给定 n ,输出斐波那契数列的第 n 项,输出对 1000000007 取模,其中 F n =F n−1 +F n−2 ,F 1 =F 2 =1 以C语言作答
时间: 2024-10-15 17:30:13 浏览: 114
在C语言中,你可以使用动态规划的思想来解决这个问题。这里是一个简单的函数,用于计算斐波那契数列的第n项并取模1000000007:
```c
#include <stdio.h>
long long fib(int n) {
if (n <= 1) {
return n;
}
// 使用数组来存储已经计算过的斐波那契值
long long fib_table[2] = {1, 1};
for (int i = 3; i <= n; i++) {
fib_table[i % 2] = (fib_table[(i - 1) % 2] + fib_table[(i - 2) % 2]) % 1000000007;
}
return fib_table[n % 2];
}
int main() {
int n;
printf("请输入要计算的斐波那契数列项数:");
scanf("%d", &n);
printf("斐波那契数列的第%d项对1000000007取模的结果是:%lld\n", n, fib(n));
return 0;
}
```
在这个程序中,我们首先检查基本情况(n小于等于1),然后创建一个大小为2的数组`fib_table`,初始化前两项为1。接着通过循环计算后续项,并利用取模运算保证结果在1000000007范围内。
相关问题
给定 n ,输出斐波那契数列的第 n 项,输出对 1000000007 取模,其中 F n =F n−1 +F n−2 ,F 1 =F 2 =1 输入格式: 给出一个正整数 n(1≤n≤10 4 ) 输出格式: 输出斐波那契数列的第 n 项,对 1000000007 取模
斐波那契数列是一个经典的递归问题,可以用递归函数的方式来求解,但是由于递归会重复计算很多次相同的数值,导致时间复杂度很高,因此我们可以使用动态规划的方法来避免这种重复计算。
具体地,我们可以用一个数组 `dp` 来存储斐波那契数列的前 n 项,其中 `dp[i]` 表示第 i 项的值。初始时,我们将 `dp[1]` 和 `dp[2]` 的值都初始化为 1,然后从 `dp[3]` 开始逐个计算,直到计算出 `dp[n]`。
为了防止数值溢出,我们需要对每个 `dp[i]` 取模 1000000007,这样计算过程中每个数的大小都不会超过这个值,从而保证结果的正确性。
下面是 Python 代码实现:
```python
n = int(input())
dp = [0] * (n + 1)
dp[1] = dp[2] = 1
for i in range(3, n + 1):
dp[i] = (dp[i - 1] + dp[i - 2]) % 1000000007
print(dp[n])
```
这段代码首先读入一个正整数 `n`,然后初始化一个长度为 `n+1` 的数组 `dp`,将 `dp[1]` 和 `dp[2]` 的值都设为 1。接下来使用一个循环,从 `dp[3]` 开始逐个计算每个 `dp[i]` 的值,最后输出 `dp[n]` 即可。
已知斐波那契数列 F n =F n−1 +F n−2 (n>=3),F 1 =1,F 2 =1 求解该数列的第n项,结果对998244353取模。
### 回答1:
这是一个经典的斐波那契数列问题。由于 n 的范围很大,所以直接递归或者暴力计算是不可行的,需要使用动态规划或矩阵快速幂的方法来求解。
方法一:动态规划
可以使用一个长度为 n+1 的一维数组 dp 来存储斐波那契数列中前 n 项的值,其中 dp[i] 表示第 i 项的值。根据斐波那契数列的递推公式,可以得到状态转移方程:dp[i] = (dp[i-1] + dp[i-2]) % 998244353。
最终 dp[n] 就是该数列的第 n 项了。
下面是 Python 代码实现:
```python
def fibonacci(n):
mod = 998244353
dp = [0] * (n + 1)
dp[1] = dp[2] = 1
for i in range(3, n+1):
dp[i] = (dp[i-1] + dp[i-2]) % mod
return dp[n]
```
方法二:矩阵快速幂
斐波那契数列也可以用矩阵快速幂的方式来求解。首先,将斐波那契数列的递推公式转化成矩阵形式:
```
| F(n) | | 1 1 | | F(n-1) |
| | = | | * | |
| F(n-1) | | 1 0 | | F(n-2) |
```
然后,对于求解第 n 项的问题,我们只需要计算矩阵 A = [1 1; 1 0] 的 n-1 次方,即可得到结果。具体地,可以使用矩阵快速幂的方法来计算。
下面是 Python 代码实现:
```python
def fibonacci(n):
mod = 998244353
def matrix_multiply(a, b):
c = [[0, 0], [0, 0]]
for i in range(2):
for j in range(2):
for k in range(2):
c[i][j] += a[i][k] * b[k][j]
c[i][j] %= mod
return c
def matrix_power(a, n):
res = [[1, 0], [0, 1]]
while n > 0:
if n % 2 == 1:
res = matrix_multiply(res, a)
a = matrix_multiply(a, a)
n //= 2
return res
a = [[1, 1], [1, 0]]
res = matrix_power(a, n-1)
return res[0][0]
```
以上两种方法都可以求解斐波那契数列的第 n 项,时间复杂度均为 O(n) 或 O(log n)。
### 回答2:
斐波那契数列是由两个初始项1开始,每一项都是前两项的和。为了求解数列的第n项,可以使用递归或循环的方法。
使用递归的方法,可以定义一个递归函数fibonacci(n),该函数的参数为n,表示要求解的第n项。如果n小于等于2,则直接返回1;否则,返回fibonacci(n-1)加上fibonacci(n-2)的模998244353的结果。
示例如下:
```python
def fibonacci(n):
if n <= 2:
return 1
else:
return (fibonacci(n-1) + fibonacci(n-2)) % 998244353
```
如果使用循环的方法,可以通过初始化前两项为1,然后从第3项开始循环求解。定义变量a和b分别表示当前项和前一项的值,并用一个循环从3到n迭代更新a和b的值。每次更新都使a的值变为a与b的和模998244353,同时b的值变为原来的a值。循环结束后,返回a的值即为第n项。
示例如下:
```python
def fibonacci(n):
if n <= 2:
return 1
else:
a, b = 1, 1
for i in range(3, n+1):
a, b = (a + b) % 998244353, a
return a
```
以上是用Python编写的求解斐波那契数列第n项的方法。当然,也可以使用其他编程语言来实现相同的逻辑。
### 回答3:
斐波那契数列是一种特殊的数列,每一项都是前两项的和。已知 F n =F n−1 +F n−2 ,其中 n>=3,F 1 =1,F 2 =1。
为了求解该数列的第n项,并且结果对998244353取模,我们可以使用动态规划的方法。
首先,我们可以定义一个数组 dp,dp[i] 表示第i项的斐波那契数值。
然后,我们可以通过迭代的方式计算每一项的斐波那契数值。具体步骤如下:
1. 初始化数组 dp,将前两项 F 1 和 F 2 的值赋给 dp[1] 和 dp[2];
2. 使用循环从3开始遍历,计算每一项的斐波那契数值,即 dp[i] = dp[i-1] + dp[i-2];
3. 循环结束后,dp[n] 中存储的即为第 n 项的斐波那契数值。
最后,我们将 dp[n] 对 998244353 取模,得到的结果即为第 n 项的斐波那契数对 998244353 取模的值。
以上就是求解斐波那契数列第n项,并对998244353取模的方法。
阅读全文
相关推荐















