('test.csv',encoding='gbk') #定义转换字典 target_map={ 'positive':1, 'negative':-1, 'neutral':0 } #将文件中的对应单词转换为数字 单独列出一列 df['target'] = df['sentiment'].map(target_map) #将文本和标签提取出来 这里导出为新的csv文件 方便后续load_data df2 = df[['text','target']] df2.columns=['sentence','label'] df2.to_csv('data.csv',index=None) raw_datasets=load_dataset('csv',data_files='data.csv') #加载训练的数据格式 split =raw_datasets['train'].train_test_split(test_size=0.3, seed=42) #分隔为数据集和测试集 测试集占百分之30 # tokenizer = AutoTokenizer.from_pretrained('bert-base-chinese') bert_model_path = "bert-base-chinese" tokenizer = AutoTokenizer.from_pretrained(bert_model_path) model = AutoModelForSequenceClassification.from_pretrained(bert_model_path, num_labels=3) def tokenize_fn(batch): return tokenizer(batch['sentence'],truncation=True) #将数据集中的句子使用标记器进行标记化处理,以便后续在自然语言处理任务中使用 tokenized_datasets = split.map(tokenize_fn,batched=True) model = AutoModelForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=3) params_before = [] # 遍历模型中的所有参数,并将其初始值添加到params_before列表中,以便后续比较模型参数的变化。 for name, p in model.named_parameters(): params_before.append(p.detach().cpu().numpy()) training_args = TrainingArguments( output_dir='training_dir', #输出文件夹 evaluation_strategy='epoch', save_strategy='epoch', num_train_epochs=3, #训练轮次 # 将每批训练量减半 # per_device_train_batch_size=16, # per_device_eval_batch_size=64, per_device_train_batch_size=8, per_device_eval_batch_size=32 ) def compute_metrics(lo

import json import torch from typing import Dict, List, Optional, Tuple from torch.utils.data import Dataset from collections import defaultdict import transformers from peft import LoraConfig, TaskType, get_peft_model from torch.utils.data import DataLoader from transformers import Trainer, TrainingArguments from lora_plus import LoraPlusTrainer from swanlab.integration.transformers import SwanLabCallback import swanlab import numpy as np import pandas as pd import re from tqdm import tqdm from transformers import PreTrainedTokenizer, AutoTokenizer import torch.nn as nn from transformers import PreTrainedModel from torch.nn import CrossEntropyLoss, MSELoss # 分子公式解析函数 def parse_chem_formula(formula): pattern = r'([A-Z][a-z]?)(\d*)' matches = re.findall(pattern, formula) element_counts = defaultdict(int) for (element, count) in matches: count = int(count) if count else 1 element_counts[element] += count return element_counts def generate_element_list(formula): element_counts = parse_chem_formula(formula) elements = [] for element, count in element_counts.items(): if element != "H": elements.extend([element] * count) return ''.join(elements) # 初始化SwanLab swanlab.init("Finetune-Llama3.2-with-Encoder") swanlab_callback = SwanLabCallback( project="Finetune-Llama3.2-with-Encoder", experiment_name="Finetune-Llama3.2-with-Encoder" ) # 常量定义 CHEM_FORMULA_SIZE = r"([A-Z][a-z]*)([0-9]*)" VALID_ELEMENTS = ["C", "N", "P", "O", "S", "Si", "I", "H", "Cl", "F", "Br", "B", "Se", "Fe", "Co", "As", "K", "Na"] element_to_idx = {elem: idx for idx, elem in enumerate(VALID_ELEMENTS)} # 化学式转密集向量 def formula_to_dense(chem_formula: str) -> torch.Tensor: dense_vec = torch.zeros(len(VALID_ELEMENTS), dtype=torch.float32) matches = re.findall(CHEM_FORMULA_SIZE, chem_formula) for chem_symbol, num_str in matches: num = 1 if num_str == "" else int(num_str) if chem_symbol in element_to_idx: idx = element_to_idx[chem_symbol] dense_vec[idx] += num return dense_vec # 位置编码生成 def positional_encoding(max_position: int, d_model: int, min_freq: float = 1e-4) -> torch.Tensor: position = torch.arange(max_position).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * (-torch.log(torch.tensor(min_freq)) / d_model)) pos_enc = torch.zeros(max_position, d_model) pos_enc[:, 0::2] = torch.sin(position * div_term) pos_enc[:, 1::2] = torch.cos(position * div_term) return pos_enc # 初始化位置编码矩阵 P = positional_encoding(2000000, 254) dimn = 254 # 与位置编码维度一致 # 质谱数据编码 def encode_spectra(rag_tensor: list, P: torch.Tensor, dimn: int) -> torch.Tensor: encoded_list = [] for sample in rag_tensor: mz_list, intensity_list = sample base_features = torch.tensor([mz_list, intensity_list], dtype=torch.float32).T pos_enc = torch.stack([P[min(int(mz), P.size(0)-1)] for mz in mz_list]) features = torch.cat([base_features, pos_enc], dim=1) if features.size(0) < 501: padding = torch.zeros(501 - features.size(0), features.size(1)) features = torch.cat([features, padding], dim=0) else: features = features[:501] encoded_list.append(features) return torch.stack(encoded_list) # 质谱数据预处理 def preprocess_spectra(df: pd.DataFrame) -> list: spectra_list = [] for idx, row in tqdm(df.iterrows(), total=len(df)): spectrum_str = row['Spectrum'] total_mass = row['Total Exact Mass'] pairs = spectrum_str.split() mz_list, intensity_list = [], [] for pair in pairs: mz, intensity = pair.split(':') mz_list.append(float(mz)) intensity_list.append(float(intensity)) mz_list.append(total_mass) intensity_list.append(0.0) mz_list = [round(mz, 2) for mz in mz_list] intensity_list = [round(intensity, 2) for intensity in intensity_list] spectra_list.append([mz_list, intensity_list]) return spectra_list class MolecularDataset(Dataset): def __init__(self, csv_path: str, tokenizer: AutoTokenizer, max_seq_len: int = 512): self.df = pd.read_csv(csv_path) self.tokenizer = tokenizer self.max_seq_len = max_seq_len self.pad_token_id = tokenizer.pad_token_id self.mask_token_id = tokenizer.mask_token_id if tokenizer.mask_token_id is not None else tokenizer.convert_tokens_to_ids("<mask>") spectra_data = preprocess_spectra(self.df) self.spec_encoded = encode_spectra(spectra_data, P, dimn) self.element_lists = [generate_element_list(formula) for formula in self.df['Molecular Formula']] self.element_lengths = [] for elem_list in self.element_lists: elem_tokens = self.tokenizer(elem_list, add_special_tokens=False)['input_ids'] self.element_lengths.append(len(elem_tokens)) def __len__(self): return len(self.df) def __getitem__(self, idx) -> dict: formula = self.df.iloc[idx]['Molecular Formula'] formula_vec = formula_to_dense(formula).squeeze(0) # 压缩为1D向量 spec_matrix = self.spec_encoded[idx] element_list = self.element_lists[idx] element_text = f"<|Spectrum|>{element_list}" selfies_str = self.df.iloc[idx]['SELFIES'] selfies_text = f"{selfies_str}" input_text = f"{element_text}{selfies_text}" encoding = self.tokenizer( input_text, add_special_tokens=False, padding='max_length', truncation=True, max_length=self.max_seq_len, return_tensors='pt' ) input_ids = encoding['input_ids'].squeeze(0) attention_mask = encoding['attention_mask'].squeeze(0) labels = input_ids.clone() labels[labels == self.pad_token_id] = -100 element_len = self.element_lengths[idx] element_end = 3 + element_len # , <|Spectrum|>, 元素列表 if element_end < len(labels): labels[:element_end] = -100 return { 'encoder1_inputs': formula_vec, # 注意:现在是1D向量 'encoder2_inputs': spec_matrix, 'input_ids': input_ids, 'attention_mask': attention_mask, 'labels': labels, 'formula_labels': formula_vec, # 添加元素计数标签 } # 加载tokenizer tokenizer = AutoTokenizer.from_pretrained('/root/workspace/d21lv5s7v38s73b4ddlg/checkpoint-2500') if tokenizer.mask_token is None: tokenizer.add_special_tokens({"mask_token": "<mask>"}) # 创建数据集 dataset = MolecularDataset('/root/workspace/d21lv5s7v38s73b4ddlg/SELFIES-SFT.csv', tokenizer) def custom_collator(features: List[Dict]) -> Dict: batch = { 'encoder1_inputs': torch.stack([f['encoder1_inputs'] for f in features]), # 形状: (batch_size, 18) 'encoder2_inputs': torch.stack([f['encoder2_inputs'] for f in features]), 'input_ids': torch.stack([f['input_ids'] for f in features]), 'attention_mask': torch.stack([f['attention_mask'] for f in features]), 'labels': torch.stack([f['labels'] for f in features]), 'formula_labels': torch.stack([f['formula_labels'] for f in features]), # 形状: (batch_size, 18) } return batch class ElementPredictionHead(nn.Module): """化学元素计数预测头部""" def __init__(self, hidden_size, output_size=18): super().__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.activation = nn.ReLU() self.layer_norm = nn.LayerNorm(hidden_size) self.out_proj = nn.Linear(hidden_size, output_size) def forward(self, hidden_states): x = self.dense(hidden_states) x = self.activation(x) x = self.layer_norm(x) x = self.out_proj(x) return x class LlamaWithEncoder(PreTrainedModel): def __init__(self, base_model, encoder1_dim=18, encoder2_dim=256, hidden_dim=512): self.config = base_model.config super().__init__(self.config) self.model = base_model # 分子式编码器 encoder1_layer = nn.TransformerEncoderLayer( d_model=encoder1_dim, nhead=3, dim_feedforward=hidden_dim, batch_first=True ) self.encoder1 = nn.TransformerEncoder(encoder1_layer, num_layers=2) # 质谱编码器 encoder2_layer = nn.TransformerEncoderLayer( d_model=encoder2_dim, nhead=8, dim_feedforward=hidden_dim, batch_first=True ) self.encoder2 = nn.TransformerEncoder(encoder2_layer, num_layers=2) # 投影层 self.proj1 = nn.Linear(encoder1_dim, base_model.config.hidden_size) self.proj2 = nn.Linear(encoder2_dim, base_model.config.hidden_size) # 嵌入层 self.embed_tokens = nn.Embedding( num_embeddings=base_model.config.vocab_size, embedding_dim=base_model.config.hidden_size, padding_idx=base_model.config.pad_token_id ) self.embed_tokens.weight.data = base_model.get_input_embeddings().weight.data.clone() # 添加元素计数预测头 self.element_head = ElementPredictionHead(base_model.config.hidden_size) # PEFT所需方法 def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def get_output_embeddings(self): return self.model.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.model.set_output_embeddings(new_embeddings) def get_base_model(self): return self.model def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, encoder1_inputs: Optional[torch.FloatTensor] = None, encoder2_inputs: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, formula_labels: Optional[torch.FloatTensor] = None, # 新增:元素计数标签 past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict # 1. 编码器处理 enc1_out = self.encoder1(encoder1_inputs.unsqueeze(1)) # 添加序列维度 enc1_out = enc1_out.mean(dim=1) # (batch_size, encoder1_dim) enc1_proj = self.proj1(enc1_out) # (batch_size, hidden_size) enc2_out = self.encoder2(encoder2_inputs) # (batch_size, 501, encoder2_dim) enc2_out = enc2_out.mean(dim=1) # (batch_size, encoder2_dim) enc2_proj = self.proj2(enc2_out) # (batch_size, hidden_size) # 合并编码器输出 mask_replacement = (enc1_proj + enc2_proj) / 2 # (batch_size, hidden_size) # 2. 获取原始嵌入 embeddings = self.embed_tokens(input_ids) # (batch_size, seq_len, hidden_size) batch_size, seq_len, hidden_size = embeddings.size() # 3. 替换<mask> token if seq_len > 2: mask_embed = mask_replacement.unsqueeze(1) # (batch_size, 1, hidden_size) part1 = embeddings[:, :2, :] # (batch_size, 2, hidden_size) part2 = mask_embed # (batch_size, 1, hidden_size) part3 = embeddings[:, 3:, :] # (batch_size, seq_len-3, hidden_size) new_embeddings = torch.cat([part1, part2, part3], dim=1) # (batch_size, seq_len, hidden_size) else: new_embeddings = embeddings # 4. 调用基础模型 model_output = self.model( inputs_embeds=new_embeddings, attention_mask=attention_mask, labels=labels, past_key_values=past_key_values, output_attentions=output_attentions, output_hidden_states=True, # 必须返回隐藏状态用于元素预测 return_dict=return_dict, **kwargs ) # 5. 元素计数预测 element_pred = None element_loss = None if formula_labels is not None: # 获取最后一个非填充token的隐藏状态 seq_lengths = attention_mask.sum(dim=1) - 1 # 最后一个有效token的索引 batch_indices = torch.arange(batch_size, device=model_output.hidden_states[-1].device) last_token_hidden = model_output.hidden_states[-1][batch_indices, seq_lengths] # (batch_size, hidden_size) # 预测元素计数 element_pred = self.element_head(last_token_hidden) # (batch_size, 18) # 计算元素计数损失(MSE损失) element_loss = MSELoss()(element_pred, formula_labels) # 组合总损失:语言模型损失 + 元素计数损失 total_loss = model_output.loss + 0.5 * element_loss else: total_loss = model_output.loss # 返回结果 if not return_dict: output = (model_output.logits,) if element_pred is not None: output += (element_pred,) return (total_loss,) + output if total_loss is not None else output return { 'loss': total_loss, 'logits': model_output.logits, 'element_pred': element_pred, 'element_loss': element_loss, 'hidden_states': model_output.hidden_states, 'past_key_values': model_output.past_key_values, 'attentions': model_output.attentions } # 加载预训练模型 base_model = transformers.AutoModelForCausalLM.from_pretrained( "/root/workspace/d21lv5s7v38s73b4ddlg/checkpoint-2500", trust_remote_code=True, torch_dtype=torch.bfloat16, ) model = LlamaWithEncoder(base_model) # 配置LoRA lora_config = LoraConfig( r=8, lora_alpha=16, target_modules="all-linear", lora_dropout=0.0, bias="none", task_type="CAUSAL_LM" ) model = get_peft_model(model, lora_config) model.print_trainable_parameters() # 训练参数 training_args = TrainingArguments( output_dir="./llama3.2-SELFIES-SFT", per_device_train_batch_size=24, gradient_accumulation_steps=24, num_train_epochs=12, learning_rate=5.0e-05, optim="adamw_torch", logging_steps=10, bf16=True, save_strategy="steps", lr_scheduler_type='cosine', max_grad_norm=1.0, save_steps=2000, warmup_steps=0 ) class CustomTrainer(LoraPlusTrainer): def get_train_dataloader(self) -> DataLoader: return DataLoader( self.train_dataset, batch_size=self.args.train_batch_size, shuffle=True, collate_fn=self.data_collator, drop_last=False, ) # 训练模型 lp_trainer = CustomTrainer( model, training_args, train_dataset=dataset, tokenizer=tokenizer, data_collator=custom_collator, callbacks=[swanlab_callback], ) lp_trainer.train() lp_trainer.save_model(output_dir='./llama3.2-SELFIES-SFT') # 合并LoRA权重并移除元素预测头 model = model.merge_and_unload() model.element_head = None # 移除元素预测头 # 保存模型(不包括元素预测头) save_directory = './llama3.2-SELFIES' model.save_pretrained(save_directory, safe_serialization=True) tokenizer.save_pretrained(save_directory)不对,要对应修改为 element_text = f"<|User|><mask>{element_list}" # SELFIES目标序列并添加标记 selfies_str = self.df.iloc[idx]['SELFIES'] selfies_text = f"<|Assistant|>{selfies_str}",同时化学元素计数预测模型的输入token取<|Assistant|>token之后的,写出完整的修改代码

# -*- coding: utf-8 -*- import pandas as pd import os from xgboost import XGBRegressor # 定义标签列名 label_columns1 = 'node_travel_speed2' label_columns = 'node_travel_interval' xgb_model = XGBRegressor( tree_method='hist', n_estimators=100, max_depth=20, learning_rate=0.1, subsample=0.8, colsample_bytree=0.8, random_state=42, n_jobs=max(1, os.cpu_count() - 2) ) # 数据文件路径 file_path = "C:\\Users\\HWC\\Desktop\\专业实训1\\" # 读取 Excel 文件 df = pd.read_excel(file_path + "raw_data_preprocess_m3_routlier_train_100.xlsx") # 将 'dt' 列转换为日期时间类型 df['dt'] = pd.to_datetime(df['dt']) # 筛选 transporter_id_update 小于 100 的数据 df2 = df[df['transporter_id_update'] < 100] # 定义特征列,排除不需要的列 feature_columns = [col for col in df.columns if col not in ['dt', 'delivery_id', 'transporter_id_update', 'routing_id', 'accept_time', 'node_time', 'node_travel_speed2', 'node_travel_interval']] # 训练 XGBoost 模型 xgb_model.fit(df.loc[:, feature_columns], df.loc[:, label_columns1]) # 保存训练好的模型 xgb_model.save_model(file_path + "xgboost_model_speed.json") # 获取特征重要性 feature_importances = xgb_model.feature_importances_ # 创建特征重要性 DataFrame 并按重要性排序 importance_df = pd.DataFrame({ 'feature': feature_columns, 'importance': feature_importances }).sort_values(by='importance', ascending=False) # 将特征重要性保存为 CSV 文件 importance_df.to_csv(file_path + "feature_importance_xgboost_model_speed.csv", index=False, sep=',') 完成下面任务: 相关路径: # 数据文件路径 file_path = "C:\\Users\\HWC\\Desktop\\专业实训1\\" # 读取 Excel 文件 df = pd.read_excel(file_path + "raw_data_preprocess_m3_routlier_test_100.xlsx") 帮我根据下面的测试代码风格帮我完成上面模型的测试代码。测试代码: # -*- coding: utf-8 -*- import pandas as pd import os from xgboost import XGBRegressor import numpy as np # 路径和参数 file_path = "/home/yingmei/speed_forecast/dynamic_forecast0618/" label_columns1 = 'node_travel_speed2' label_columns = 'node_travel_interval' ##输入预测特征## test=pd.read_csv(file_path+"raw_data_preprocess_m3_routlier_check.csv",sep=',') feature_columns= [col for col in test.columns if col not in ['dt','delivery_id','transporter_id_update','routing_id', 'accept_time','node_time','node_travel_speed2','node_travel_interval']] xgb_model = XGBRegressor() xgb_model.load_model(file_path+'xgboost_model1.json') y_pred0 = xgb_model.predict(test[feature_columns]).round(6) y_pred0=pd.DataFrame(y_pred0, columns=['node_forecast_interval']).reset_index(drop=True) y_pred=(test['node_travel_distance']/y_pred0['node_forecast_interval']).round(6) y_pred=pd.DataFrame(y_pred*60/1000,columns=['node_forecast_speed2']) result = pd.concat([test, y_pred], axis=1) #result.to_csv(file_path+"forecast_data_xgboost1.csv",index=False,sep=',') result['forecast_mae']=np.abs(result['node_forecast_speed2']-result['node_travel_speed2']) result['forecast_mpe']=(result['forecast_mae']/result['node_travel_speed2']).replace([np.inf, -np.inf], np.nan).round(6) print(np.nanmean(result['forecast_mae']),np.nanmean(result['forecast_mpe'])) result.to_csv(file_path+"forecast_data_xgboost1_error.csv",index=False,sep=',') result['node_travel_speed_grade']=(result['node_travel_speed2'])//6 result2=result.groupby('node_travel_speed_grade')['node_travel_speed2'].size().reset_index() result21=result.groupby('node_travel_speed_grade')['forecast_mpe'].mean().reset_index() result2["MPE"]=result21['forecast_mpe'].round(4) result21=result.groupby('node_travel_speed_grade')['forecast_mae'].mean().reset_index() result2["MAE"]=result21['forecast_mae'].round(4) result2.to_csv(file_path+"forecast_data_xgboost1_statbyspeed.csv",index=False,sep=',') result = pd.concat([test, result[['node_forecast_speed2','forecast_mae','forecast_mpe']]], axis=1) result['node_travel_distance_grade']=((result['node_travel_distance'])//3000) result2=result.groupby('node_travel_distance_grade')['node_travel_speed2'].size().reset_index() result21=result.groupby('node_travel_distance_grade')['forecast_mpe'].mean().reset_index() result2["MPE"]=result21['forecast_mpe'].round(4) result21=result.groupby('node_travel_distance_grade')['forecast_mae'].mean().reset_index() result2["MAE"]=result21['forecast_mae'].round(4) result2.to_csv(file_path+"forecast_data_xgboost1_statbydistance.csv",index=False,sep=',')

import os import pandas as pd import numpy as np import torch from transformers import ( BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments, logging as hf_logging ) from sklearn.model_selection import train_test_split from torch.utils.data import Dataset, DataLoader from tqdm import tqdm import warnings # 禁用不必要的警告 warnings.filterwarnings("ignore") hf_logging.set_verbosity_error() # 配置全局参数 CONFIG = { "model_name": "bert-base-uncased", "cache_dir": "./hf_cache", # 模型缓存目录 "max_length": 128, "batch_size": 32, "gradient_accumulation_steps": 2, # 梯度累积 "num_epochs": 3, "proxy": None, # 例如 "http://127.0.0.1:1080" "local_files_only": False # 是否强制使用本地文件 } class RobustCommentDataset(Dataset): def __init__(self, texts, labels, weights): self.texts = texts self.labels = labels self.weights = weights # 初始化tokenizer(带重试机制) self.tokenizer = self._init_tokenizer() self.max_len = CONFIG["max_length"] def _init_tokenizer(self, retries=3): for i in range(retries): try: return BertTokenizer.from_pretrained( CONFIG["model_name"], cache_dir=CONFIG["cache_dir"], local_files_only=CONFIG["local_files_only"] ) except Exception as e: if i == retries - 1: raise RuntimeError(f"Failed to load tokenizer after {retries} attempts: {str(e)}") print(f"Tokenizer loading failed, retrying ({i+1}/{retries})...") def __len__(self): return len(self.texts) def __getitem__(self, idx): text = str(self.texts[idx]) encoding = self.tokenizer( text, max_length=self.max_len, padding="max_length", truncation=True, return_tensors="pt" ) return { "input_ids": encoding["input_ids"].flatten(), "attention_mask": encoding["attention_mask"].flatten(), "labels": torch.tensor(self.labels[idx], dtype=torch.long), "weights": torch.tensor(self.weights[idx], dtype=torch.float) } def safe_preprocess_data(file_path): # 使用迭代器读取大文件 chunk_iter = pd.read_csv(file_path, chunksize=50000) dfs = [] for chunk in tqdm(chunk_iter, desc="Processing data"): # 清洗数据 chunk = chunk.dropna(subset=["RATING"]) chunk["label"] = chunk["RATING"].apply( lambda x: 2 if x >=4 else 1 if x ==3 else 0 ) chunk["weight"] = chunk["VOTES"] + 1 dfs.append(chunk) full_df = pd.concat(dfs) # 平衡数据集 train_df, test_df = train_test_split( full_df, test_size=0.2, stratify=full_df["label"], random_state=42 ) return train_df, test_df class WeightedTrainer(Trainer): def compute_loss(self, model, inputs, return_outputs=False): labels = inputs.get("labels") weights = inputs.get("weights") outputs = model(**inputs) logits = outputs.logits loss_fct = torch.nn.CrossEntropyLoss(reduction="none") loss = loss_fct(logits.view(-1, model.config.num_labels), labels.view(-1)) weighted_loss = (loss * weights).mean() return (weighted_loss, outputs) if return_outputs else weighted_loss def load_model_with_retry(): for i in range(3): try: return BertForSequenceClassification.from_pretrained( CONFIG["model_name"], num_labels=3, problem_type="single_label_classification", cache_dir=CONFIG["cache_dir"], local_files_only=CONFIG["local_files_only"] ) except Exception as e: if i == 2: print(""" [Error] 模型加载失败,请尝试: 1. 手动下载模型: git clone https://huggingface.co/bert-base-uncased 2. 设置 local_files_only=True 3. 检查网络连接或代理设置 """) raise print(f"模型加载失败,重试中 ({i+1}/3)...") def configure_training(): return TrainingArguments( output_dir="./results", num_train_epochs=CONFIG["num_epochs"], per_device_train_batch_size=CONFIG["batch_size"], per_device_eval_batch_size=CONFIG["batch_size"], gradient_accumulation_steps=CONFIG["gradient_accumulation_steps"], warmup_ratio=0.1, weight_decay=0.01, logging_dir="./logs", fp16=True, evaluation_strategy="epoch", save_strategy="epoch", load_best_model_at_end=True, metric_for_best_model="accuracy", greater_is_better=True, report_to="none" ) def main(): # 配置代理 if CONFIG["proxy"]: os.environ["HTTP_PROXY"] = CONFIG["proxy"] os.environ["HTTPS_PROXY"] = CONFIG["proxy"] # 数据预处理 train_df, test_df = safe_preprocess_data("D:\\BaiduNetdiskDownload\\电影数据集-CSV格式\\comments.csv") # 创建数据集 train_dataset = RobustCommentDataset( train_df["CONTENT"].values, train_df["label"].values, train_df["weight"].values ) test_dataset = RobustCommentDataset( test_df["CONTENT"].values, test_df["label"].values, test_df["weight"].values ) # 加载模型 model = load_model_with_retry() # 训练配置 training_args = configure_training() # 初始化训练器 trainer = WeightedTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=test_dataset, compute_metrics=lambda p: { "accuracy": (np.argmax(p.predictions, axis=1) == p.label_ids).mean() } ) # 开始训练 try: trainer.train() except KeyboardInterrupt: print("\n训练被中断,正在保存当前进度...") trainer.save_model("./interrupted_model") # 保存最终模型 trainer.save_model("./sentiment_model") trainer.tokenizer.save_pretrained("./sentiment_model") if __name__ == "__main__": main() 我需要训练过程损失值和正确率的变化

zip
dnSpy是目前业界广泛使用的一款.NET程序的反编译工具,支持32位和64位系统环境。它允许用户查看和编辑.NET汇编和反编译代码,以及调试.NET程序。该工具通常用于程序开发者在维护和调试过程中分析程序代码,尤其在源代码丢失或者无法获取的情况下,dnSpy能提供很大的帮助。 V6.1.8版本的dnSpy是在此系列软件更新迭代中的一个具体版本号,代表着该软件所具备的功能与性能已经达到了一个相对稳定的水平,对于处理.NET程序具有较高的可用性和稳定性。两个版本,即32位的dnSpy-net-win32和64位的dnSpy-net-win64,确保了不同操作系统架构的用户都能使用dnSpy进行软件分析。 32位的系统架构相较于64位,由于其地址空间的限制,只能支持最多4GB的内存空间使用,这在处理大型项目时可能会出现不足。而64位的系统能够支持更大的内存空间,使得在处理大型项目时更为方便。随着计算机硬件的发展,64位系统已经成为了主流,因此64位的dnSpy也更加受开发者欢迎。 压缩包文件名“dnSpy-net-win64.7z”和“dnSpy-net-win32.7z”中的“.7z”表示该压缩包采用了7-Zip压缩格式,它是一种开源的文件压缩软件,以其高压缩比著称。在实际使用dnSpy时,用户需要下载对应架构的压缩包进行解压安装,以确保软件能够正确运行在用户的操作系统上。 dnSpy工具V6.1.8版本的发布,对于.NET程序员而言,无论是32位系统还是64位系统用户,都是一个提升工作效率的好工具。用户可以根据自己计算机的操作系统架构,选择合适的版本进行下载使用。而对于希望进行深度分析.NET程序的开发者来说,这个工具更是不可或缺的利器。

大家在看

recommend-type

龙书的答案

龙书的答案51CTO下载-编译原理习题答案,1-8章龙书第二版.rar 可以随时下载
recommend-type

CO吸附在Pd面-CASTEP教程

CO吸附在Pd(110)面 目的:介绍用CASTEP如何计属表面上的吸附能。 模块:CASTEP,Materials Visualizer 背景知识:Pd的表面在许多催化反应中都起着非常重要的作用。理解催化反应首先是弄清楚分子是如何与这样的表面相结合的。在本篇文章中,通过提出下列问题,DFT(二维傅立叶变换)模拟有助于我们的理解:分子趋向于吸附在哪里?可以有多少分子吸附在表面?吸附能是什么?它们的结构像什么?吸附的机制是什么? 我们应当把注意力集中于吸附点,既短桥点,因为众所周知它是首选的能量活泼点。而且覆盖面也是确定的(1 ML).。在1 ML 覆盖面上CO 分子互相排斥以阻止CO 分子垂直的连接在表面上。考虑到(1x1)和(2x1)表面的单胞,我们将要计算出这种倾斜对化学吸收能的能量贡献。 绪论:在本指南中,我们将使用CASTEP来最优化和计算数种系统的总体能量。一旦我们确定了这些能量,我们就可以计算CO在Pd(110)面上的化学吸附能。
recommend-type

文华财经数据导出工具增强版-20200210.zip

文华期货数据提取,包括外汇,国内国外数据等,日线,分钟线的本程序设计目的是文华数据的个性化导出与管理,方便实现对文华盘后数据(1分钟、5分钟和日线),以导出格式为txt、CSV等定制格式。
recommend-type

Mydac v8.6 Pro Full D7-XE7-XE8-Seatle 10

Mydac v8.6 Pro Full D7-XE7-XE8-Seatle 10
recommend-type

移远4G模块EC20 EC25 驱动, 安卓 linux win

移远4G模块EC20 EC25 驱动, 安卓 linux win

最新推荐

recommend-type

点云到D对象创建管道。_Pipeline for point cloud to 3D object creation..

点云到D对象创建管道。_Pipeline for point cloud to 3D object creation..zip
recommend-type

基于节点碳势变化规律的电力系统双层优化调度策略:实现低碳排放与经济提升的新途径

内容概要:本文针对电力系统的低碳排放和经济性提升,提出了基于节点碳势需求响应的双层优化调度策略。首先,利用比例共享原则追踪碳排放流,建立了碳排放流模型,感知各节点的碳势变化规律。接着,将碳流分析纳入负荷侧需求响应机制,建立了负荷聚合商需求响应碳排放模型,厘清不同碳势强度下负荷聚合商调度的差异。最终,构建了由电网运营商最优经济调度(上层)和负荷聚合商需求响应经济调度(下层)组成的双层优化调度模型。通过改进IEEE 14节点系统的实证分析,验证了该策略能有效降低碳排放并提高经济性。 适合人群:从事电力系统优化、能源管理、环境科学及相关领域的研究人员和技术人员。 使用场景及目标:适用于需要优化电力系统调度以减少碳排放并提高经济效益的场景。主要目标是帮助电力系统运营者制定更为环保和经济的调度策略。 其他说明:未来研究将进一步完善碳排放流模型、探索更多元化的需求响应策略以及优化调度模型的算法和参数设置。
recommend-type

基于J2SE_Swing的C_S架构图形化数据监控与同步工具_支持多种SQL_NoSQL_数据仓库_消息队列及Elasticsearch数据源_通过Canal实现MySQL_Mar.zip

基于J2SE_Swing的C_S架构图形化数据监控与同步工具_支持多种SQL_NoSQL_数据仓库_消息队列及Elasticsearch数据源_通过Canal实现MySQL_Mar.zip
recommend-type

dnSpy 32位和64位V6.1.8

dnSpy是目前业界广泛使用的一款.NET程序的反编译工具,支持32位和64位系统环境。它允许用户查看和编辑.NET汇编和反编译代码,以及调试.NET程序。该工具通常用于程序开发者在维护和调试过程中分析程序代码,尤其在源代码丢失或者无法获取的情况下,dnSpy能提供很大的帮助。 V6.1.8版本的dnSpy是在此系列软件更新迭代中的一个具体版本号,代表着该软件所具备的功能与性能已经达到了一个相对稳定的水平,对于处理.NET程序具有较高的可用性和稳定性。两个版本,即32位的dnSpy-net-win32和64位的dnSpy-net-win64,确保了不同操作系统架构的用户都能使用dnSpy进行软件分析。 32位的系统架构相较于64位,由于其地址空间的限制,只能支持最多4GB的内存空间使用,这在处理大型项目时可能会出现不足。而64位的系统能够支持更大的内存空间,使得在处理大型项目时更为方便。随着计算机硬件的发展,64位系统已经成为了主流,因此64位的dnSpy也更加受开发者欢迎。 压缩包文件名“dnSpy-net-win64.7z”和“dnSpy-net-win32.7z”中的“.7z”表示该压缩包采用了7-Zip压缩格式,它是一种开源的文件压缩软件,以其高压缩比著称。在实际使用dnSpy时,用户需要下载对应架构的压缩包进行解压安装,以确保软件能够正确运行在用户的操作系统上。 dnSpy工具V6.1.8版本的发布,对于.NET程序员而言,无论是32位系统还是64位系统用户,都是一个提升工作效率的好工具。用户可以根据自己计算机的操作系统架构,选择合适的版本进行下载使用。而对于希望进行深度分析.NET程序的开发者来说,这个工具更是不可或缺的利器。
recommend-type

Verilog 编程 - 基础知识

本课程是您对Verilog的入门,Verilog是数字设计中使用的必备硬件描述语言。通过理论和实践的结合,您将学习Verilog编码的基础知识,包括逻辑门、数据类型和过程语句。完成本课程后,您将能够使用Verilog设计、模拟和实现基本的数字电路,为高级数字设计项目奠定坚实的基础。
recommend-type

Info2007v1.0更新至v2.0:优化管理与前台功能

根据提供的文件信息,可以挖掘出以下知识点: ### 标题知识点: 1. **免费时代WEB程序INFO2007 V1.0:** - 该标题表明存在一个名为INFO2007的WEB程序版本1.0,该版本是在免费时代推出的,可能意味着该程序是开源的或者提供免费下载。 ### 描述知识点: 1. **软件缺陷说明:** - 开发者提到程序存在BUG(程序缺陷),并提供了一个更新和反馈的渠道,说明软件仍在开发中,且有后续版本计划。 2. **联系方式:** - 开发者提供了QQ和邮箱作为联系方式,用于反馈问题或询问更新情况。 3. **Info2007v2.0更新内容:** - 提及了升级后的版本INFO2007v2.0新增功能,包括数据库结构变化(添加会员和公告表)、后台管理功能的增加与优化、前台功能的增加与优化等。 4. **安装要求:** - 软件需要特定的服务器环境支持,比如FSO(文件系统对象)、数据采集功能和JMAIL(邮件发送组件)。 5. **配置与安装细节:** - 对config.asp下的目录配置和pageurlsa变量做了说明,这些通常涉及程序的运行环境和安全设置。 6. **默认登录信息:** - 提供了默认的管理员用户名和密码,以及后台管理的默认目录,这对于安装和测试程序很重要。 7. **使用前的必要步骤:** - 强调了解压后生成静态页面的重要性,这可能是确保网站内容可被正确浏览的前置操作。 ### 标签知识点: 1. **ASP源码其他类别:** - 这表明该程序使用ASP(Active Server Pages)作为后端编程语言,并且归类于其他类别,可能意味着它不局限于某一特定功能或领域。 ### 压缩包文件名称列表知识点: 1. **www.codejia.com:** - 这个文件名可能指示了程序被托管或下载的来源网站,也暗示了可能含有与网站域名相关的程序文件。 ### 综合知识点: 1. **软件开发与维护:** - 从描述中可以看出开发者在推动软件的持续改进,并鼓励用户参与软件的测试和反馈过程。 2. **软件环境配置:** - 软件对运行环境有所要求,特别是服务器端的支持,需要了解FSO、数据采集、JMAIL等组件的使用和配置。 3. **后台管理系统:** - 更新内容中提及的后台管理功能,如会员管理、公告管理、文章管理等,显示了该程序提供了一套用于网站内容和用户管理的后台解决方案。 4. **前台展示优化:** - 对前台页面的优化和增加功能,如会员注册、文章页、下载页和分类栏目的改进,说明了对用户体验的重视。 5. **安全与权限控制:** - 默认用户名和密码的提供,以及后台目录的默认设置,强调了安装过程中应立即更改编译以提高安全性。 6. **静态页面生成:** - 生成静态页面作为必要步骤可能涉及到网站的性能优化和安全措施。 7. **开源与社区支持:** - 由于提及了更新的可能和用户反馈渠道,这表明软件具有一定的开源特性或至少鼓励社区参与。 综上所述,这些知识点涵盖了软件开发的常见方面,包括软件生命周期的维护、功能更新、环境配置、安全实践以及优化用户体验。了解和掌握这些知识点可以帮助开发者和用户更好地利用和改进免费时代WEB程序INFO2007 V1.0。
recommend-type

Rust测试实战:错误处理、环境变量与模拟服务器

### Rust 测试实战:错误处理、环境变量与模拟服务器 在 Rust 开发中,测试是确保代码质量和稳定性的重要环节。本文将深入探讨 Rust 中的测试技巧,包括错误处理、使用环境变量测试 Config 模块以及使用模拟服务器测试 profanity 模块。 #### 1. 错误处理与比较 在 Rust 中,我们可以为自定义错误类型实现 `std::fmt::Display` 特征,以便将错误转换为字符串。以下是一个示例: ```rust impl std::fmt::Display for Error { fn fmt(&self, f: &mut std::fmt::For
recommend-type

请分析下面代码:<tbody> <#if (paginationSupport.items)?has_content> <#list paginationSupport.items?sort_by('caseNo') as s> <tr class="b"> <td><a href="../user/viewRequestForm.action?requestFormId=${s.id}">${s.caseNo?default("Not Assigned")?if_exists}</a></td> <td>${s.lotId?if_exists}</td> <td><@m.directoryLink s.applicant?if_exists /></td> <td>${s.prodId?if_exists}</td> <td>${s.lotStageId?if_exists}</td> <td>${s.status?if_exists}</td> <td> <#if s.status!="Waiting For STR"> <#if s.workflowId?exists> <#list s.queuedOwners as owner> <#if owner?matches("[MmAaEeTt]\\d{3}.*")> <@m.directoryLink owner/> <#elseif owner?matches("[K-Z][A-Z][A-Z].*[_].*")> <#list adminService.loadGroupMembersByName(owner) as member> <@m.directoryLink member/><!--by Group--> </#list> <#else> <@m.orgManager owner?if_exists/><!--by Org--> </#if> </#list> </#if> <#else> <#if s.ercCategory=="Input the STR Number"||s.ercCategory=="STR"||s.ercCategory=="MSTR"> STR NO:<a href="${ercService.strLink?if_exists}${s.strEnNo?if_exists}" target="_blank">${s.strEnNo?if_exists}</a> is not effective <#else> EN NO:<a href="${ercService.enLink?if_exists}${s.strEnNo?if_exists}" target="_blank">${s.strEnNo?if_exists}</a> is not effective </#if> </#if> </td> <td><#if s.submitDate?exists>${s.submitDate?datetime?if_exists}</#if></td> <td>${s.purpose?default('')}</td> </tr> </#list> </#if> </tbody>

这段代码是使用 FreeMarker 模板引擎生成 HTML 表格内容的一部分,主要功能是根据分页数据展示请求表单的信息。以下是代码的详细分析: --- ### 1. **条件判断与循环** ```html <#if (paginationSupport.items)?has_content> ``` 判断 `paginationSupport.items` 是否存在且非空,只有存在数据时才执行表格渲染。 ```html <#list paginationSupport.items?sort_by('caseNo') as s> ``` 对 `paginationSupport.item
recommend-type

op-drone:监控未平仓头寸的市场利器

标题中提到的“op-drone”很可能是指一个特定的监控系统或服务的名称,它被用来“持续监控市场中的未平仓头寸”。未平仓头寸是指在金融市场上尚未完成交易结算的买卖双方的持仓数量。监控未平仓头寸对于市场参与者来说至关重要,因为它可以提供有关市场流动性和投资者情绪的重要信息。 在深入探讨之前,需要了解几个基础概念: 1. 未平仓头寸:指交易者在期货、期权、外汇或其他衍生品市场上建立的但尚未平仓的头寸。这些头寸在到期前仍然具有价值,而且市场上的价格变动会对它们的总体价值产生影响。 2. 持续监控:这通常是指使用软件工具或服务不断跟踪和分析市场数据的过程。持续监控可帮助交易者或市场分析师及时捕捉市场的动态变化,并根据最新情况做出交易决策。 3. 市场监控系统:这类系统通常具备收集实时数据、分析市场趋势、识别异常交易行为等多种功能。它们对于投资者了解市场状况、进行风险管理以及制定交易策略至关重要。 从描述中可以推断出,op-drone是一个专门用于持续监控未平仓头寸的系统或服务。这种系统需要具备以下功能: 1. 数据收集:系统需要有能力实时收集金融市场中的数据,包括但不限于期货、期权、股票、债券等金融产品的交易信息。 2. 数据分析:通过算法或机器学习技术分析收集到的数据,识别市场趋势、投资者行为模式以及潜在风险。 3. 异常检测:能够识别出市场中的异常交易活动,比如未平仓头寸的急剧变化,这可能是市场重大变动的前兆。 4. 风险预警:系统应能向用户发出风险预警,告知用户潜在的市场风险,帮助他们进行风险管理。 5. 报告与可视化:提供详细的数据报告和可视化图表,帮助用户更直观地理解市场状况和未平仓头寸变化。 此外,虽然文件中未提供标签和具体的文件名称列表,但可以推测“op-drone-main”可能是系统中的一个核心组件或主程序的名称。这个组件可能是整个op-drone系统运行的基础,负责处理大部分的监控和分析功能。 综合以上信息,我们可以得出一个结论:op-drone是一个专门设计用于监控金融市场上未平仓头寸的系统或服务。它可能具备实时数据收集和分析、异常行为识别、风险预警以及报告和可视化展示等多种功能,从而帮助用户在复杂的市场环境中做出更加明智的决策。对于需要精确把握市场动态、进行风险管理的金融分析师、交易员、投资组合经理等专业人士来说,这样的系统是不可或缺的工具。
recommend-type

RustWeb服务部署与环境变量配置全解析

### Rust Web 服务部署与环境变量配置全解析 在 Rust 开发中,完成业务逻辑编写后,将应用部署到生产环境是关键的下一步。本文将深入探讨 Rust 应用部署过程中的重要环节,包括环境变量的配置、二进制文件的优化以及跨平台编译等内容。 #### 1. 认证与授权相关未覆盖内容 在认证和授权方面,有一些内容未详细涉及。例如,设置会话数据库来存储令牌,以便在数据泄露或用户有其他需求时使令牌失效。可以通过设置 Redis 实例,在生成每个令牌时,不仅将结果返回给客户端,还将其存储在 Redis 键值存储中。 另外,重置用户密码和创建刷新令牌也是重要的话题。重置用户密码可以通过创建一个