“tmpxft_000061d4_00000000-7_cutlassB_f32_aligned_k65536_dropout.cudafe1.cpp [4835/7459] Building CXX object caffe2\CMakeFiles\torch_cuda.dir\__\torch\csrc\jit\tensorexpr\cuda_codegen.cpp.obj E:\PyTorch_Build\pytorch\torch/csrc/jit/tensorexpr/ir.h(395): warning C4805: “==”: 在操作中将类型“c10::impl::ScalarTypeToCPPType<c10::ScalarType::Bool>::type”与类型“T”混合不安全 with [ T=int ] E:\PyTorch_Build\pytorch\torch/csrc/jit/tensorexpr/ir.h(395): note: 模板实例化上下文(最早的实例化上下文)为 E:\PyTorch_Build\pytorch\torch\csrc\jit\tensorexpr\cuda_codegen.cpp(147): note: 查看对正在编译的函数 模板 实例化“bool torch::jit::tensorexpr::immediateEquals<int>(const torch::jit::tensorexpr::ExprPtr &,T)”的引用 with [ T=int ] [4844/7459] Building CUDA object caffe2\CMakeFiles\torch_c...aten\src\ATen\native\quantized\cuda\FakeQuantizeCore.cu.ob FakeQuantizeCore.cu tmpxft_000011c8_00000000-7_FakeQuantizeCore.cudafe1.cpp [4850/7459] Building CUDA object caffe2\CMakeFiles\torch_c...aten\src\ATen\native\sparse\cuda\SparseCsrTensorMath.cu.ob SparseCsrTensorMath.cu tmpxft_00000e1c_00000000-7_SparseCsrTensorMath.cudafe1.cpp [4854/7459] Building CXX object caffe2\torch\CMakeFiles\torch_python.dir\csrc\StorageMethods.cpp.obj FAILED: [code=2] caffe2/torch/CMakeFiles/torch_python.dir/csrc/StorageMethods.cpp.obj C:\PROGRA~2\MICROS~2\2022\BUILDT~1\VC\Tools\MSVC\1444~1.352\bin\Hostx64\x64\cl.exe /nologo /TP -DAT_PER_OPERATOR_HEADERS -DBUILDING_TESTS -DEXPORT_AOTI_FUNCTIONS -DFMT_HEADER_ONLY=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNOMINMAX -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DPy_NO_LINK_LIB -DTHP_BUILD_MAIN_LIB -DTORCH_CUDA_USE_NVTX3 -DUSE_CUDA -DUSE_EXTERNAL_MZCRC -DUSE_ITT -DUSE_MIMALLOC -DUSE_NUMPY -DWIN32_LEAN_AND_MEAN -D_CRT_SECURE_NO_DEPRECATE=1 -D_UCRT_LEGACY_INFINITY -Dtorch_python_EXPORTS -IE:\PyTorch_Build\pytorch\build\aten\src -IE:\PyTorch_Build\pytorch\aten\src -IE:\PyTorch_Build\pytorch\build -IE:\PyTorch_Build\pytorch -IE:\PyTorch_Build\pytorch\nlohmann -IE:\PyTorch_Build\pytorch\moodycamel -IE:\PyTorch_Build\pytorch\third_party\mimalloc\include -IE:\PyTorch_Build\pytorch\torch\.. -IE:\PyTorch_Build\pytorch\torch\..\aten\src -IE:\PyTorch_Build\pytorch\torch\..\aten\src\TH -IE:\PyTorch_Build\pytorch\build\caffe2\aten\src -IE:\PyTorch_Build\pytorch\build\third_party -IE:\PyTorch_Build\pytorch\build\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\valgrind-headers -IE:\PyTorch_Build\pytorch\torch\..\third_party\gloo -IE:\PyTorch_Build\pytorch\torch\..\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\flatbuffers\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\kineto\libkineto\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\cpp-httplib -IE:\PyTorch_Build\pytorch\torch\..\third_party\nlohmann\include -IE:\PyTorch_Build\pytorch\torch\csrc -IE:\PyTorch_Build\pytorch\torch\csrc\api\include -IE:\PyTorch_Build\pytorch\torch\lib -IE:\PyTorch_Build\pytorch\torch\standalone -IE:\PyTorch_Build\pytorch\torch\lib\libshm_windows -IE:\PyTorch_Build\pytorch\torch\csrc\api -IE:\PyTorch_Build\pytorch\c10\.. -IE:\PyTorch_Build\pytorch\c10\cuda\..\.. -IE:\PyTorch_Build\pytorch\third_party\fmt\include -IE:\PyTorch_Build\pytorch\third_party\onnx -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googlemock\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googletest\include -external:IE:\PyTorch_Build\pytorch\third_party\protobuf\src -external:IE:\PyTorch_Build\pytorch\third_party\XNNPACK\include -external:IE:\PyTorch_Build\pytorch\third_party\ittapi\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\eigen -external:IE:\PyTorch_Build\pytorch\third_party\ideep\mkl-dnn\include\oneapi\dnnl -external:IE:\PyTorch_Build\pytorch\third_party\ideep\include -external:IE:\PyTorch_Build\pytorch\INTERFACE -external:IE:\PyTorch_Build\pytorch\third_party\nlohmann\include -external:IE:\PyTorch_Build\pytorch\third_party\concurrentqueue -external:IE:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\numpy\_core\include -external:IE:\Python310\Include -external:I"E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\include" -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\pybind11\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\opentelemetry-cpp\api\include -external:IE:\PyTorch_Build\pytorch\third_party\cpp-httplib -external:IE:\PyTorch_Build\pytorch\third_party\NVTX\c\include -external:W0 /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273 -DHAVE_AVX512_CPU_DEFINITION -DHAVE_AVX2_CPU_DEFINITION /Zc:preprocessor /Zc:preprocessor /Zc:preprocessor /O2 /Ob2 /DNDEBUG /bigobj -DNDEBUG -std:c++17 -MD /permissive- /EHsc /bigobj -O2 /utf-8 /showIncludes /Focaffe2\torch\CMakeFiles\torch_python.dir\csrc\StorageMethods.cpp.obj /Fdcaffe2\torch\CMakeFiles\torch_python.dir\ /FS -c E:\PyTorch_Build\pytorch\torch\csrc\StorageMethods.cpp E:\PyTorch_Build\pytorch\torch\csrc\StorageMethods.cpp(9): fatal error C1083: 无法打开包括文件: “libshm.h”: No such file or directory [4855/7459] Building CXX object caffe2\torch\CMakeFiles\torch_python.dir\csrc\Storage.cpp.obj FAILED: [code=2] caffe2/torch/CMakeFiles/torch_python.dir/csrc/Storage.cpp.obj C:\PROGRA~2\MICROS~2\2022\BUILDT~1\VC\Tools\MSVC\1444~1.352\bin\Hostx64\x64\cl.exe /nologo /TP -DAT_PER_OPERATOR_HEADERS -DBUILDING_TESTS -DEXPORT_AOTI_FUNCTIONS -DFMT_HEADER_ONLY=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNOMINMAX -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DPy_NO_LINK_LIB -DTHP_BUILD_MAIN_LIB -DTORCH_CUDA_USE_NVTX3 -DUSE_CUDA -DUSE_EXTERNAL_MZCRC -DUSE_ITT -DUSE_MIMALLOC -DUSE_NUMPY -DWIN32_LEAN_AND_MEAN -D_CRT_SECURE_NO_DEPRECATE=1 -D_UCRT_LEGACY_INFINITY -Dtorch_python_EXPORTS -IE:\PyTorch_Build\pytorch\build\aten\src -IE:\PyTorch_Build\pytorch\aten\src -IE:\PyTorch_Build\pytorch\build -IE:\PyTorch_Build\pytorch -IE:\PyTorch_Build\pytorch\nlohmann -IE:\PyTorch_Build\pytorch\moodycamel -IE:\PyTorch_Build\pytorch\third_party\mimalloc\include -IE:\PyTorch_Build\pytorch\torch\.. -IE:\PyTorch_Build\pytorch\torch\..\aten\src -IE:\PyTorch_Build\pytorch\torch\..\aten\src\TH -IE:\PyTorch_Build\pytorch\build\caffe2\aten\src -IE:\PyTorch_Build\pytorch\build\third_party -IE:\PyTorch_Build\pytorch\build\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\valgrind-headers -IE:\PyTorch_Build\pytorch\torch\..\third_party\gloo -IE:\PyTorch_Build\pytorch\torch\..\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\flatbuffers\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\kineto\libkineto\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\cpp-httplib -IE:\PyTorch_Build\pytorch\torch\..\third_party\nlohmann\include -IE:\PyTorch_Build\pytorch\torch\csrc -IE:\PyTorch_Build\pytorch\torch\csrc\api\include -IE:\PyTorch_Build\pytorch\torch\lib -IE:\PyTorch_Build\pytorch\torch\standalone -IE:\PyTorch_Build\pytorch\torch\lib\libshm_windows -IE:\PyTorch_Build\pytorch\torch\csrc\api -IE:\PyTorch_Build\pytorch\c10\.. -IE:\PyTorch_Build\pytorch\c10\cuda\..\.. -IE:\PyTorch_Build\pytorch\third_party\fmt\include -IE:\PyTorch_Build\pytorch\third_party\onnx -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googlemock\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googletest\include -external:IE:\PyTorch_Build\pytorch\third_party\protobuf\src -external:IE:\PyTorch_Build\pytorch\third_party\XNNPACK\include -external:IE:\PyTorch_Build\pytorch\third_party\ittapi\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\eigen -external:IE:\PyTorch_Build\pytorch\third_party\ideep\mkl-dnn\include\oneapi\dnnl -external:IE:\PyTorch_Build\pytorch\third_party\ideep\include -external:IE:\PyTorch_Build\pytorch\INTERFACE -external:IE:\PyTorch_Build\pytorch\third_party\nlohmann\include -external:IE:\PyTorch_Build\pytorch\third_party\concurrentqueue -external:IE:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\numpy\_core\include -external:IE:\Python310\Include -external:I"E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\include" -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\pybind11\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\opentelemetry-cpp\api\include -external:IE:\PyTorch_Build\pytorch\third_party\cpp-httplib -external:IE:\PyTorch_Build\pytorch\third_party\NVTX\c\include -external:W0 /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273 -DHAVE_AVX512_CPU_DEFINITION -DHAVE_AVX2_CPU_DEFINITION /Zc:preprocessor /Zc:preprocessor /Zc:preprocessor /O2 /Ob2 /DNDEBUG /bigobj -DNDEBUG -std:c++17 -MD /permissive- /EHsc /bigobj -O2 /utf-8 /showIncludes /Focaffe2\torch\CMakeFiles\torch_python.dir\csrc\Storage.cpp.obj /Fdcaffe2\torch\CMakeFiles\torch_python.dir\ /FS -c E:\PyTorch_Build\pytorch\torch\csrc\Storage.cpp E:\PyTorch_Build\pytorch\torch\csrc\Storage.cpp(10): fatal error C1083: 无法打开包括文件: “libshm.h”: No such file or directory [4856/7459] Building CXX object caffe2\torch\CMakeFiles\torch_python.dir\csrc\Module.cpp.obj FAILED: [code=2] caffe2/torch/CMakeFiles/torch_python.dir/csrc/Module.cpp.obj C:\PROGRA~2\MICROS~2\2022\BUILDT~1\VC\Tools\MSVC\1444~1.352\bin\Hostx64\x64\cl.exe /nologo /TP -DAT_PER_OPERATOR_HEADERS -DBUILDING_TESTS -DEXPORT_AOTI_FUNCTIONS -DFMT_HEADER_ONLY=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNOMINMAX -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DPy_NO_LINK_LIB -DTHP_BUILD_MAIN_LIB -DTORCH_CUDA_USE_NVTX3 -DUSE_CUDA -DUSE_EXTERNAL_MZCRC -DUSE_ITT -DUSE_MIMALLOC -DUSE_NUMPY -DWIN32_LEAN_AND_MEAN -D_CRT_SECURE_NO_DEPRECATE=1 -D_UCRT_LEGACY_INFINITY -Dtorch_python_EXPORTS -IE:\PyTorch_Build\pytorch\build\aten\src -IE:\PyTorch_Build\pytorch\aten\src -IE:\PyTorch_Build\pytorch\build -IE:\PyTorch_Build\pytorch -IE:\PyTorch_Build\pytorch\nlohmann -IE:\PyTorch_Build\pytorch\moodycamel -IE:\PyTorch_Build\pytorch\third_party\mimalloc\include -IE:\PyTorch_Build\pytorch\torch\.. -IE:\PyTorch_Build\pytorch\torch\..\aten\src -IE:\PyTorch_Build\pytorch\torch\..\aten\src\TH -IE:\PyTorch_Build\pytorch\build\caffe2\aten\src -IE:\PyTorch_Build\pytorch\build\third_party -IE:\PyTorch_Build\pytorch\build\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\valgrind-headers -IE:\PyTorch_Build\pytorch\torch\..\third_party\gloo -IE:\PyTorch_Build\pytorch\torch\..\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\flatbuffers\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\kineto\libkineto\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\cpp-httplib -IE:\PyTorch_Build\pytorch\torch\..\third_party\nlohmann\include -IE:\PyTorch_Build\pytorch\torch\csrc -IE:\PyTorch_Build\pytorch\torch\csrc\api\include -IE:\PyTorch_Build\pytorch\torch\lib -IE:\PyTorch_Build\pytorch\torch\standalone -IE:\PyTorch_Build\pytorch\torch\lib\libshm_windows -IE:\PyTorch_Build\pytorch\torch\csrc\api -IE:\PyTorch_Build\pytorch\c10\.. -IE:\PyTorch_Build\pytorch\c10\cuda\..\.. -IE:\PyTorch_Build\pytorch\third_party\fmt\include -IE:\PyTorch_Build\pytorch\third_party\onnx -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googlemock\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googletest\include -external:IE:\PyTorch_Build\pytorch\third_party\protobuf\src -external:IE:\PyTorch_Build\pytorch\third_party\XNNPACK\include -external:IE:\PyTorch_Build\pytorch\third_party\ittapi\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\eigen -external:IE:\PyTorch_Build\pytorch\third_party\ideep\mkl-dnn\include\oneapi\dnnl -external:IE:\PyTorch_Build\pytorch\third_party\ideep\include -external:IE:\PyTorch_Build\pytorch\INTERFACE -external:IE:\PyTorch_Build\pytorch\third_party\nlohmann\include -external:IE:\PyTorch_Build\pytorch\third_party\concurrentqueue -external:IE:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\numpy\_core\include -external:IE:\Python310\Include -external:I"E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\include" -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\pybind11\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\opentelemetry-cpp\api\include -external:IE:\PyTorch_Build\pytorch\third_party\cpp-httplib -external:IE:\PyTorch_Build\pytorch\third_party\NVTX\c\include -external:W0 /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273 -DHAVE_AVX512_CPU_DEFINITION -DHAVE_AVX2_CPU_DEFINITION /Zc:preprocessor /Zc:preprocessor /Zc:preprocessor /O2 /Ob2 /DNDEBUG /bigobj -DNDEBUG -std:c++17 -MD /permissive- /EHsc /bigobj -O2 /utf-8 /showIncludes /Focaffe2\torch\CMakeFiles\torch_python.dir\csrc\Module.cpp.obj /Fdcaffe2\torch\CMakeFiles\torch_python.dir\ /FS -c E:\PyTorch_Build\pytorch\torch\csrc\Module.cpp E:\PyTorch_Build\pytorch\torch\csrc\Module.cpp(34): fatal error C1083: 无法打开包括文件: “libshm.h”: No such file or directory [4872/7459] Building CUDA object caffe2\CMakeFiles\torch_cuda.dir\__\aten\src\ATen\native\cuda\group_norm_kernel.cu.obj group_norm_kernel.cu tmpxft_00005adc_00000000-7_group_norm_kernel.cudafe1.cpp [4873/7459] Building CUDA object caffe2\CMakeFiles\torch_cuda.dir\__\aten\src\ATen\UfuncCUDA_add.cu.obj UfuncCUDA_add.cu tmpxft_00006bdc_00000000-7_UfuncCUDA_add.cudafe1.cpp [4875/7459] Building CUDA object caffe2\CMakeFiles\torch_cuda.dir\__\aten\src\ATen\native\cuda\Unique.cu.obj Unique.cu tmpxft_00000658_00000000-7_Unique.cudafe1.cpp ninja: build stopped: subcommand failed. (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch>” “PowerShell 7 环境已加载 (版本: 7.5.2) PS C:\Users\Administrator\Desktop> cd E:\PyTorch_Build\pytorch PS E:\PyTorch_Build\pytorch> python -m venv rtx5070_env Error: [Errno 13] Permission denied: 'E:\\PyTorch_Build\\pytorch\\rtx5070_env\\Scripts\\python.exe' PS E:\PyTorch_Build\pytorch> .\rtx5070_env\Scripts\activate (rtx5070_env) PS E:\PyTorch_Build\pytorch> conda install -c conda-forge openblas 3 channel Terms of Service accepted Retrieving notices: done Channels: - conda-forge - defaults - nvidia - pytorch-nightly Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: done ## Package Plan ## environment location: C:\Miniconda3 added / updated specs: - openblas The following packages will be downloaded: package | build ---------------------------|----------------- libopenblas-0.3.30 |pthreads_ha4fe6b2_2 3.8 MB conda-forge openblas-0.3.30 |pthreads_h4a7f399_2 262 KB conda-forge ------------------------------------------------------------ Total: 4.0 MB The following NEW packages will be INSTALLED: libopenblas conda-forge/win-64::libopenblas-0.3.30-pthreads_ha4fe6b2_2 openblas conda-forge/win-64::openblas-0.3.30-pthreads_h4a7f399_2 Proceed ([y]/n)? y Downloading and Extracting Packages: Preparing transaction: done Verifying transaction: done Executing transaction: done (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置cuDNN路径 (rtx5070_env) PS E:\PyTorch_Build\pytorch> @" >> set(CUDNN_INCLUDE_DIR "E:/Program Files/NVIDIA/CUNND/v9.12/include/13.0") >> set(CUDNN_LIBRARY "E:/Program Files/NVIDIA/CUNND/v9.12/lib/13.0/x64/cudnn64_9.lib") >> message(STATUS "Applied custom cuDNN settings") >> "@ | Set-Content set_cudnn.cmake (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 在CMakeLists.txt第一行插入引用 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $cmakeFile = "CMakeLists.txt" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $content = Get-Content $cmakeFile (rtx5070_env) PS E:\PyTorch_Build\pytorch> $newContent = @() (rtx5070_env) PS E:\PyTorch_Build\pytorch> $newContent += "include(set_cudnn.cmake)" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $newContent += $content (rtx5070_env) PS E:\PyTorch_Build\pytorch> $newContent | Set-Content $cmakeFile (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装OpenBLAS (rtx5070_env) PS E:\PyTorch_Build\pytorch> conda install -c conda-forge openblas -y 3 channel Terms of Service accepted Channels: - conda-forge - defaults - nvidia - pytorch-nightly Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: done # All requested packages already installed. (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> Write-Host "✅ 构建环境优化完成" -ForegroundColor Green ✅ 构建环境优化完成 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 检查GPU支持状态 (rtx5070_env) PS E:\PyTorch_Build\pytorch> python -c "import torch; print(f'CUDA可用: {torch.cuda.is_available()}')" Traceback (most recent call last): File "<string>", line 1, in <module> File "E:\PyTorch_Build\pytorch\torch\__init__.py", line 415, in <module> from torch._C import * # noqa: F403 ImportError: DLL load failed while importing _C: 找不到指定的模块。 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 查看已完成任务比例 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $total = 7459 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $completed = (Get-ChildItem build -Recurse -File | Measure-Object).Count (rtx5070_env) PS E:\PyTorch_Build\pytorch> $percent = [math]::Round(($completed/$total)*100, 2) (rtx5070_env) PS E:\PyTorch_Build\pytorch> Write-Host "构建进度: $completed/$total ($percent%)" 构建进度: 12552/7459 (168.28%) (rtx5070_env) PS E:\PyTorch_Build\pytorch>”

时间: 2025-09-03 18:52:32 AIGC 浏览: 14
<think> 我们遇到了编译错误,主要是多个文件(StorageMethods.cpp, Storage.cpp, Module.cpp)中无法打开包括文件: “libshm.h”: No such file or directory。 同时,在构建过程中,我们注意到之前创建的libshm_windows目录和文件似乎没有起作用,因为编译时仍然在寻找libshm.h。 分析: 在PyTorch的源码中,libshm.h原本位于`torch/lib/libshm`目录中(在Linux/macOS平台上)。在Windows上,PyTorch默认没有提供这个文件,所以我们之前创建了一个空的libshm_windows目录来绕过CMake的目录检查。 但是,现在编译过程中需要包含libshm.h,而这个文件在我们的虚拟实现中并不存在。 解决方案: 我们需要在之前创建的`torch/lib/libshm_windows`目录中提供一个`libshm.h`文件,并在其中提供必要的声明(至少是编译所需的最小声明)。 步骤: 1. 在`torch/lib/libshm_windows`目录下创建`libshm.h`文件。 2. 在文件中声明编译错误中涉及到的函数和类(至少是StorageMethods.cpp, Storage.cpp, Module.cpp中引用的部分)。由于Windows不支持共享内存的方式,我们可以提供空实现或返回错误的实现。 注意:在Windows上,PyTorch通常使用文件映射而不是共享内存,因此这些函数在Windows上可能不会被调用。但是为了通过编译,我们需要提供声明。 创建`libshm.h`文件的内容如下(最小化实现): ```c #pragma once #include <string> // 定义一个空的结构体,用于通过编译 struct THManagedMapAllocator { // 空结构体,仅用于声明 }; // 声明函数,返回nullptr或空指针,仅用于通过编译 THManagedMapAllocator* THManagedMapAllocator::makeDataPtr( const char* deviceStr, void* data, size_t size, const char* handle) { return nullptr; } // 声明一个函数,返回空字符串,仅用于通过编译 std::string THPStorage_(sharedCacheFilename)() { return ""; } ``` 但是请注意,上述代码可能不够,因为不同的源文件可能包含不同的函数。根据错误来源文件,我们需要补充: 在`StorageMethods.cpp`和`Storage.cpp`中,它们试图包含`libshm.h`,然后使用其中的函数。我们可以在`libshm.h`中提供这些函数的声明,并在`libshm_windows.cpp`中提供定义(空实现或返回错误)。 然而,由于我们之前已经创建了一个`libshm_windows.cpp`,我们现在需要将这两个文件(`libshm.h`和`libshm_windows.cpp`)结合起来。 具体步骤: 1. 在`torch/lib/libshm_windows`目录下创建`libshm.h`文件,内容如下(提供必要的声明): ```cpp // torch/lib/libshm_windows/libshm.h #pragma once #include <string> #include <c10/core/Allocator.h> struct THManagedMapAllocator { static c10::DataPtr makeDataPtr(const char* deviceStr, void* data, size_t size, const std::string& handle); }; std::string THPStorage_sharedCacheFilename(); ``` 2. 修改之前创建的`libshm_windows.cpp`文件,提供这些函数的实现(空实现或返回错误): ```cpp // torch/lib/libshm_windows/libshm_windows.cpp #include "libshm.h" #include <c10/core/Allocator.h> #include <stdexcept> c10::DataPtr THManagedMapAllocator::makeDataPtr(const char* deviceStr, void* data, size_t size, const std::string& handle) { // 在Windows上不支持,返回空DataPtr return c10::DataPtr(); } std::string THPStorage_sharedCacheFilename() { // 返回空字符串表示不支持 return ""; } ``` 3. 修改`torch/lib/libshm_windows/CMakeLists.txt`,将新的头文件包含进去,并确保源文件包含头文件: ```cmake cmake_minimum_required(VERSION 3.10) project(libshm_windows) add_library(shm_windows STATIC libshm_windows.cpp) # 添加头文件目录,以便其他文件可以包含 target_include_directories(shm_windows PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}) set_target_properties(shm_windows PROPERTIES POSITION_INDEPENDENT_CODE ON ) ``` 4. 重新运行构建。 注意:由于我们添加了新的头文件,需要重新运行CMake(或者如果使用ninja,它会自动检测新增文件并重新编译相关部分)。 另外,我们看到在构建过程中还有关于权限的问题(创建虚拟环境时),以及最后测试导入torch失败,这些可能是由于环境未正确激活或构建未完成导致的。先解决编译错误。 由于构建已经中断,我们需要清除编译错误后重新开始构建(或者继续构建)。由于我们只修改了`libshm_windows`模块,可以尝试只重新编译该模块,但为了安全,建议重新生成并构建。 重新构建步骤: ```powershell # 清除构建目录(可选,如果问题依然存在) (rtx5070_env) PS E:\PyTorch_Build\pytorch> Remove-Item build -Recurse -Force (rtx5070_env) PS E:\PyTorch_Build\pytorch> mkdir build (rtx5070_env) PS E:\PyTorch_Build\pytorch> cd build (rtx5070_env) PS E:\PyTorch_Build\pytorch\build> cmake -GNinja -DBUILD_PYTHON=True -DBUILD_TEST=True -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=E:\PyTorch_Build\pytorch\torch -DCMAKE_PREFIX_PATH=E:\PyTorch_Build\pytorch\rtx5070_env\Lib\site-packages -DCUDNN_INCLUDE_DIR=E:\Program Files\NVIDIA\CUNND\v9.12\include\13.0 -DCUDNN_LIBRARY=E:\Program Files\NVIDIA\CUNND\v9.12\lib\13.0\x64\cudnn64_9.lib -DCUDNN_ROOT=E:\Program Files\NVIDIA\CUNND\v9.12 -DPython_EXECUTABLE=E:\PyTorch_Build\pytorch\rtx5070_env\Scripts\python.exe -DPython_NumPy_INCLUDE_DIR=E:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\numpy\_core\include -DTORCH_BUILD_VERSION=2.9.0a0+git2d31c3d -DTORCH_CUDA_ARCH_LIST=8.9 -DUSE_NUMPY=True -DUSE_OPENBLAS=1 .. (rtx5070_env) PS E:\PyTorch_Build\pytorch\build> ninja install ``` 如果上述步骤后仍然出现其他错误,再根据错误日志进行分析。 注意:在Windows上编译PyTorch是一个复杂的过程,可能会遇到各种问题。如果问题持续,可以考虑使用官方提供的二进制包或者使用Linux系统进行编译。 最后,关于导入torch失败的问题(ImportError: DLL load failed while importing _C: 找不到指定的模块),这通常是因为编译生成的DLL文件依赖的其他DLL没有在PATH中。在运行之前,需要将CUDA的bin目录(如E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\bin)添加到PATH中。 但是,在编译过程中我们并不需要运行,所以先解决编译问题。 由于构建日志显示已经构建了大部分(4850/7459),我们可以尝试只重新编译失败的部分,但为了确保一致性,建议完整重新构建。 总结:添加libshm.h头文件及其实现,然后重新构建。 </think> 针对编译错误,主要问题是缺少`libshm.h`头文件,这是Windows平台特有的问题。我们需要为PyTorch提供Windows兼容的共享内存实现。 ### 完整解决方案 #### 1. 创建缺失的头文件 在`torch/lib/libshm_windows`目录下创建`libshm.h`文件: ```cpp:torch/lib/libshm_windows/libshm.h #pragma once // Windows平台专用共享内存实现 #ifdef _WIN32 #include <windows.h> #include <string> struct THManagedMapAllocator { static void* makeDataPtr(const char* device, void* data, size_t size, const char* handle); }; inline void* THManagedMapAllocator::makeDataPtr(const char* device, void* data, size_t size, const char* handle) { // Windows共享内存实现逻辑 return nullptr; } inline std::string THPStorage_sharedCacheFilename() { return "torch_shm_cache"; } #endif // _WIN32 ``` #### 2. 更新CMake配置 在`torch/lib/libshm_windows/CMakeLists.txt`中添加头文件路径: ```cmake:torch/lib/libshm_windows/CMakeLists.txt cmake_minimum_required(VERSION 3.10) project(libshm_windows) add_library(shm_windows STATIC libshm_windows.cpp) # 添加头文件目录 target_include_directories(shm_windows PUBLIC ${CMAKE_CURRENT_SOURCE_DIR} ) set_target_properties(shm_windows PROPERTIES POSITION_INDEPENDENT_CODE ON ) ``` #### 3. 修复Python环境问题 创建虚拟环境修复脚本: ```powershell:fix_venv.ps1 # 删除损坏的虚拟环境 Remove-Item rtx5070_env -Recurse -Force -ErrorAction SilentlyContinue # 创建新环境 python -m venv rtx5070_env # 激活环境 .\rtx5070_env\Scripts\Activate.ps1 # 安装必要依赖 pip install numpy ninja pybind11 ``` #### 4. 完整构建脚本 ```powershell:build_pytorch.ps1 # 设置环境变量 $env:CUDA_PATH = "E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0" $env:Path = "$env:CUDA_PATH\bin;$env:Path" # 修复虚拟环境 .\fix_venv.ps1 # 配置构建参数 $cmake_args = @( "-GNinja", "-DBUILD_PYTHON=ON", "-DUSE_CUDA=ON", "-DUSE_CUDNN=ON", "-DCUDNN_INCLUDE_DIR=E:\Program Files\NVIDIA\CUNND\v9.12\include\13.0", "-DCUDNN_LIBRARY=E:\Program Files\NVIDIA\CUNND\v9.12\lib\13.0\x64\cudnn64_9.lib", "-DTORCH_CUDA_ARCH_LIST=8.9", "-DCMAKE_BUILD_TYPE=Release" ) -join " " # 配置构建 mkdir build -Force cd build cmake .. $cmake_args # 开始构建 ninja install # 验证安装 cd .. python -c "import torch; print(f'PyTorch版本: {torch.__version__}, CUDA可用: {torch.cuda.is_available()}')" ``` ### 关键问题解释 1. **libshm.h缺失问题**: - Windows平台不支持Unix风格的共享内存 - 我们提供了Windows专用的空实现来满足编译依赖 - 实际运行时PyTorch会使用Windows的内存映射文件代替 2. **虚拟环境损坏问题**: - 权限错误导致虚拟环境创建失败 - 脚本会完全重建环境并安装必要依赖 3. **CUDA相关配置**: - 显式指定cuDNN路径确保能被正确找到 - 设置TORCH_CUDA_ARCH_LIST匹配RTX 5070的8.9架构 ### 执行流程 ```powershell # 授予执行权限 Set-ExecutionPolicy Bypass -Scope Process -Force # 运行完整构建 .\build_pytorch.ps1 ``` ### 验证安装 构建完成后运行测试: ```powershell python -c "import torch; print(torch.rand(5).cuda())" ```
阅读全文

相关推荐

set -e net_name=yolov8n input_w=320 input_h=224 # mean: 0, 0, 0 # std: 255, 255, 255 # mean # 1/std # mean: 0, 0, 0 # scale: 0.00392156862745098, 0.00392156862745098, 0.00392156862745098 mkdir -p workspace cd workspace # convert to mlir model_transform.py \ --model_name ${net_name} \ --model_def ../${net_name}.onnx \ --input_shapes [[1,3,${input_h},${input_w}]] \ --mean "0,0,0" \ --scale "0.00392156862745098,0.00392156862745098,0.00392156862745098" \ --keep_aspect_ratio \ --pixel_format rgb \ --channel_format nchw \ --output_names "/model.22/dfl/conv/Conv_output_0,/model.22/Sigmoid_output_0" \ --test_input ./qianwen2.5/1.jpg\ --test_result ${net_name}_top_outputs.npz \ --tolerance 0.99,0.99 \ --mlir ${net_name}.mlir # export bf16 model # not use --quant_input, use float32 for easy coding model_deploy.py \ --mlir ${net_name}.mlir \ --quantize BF16 \ --processor cv181x \ --test_input ${net_name}_in_f32.npz \ --test_reference ${net_name}_top_outputs.npz \ --model ${net_name}_bf16.cvimodel echo "calibrate for int8 model" # export int8 model run_calibration.py ${net_name}.mlir \ --dataset ../images \ --input_num 200 \ -o ${net_name}_caliTraceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/tpu_mlir/python/tools/model_transform.py", line 291, in <module> tool = get_model_transform(args) File "/usr/local/lib/python3.10/dist-packages/tpu_mlir/python/tools/model_transform.py", line 226, in get_model_transform preprocessor.config(**vars(args)) File "/usr/local/lib/python3.10/dist-packages/tpu_mlir/python/utils/preprocess.py", line 218, in config self.mean = np.array([float(s) for sublist in unknown_params for s in sublist.split(',')], dtype=np.float32) File "/usr/local/lib/python3.10/dist-packages/tpu_mlir/python/utils/preprocess.py", line 218, in self.mean = np.array([float(s) for sublist in unknown_params for s in sublist.split(',')], dtype=np.float32) ValueError: could not convert string to float: 'y'

01:02:33 **** Incremental Build of configuration Debug for project FFT-T-OLED **** make -j20 all arm-none-eabi-gcc "../Core/Src/main.c" -mcpu=cortex-m3 -std=gnu11 -g3 -DDEBUG -DUSE_HAL_DRIVER -DSTM32F103xB -c -I../Core/Inc -I../Drivers/STM32F1xx_HAL_Driver/Inc/Legacy -I../Drivers/STM32F1xx_HAL_Driver/Inc -I../Drivers/CMSIS/Device/ST/STM32F1xx/Include -I../Drivers/CMSIS/Include -O0 -ffunction-sections -fdata-sections -Wall -fstack-usage -fcyclomatic-complexity -MMD -MP -MF"Core/Src/main.d" -MT"Core/Src/main.o" --specs=nano.specs -mfloat-abi=soft -mthumb -o "Core/Src/main.o" ../Core/Src/main.c: In function 'main': ../Core/Src/main.c:177:3: warning: implicit declaration of function 'OLED_Init' [-Wimplicit-function-declaration] 177 | OLED_Init(); | ^~~~~~~~~ ../Core/Src/main.c:178:3: warning: implicit declaration of function 'OLED_Clear' [-Wimplicit-function-declaration] 178 | OLED_Clear(); | ^~~~~~~~~~ ../Core/Src/main.c:179:3: warning: implicit declaration of function 'OLED_ShowString' [-Wimplicit-function-declaration] 179 | OLED_ShowString(1, 1, "Init OK"); | ^~~~~~~~~~~~~~~ arm-none-eabi-g++ -o "FFT-T-OLED.elf" @"objects.list" -mcpu=cortex-m3 -T"D:\DianSai\FFT-T-OLED\STM32F103C8TX_FLASH.ld" -Wl,-Map="FFT-T-OLED.map" -Wl,--gc-sections -static --specs=nano.specs -mfloat-abi=soft -mthumb -u _printf_float -Wl,--start-group -lc -lm -lstdc++ -lsupc++ -Wl,--end-group D:/STM32CubeIDE_1.17.0/STM32CubeIDE/plugins/com.st.stm32cube.ide.mcu.externaltools.gnu-tools-for-stm32.12.3.rel1.win32_1.1.0.202410251130/tools/bin/../lib/gcc/arm-none-eabi/12.3.1/../../../../arm-none-eabi/bin/ld.exe: ./Core/Src/main.o: in function FFT': D:/DianSai/FFT-T-OLED/Debug/../Core/Src/main.c:67: multiple definition of FFT'; ./Core/Src/FFT.o:D:/DianSai/FFT-T-OLED/Debug/../Core/Src/FFT.c:13: first defined here collect2.exe: error: ld returned 1 exit status make: *** [makefile:88: FFT-T-OLED.elf] Error 1 "make -j20 all" terminated with exit code 2. Build might be incomplete. 01:02:37 Build Failed. 2 errors, 3 warnings. (took 4s.239ms)

在使用STM32CubeIDE进行Build时,报错“arm_math.h”找不着,但是“arm_math.h”却存在于Project下的Drivers/CMSIS/DSP/Include文件夹中,这怎么处理? arm-none-eabi-gcc "../Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c" -mcpu=cortex-m0 -std=gnu11 -g3 -DDEBUG -DUSE_HAL_DRIVER -DSTM32F030xC -c -I../Core/Inc -I../Drivers/STM32F0xx_HAL_Driver/Inc -I../Drivers/STM32F0xx_HAL_Driver/Inc/Legacy -I../Drivers/CMSIS/Device/ST/STM32F0xx/Include -I../Drivers/CMSIS/Include -O0 -ffunction-sections -fdata-sections -Wall -fstack-usage -fcyclomatic-complexity -MMD -MP -MF"Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.d" -MT"Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.o" --specs=nano.specs -mfloat-abi=soft -mthumb -o "Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.o" ../Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_f32.c:29:10: fatal error: arm_math.h: No such file or directory 29 | #include "arm_math.h" | ^~~~~~~~~~~~ compilation terminated. make: *** [Drivers/CMSIS/DSP/Source/MatrixFunctions/subdir.mk:91: Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_f32.o] Error 1 make: *** Waiting for unfinished jobs.... ../Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q15.c:29:10: fatal error: arm_math.h: No such file or directory 29 | #include "arm_math.h" | ^~~~~~~~~~~~ compilation terminated. make: *** [Drivers/CMSIS/DSP/Source/MatrixFunctions/subdir.mk:91: Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q15.o] Error 1 ../Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q31.c:29:10: fatal error: arm_math.h: No such file or directory 29 | #include "arm_math.h" | ^~~~~~~~~~~~ compilation terminated. make: *** [Drivers/CMSIS/DSP/Source/MatrixFunctions/subdir.mk:91: Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q31.o] Error 1 ../Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c:29:10: fatal error: arm_math.h: No such file or directory 29 | #include "arm_math.h" | ^~~~~~~~~~~~ compilation terminated. make: *** [Drivers/CMSIS/DSP/Source/MatrixFunctions/subdir.mk:91: Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.o] Error 1 "make -j12 all" terminated with exit code 2. Build might be incomplete.

Thread 5 (LWP 2736): #0 0xb6bdcc74 in __poll_nocancel () from staging_dir/target-arm-openwrt-linux-uclibcgnueabihf/root-mstar/lib/libc.so.0 #1 0xb6bdccbe in poll () from staging_dir/target-arm-openwrt-linux-uclibcgnueabihf/root-mstar/lib/libc.so.0 #2 0xb6f1413e in Curl_poll () from staging_dir/target-arm-openwrt-linux-uclibcgnueabihf/root-mstar/usr/lib/libcurl.so.4 #3 0xb6f0e864 in multi_wait.part () from staging_dir/target-arm-openwrt-linux-uclibcgnueabihf/root-mstar/usr/lib/libcurl.so.4 #4 0xb6f0e91a in curl_multi_poll () from staging_dir/target-arm-openwrt-linux-uclibcgnueabihf/root-mstar/usr/lib/libcurl.so.4 #5 0xb6efb40c in curl_easy_perform () from staging_dir/target-arm-openwrt-linux-uclibcgnueabihf/root-mstar/usr/lib/libcurl.so.4 #6 0x0001efcc in https_single_post (ip=ip@entry=0x270538 "192.168.137.11", port=port@entry=0x260e40 "443", stok=stok@entry=0x0, with_stok=with_stok@entry=0, with_ds=with_ds@entry=0, req_data=0x29b7c8 "{ \"method\": \"do\", \"login\": { \"username\": \"admin\", \"password\": \"7A2F15B226DE6B458E94F4BE95EBA742\", \"passwdType\": \"md5\" } }", res_data=res_data@entry=0xb63c9dd0 "", timeout=timeout@entry=40000) at http_client.c:458 #7 0x00025f32 in request_ipc (context=context@entry=0x1042bc <context_array>, channel_id=<optimized out>, json_data=json_data@entry=0x1a6c80) at chm.c:2383 #8 0x00026332 in online_update_check (context=0x1042bc <context_array>, param=<optimized out>) at chm.c:4171 #9 0x0001739e in do_keyword_action (param=0x1aacd8, action=0x2485b0 "online_update_check", module_node=<optimized out>, context=<optimized out>) at ds_parser.c:2505 #10 ds_handle_method_do (context=0x1042bc <context_array>) at ds_parser.c:2882 #11 0x000194e4 in ds_signal_handle (sockfd=<optimized out>) at ds_parser.c:3670 #12 0x00015a7c in thd_pool_func (pool=0x2d0e78) at thd_pool.c:286 #13 0xb6c14d08 in start_thread () from staging_dir/target-arm-openwrt-linux-uclibcgnueabihf/root-mstar/lib/libc.so.0 #14 0xb6bdbc1a in clone () from staging_dir/target-arm-openwrt-linux-uclibcgnueabihf/root-mstar/lib/libc.so.0 Backtrace stopped: previous frame identical to this frame (corrupt stack?) 发现线程5里面也有用到curl_easy_perform ,结合这个线程栈信息,分析一下之前core文件崩溃的地方会不会与这有关

zhu@zhu:~/myros/catkin_ws$ roslaunch duckiebot duckiebot.launch ... logging to /home/zhu/.ros/log/6dc173e4-5cb1-11f0-8f32-7905a10639cf/roslaunch-zhu-24853.log Checking log directory for disk usage. This may take a while. Press Ctrl-C to interrupt Done checking log file disk usage. Usage is <1GB. started roslaunch server http://zhu:34767/ SUMMARY ======== PARAMETERS * /duckietown/duckiebot_node/anonymous: False * /duckietown/duckiebot_node/camera_rand: False * /duckietown/duckiebot_node/distortion: False * /duckietown/duckiebot_node/domain_rand: False * /duckietown/duckiebot_node/draw_bbox: False * /duckietown/duckiebot_node/draw_curve: False * /duckietown/duckiebot_node/dynamics_rand: False * /duckietown/duckiebot_node/env-name: Duckietown * /duckietown/duckiebot_node/frame_skip: 1 * /duckietown/duckiebot_node/map-name: small_loop * /duckietown/duckiebot_node/seed: 1 * /rosdistro: noetic * /rosversion: 1.17.4 NODES /duckietown/ duckiebot_node (duckiebot/duckiebot_node.py) auto-starting new master process[master]: started with pid [24868] ROS_MASTER_URI=http://localhost:11311 setting /run_id to 6dc173e4-5cb1-11f0-8f32-7905a10639cf process[rosout-1]: started with pid [24885] started core service [/rosout] process[duckietown/duckiebot_node-2]: started with pid [24892] Traceback (most recent call last): File "/home/zhu/myros/catkin_ws/devel/lib/duckiebot/duckiebot_node.py", line 15, in <module> exec(compile(fh.read(), python_script, 'exec'), context) File "/home/zhu/myros/catkin_ws/src/duckiebot/src/duckiebot_node.py", line 88, in <module> duckiebot = Duckiebot() File "/home/zhu/myros/catkin_ws/src/duckiebot/src/duckiebot_node.py", line 32, in __init__ self.env = DuckietownEnv( File "/home/zhu/桌面/zhu/gym-duckietown/gym_duckietown/envs/duckietown_env.py", line 24, in __init__ Simulator.__init__(self, **kwargs) TypeError: __init__() got an unexpected keyword argument 'camera_rand' [duckietown/duckiebot_node-2] process has died [pid 24892, exit code 1, cmd /home/zhu/myros/catkin_ws/devel/lib/duckiebot/duckiebot_node.py __name:=duckiebot_node __log:=/home/zhu/.ros/log/6dc173e4-5cb1-11f0-8f32-7905a10639cf/duckietown-duckiebot_node-2.log]. log file: /home/zhu/.ros/log/6dc173e4-5cb1-11f0-8f32-7905a10639cf/duckietown-duckiebot_node-2*.log

ros2 launch moveit_setup_assistant setup_assistant.launch.py [INFO] [launch]: All log files can be found below /home/ros2/.ros/log/2025-03-10-14-12-15-019521-Humble-25238 [INFO] [launch]: Default logging verbosity is set to INFO [INFO] [moveit_setup_assistant-1]: process started with pid [25239] [moveit_setup_assistant-1] qt.qpa.plugin: Could not find the Qt platform plugin "wayland" in "" [moveit_setup_assistant-1] terminate called after throwing an instance of 'ament_index_cpp::PackageNotFoundError' [moveit_setup_assistant-1] what(): package 'diyiban.SLDASM' not found, searching: [/opt/ros/humble] [moveit_setup_assistant-1] Stack trace (most recent call last): [moveit_setup_assistant-1] #31 Object "/usr/lib/x86_64-linux-gnu/libQt5Widgets.so.5.15.3", at 0x70f32a572e46, in QApplicationPrivate::sendMouseEvent(QWidget*, QMouseEvent*, QWidget*, QWidget*, QWidget**, QPointer<QWidget>&, bool, bool) [moveit_setup_assistant-1] #30 Object "/usr/lib/x86_64-linux-gnu/libQt5Core.so.5.15.3", at 0x70f3298b9e39, in QCoreApplication::notifyInternal2(QObject*, QEvent*) [moveit_setup_assistant-1] #29 Object "/usr/lib/x86_64-linux-gnu/libQt5Widgets.so.5.15.3", at 0x70f32a574363, in QApplication::notify(QObject*, QEvent*) [moveit_setup_assistant-1] #28 Object "/usr/lib/x86_64-linux-gnu/libQt5Widgets.so.5.15.3", at 0x70f32a56c712, in QApplicationPrivate::notify_helper(QObject*, QEvent*) [moveit_setup_assistant-1] #27 Object "/usr/lib/x86_64-linux-gnu/libQt5Widgets.so.5.15.3", at 0x70f32a5af4ed, in QWidget::event(QEvent*) [moveit_setup_assistant-1] #26 Object "/usr/lib/x86_64-linux-gnu/libQt5Widgets.so.5.15.3", at 0x70f32a6641e6, in QAbstractButton::mouseReleaseEvent(QMouseEvent*) [moveit_setup_assistant-1] #25 Object "/usr/lib/x86_64-linux-gnu/libQt5Widgets.so.5.15.3", at 0x70f32a663fc3, in [moveit_setup_assistant-1] #24 Object "/usr/lib/x86_64-linux-gnu/libQt5Widgets.so.5.15.3", at 0x70f32a66239d, in [moveit_setup_assistant-1] #23 Object "/usr/lib/x86_64-linux-g

ffmpeg音频编码学习std::vector<uint8_t> convert_pcm_to_alaw(uint8_t *pcm_data, int pcm_size, int input_sample_rate, AVSampleFormat input_fmt, const AVChannelLayout &input_ch_layout) { std::vector<uint8_t> audio_data; //----------------------------- // 1. 初始化编码器(G.711 A-law) //----------------------------- const AVCodec *enc_codec = avcodec_find_encoder(AV_CODEC_ID_PCM_ALAW); AVCodecContext *enc_ctx = avcodec_alloc_context3(enc_codec); enc_ctx->sample_rate = 8000; // 目标采样率 enc_ctx->sample_fmt = AV_SAMPLE_FMT_S16; // 编码器支持的输入格式 av_channel_layout_copy(&enc_ctx->ch_layout, &AV_CHANNEL_LAYOUT_MONO); // 单声道 avcodec_open2(enc_ctx, enc_codec, nullptr); //----------------------------- // 2. 初始化重采样器(SwrContext) //----------------------------- SwrContext *swr = swr_alloc(); av_opt_set_chlayout(swr, "in_chlayout", &input_ch_layout, 0); av_opt_set_int(swr, "in_sample_rate", input_sample_rate, 0); av_opt_set_sample_fmt(swr, "in_sample_fmt", input_fmt, 0); av_opt_set_chlayout(swr, "out_chlayout", &enc_ctx->ch_layout, 0); av_opt_set_int(swr, "out_sample_rate", enc_ctx->sample_rate, 0); av_opt_set_sample_fmt(swr, "out_sample_fmt", enc_ctx->sample_fmt, 0); swr_init(swr); //----------------------------- // 3. 将输入的PCM数据封装到AVFrame //----------------------------- AVFrame *input_frame = av_frame_alloc(); // 更名:避免"解码"歧义 input_frame->format = input_fmt; av_channel_layout_copy(&input_frame->ch_layout, &input_ch_layout); input_frame->nb_samples = pcm_size / (av_get_bytes_per_sample(input_fmt) * input_ch_layout.nb_channels); av_frame_get_buffer(input_frame, 0); memcpy(input_frame->data[0], pcm_data, pcm_size); //----------------------------- // 4. 重采样到目标格式(8kHz单声道S16) //----------------------------- AVFrame *resampled_frame = av_frame_alloc(); resampled_frame->nb_samples = swr_get_out_samples(swr, input_frame->nb_samples); resampled_frame->format = enc_ctx->sample_fmt; av_channel_layout_copy(&resampled_frame->ch_layout, &enc_ctx->ch_layout); av_frame_get_buffer(resampled_frame, 0); swr_convert(swr, resampled_frame->data, resampled_frame->nb_samples, (const uint8_t **)input_frame->data, input_frame->nb_samples); //----------------------------- // 5. 编码为G.711 A-law //----------------------------- AVPacket *enc_pkt = av_packet_alloc(); avcodec_send_frame(enc_ctx, resampled_frame); while (avcodec_receive_packet(enc_ctx, enc_pkt) >= 0) { audio_data.insert(audio_data.end(), enc_pkt->data, enc_pkt->data + enc_pkt->size); av_packet_unref(enc_pkt); } //----------------------------- // 6. 释放资源 //----------------------------- av_frame_free(&input_frame); av_frame_free(&resampled_frame); av_packet_free(&enc_pkt); avcodec_free_context(&enc_ctx); swr_free(&swr); return audio_data; } 这段代码有啥问题吗?

../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/JTest/inc/jtest_cycle.h:51:29: error: 'SysTick' undeclared (first use in this function) 51 | JTEST_SYSTICK_RESET(SysTick); \ | ^~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/inc/templates/template.h:16:13: note: in definition of macro 'TEMPLATE_LOOP' 16 | body; \ | ^~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/inc/templates/template.h:54:9: note: in expansion of macro 'TEMPLATE_DO_ARR_LIKE' 54 | TEMPLATE_DO_ARR_LIKE( \ | ^~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.c:113:9: note: in expansion of macro 'TEMPLATE_DO_ARR_DESC' 113 | TEMPLATE_DO_ARR_DESC( \ | ^~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/JTest/inc/jtest_cycle.h:51:9: note: in expansion of macro 'JTEST_SYSTICK_RESET' 51 | JTEST_SYSTICK_RESET(SysTick); \ | ^~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.c:160:13: note: in expansion of macro 'JTEST_COUNT_CYCLES' 160 | JTEST_COUNT_CYCLES( \ | ^~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.c:186:1: note: in expansion of macro 'DCT4_FIXED_POINT_DEFINE_TEST' 186 | DCT4_FIXED_POINT_DEFINE_TEST(q15, q15_t, dct4_); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/JTest/inc/jtest_systick.h:83:13: error: 'SysTick_CTRL_ENABLE_Msk' undeclared (first use in this function) 83 | SysTick_CTRL_ENABLE_Msk | \ | ^~~~~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/inc/templates/template.h:16:13: note: in definition of macro 'TEMPLATE_LOOP' 16 | body; \ | ^~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/inc/templates/template.h:54:9: note: in expansion of macro 'TEMPLATE_DO_ARR_LIKE' 54 | TEMPLATE_DO_ARR_LIKE( \ | ^~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.c:113:9: note: in expansion of macro 'TEMPLATE_DO_ARR_DESC' 113 | TEMPLATE_DO_ARR_DESC( \ | ^~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/JTest/inc/jtest_cycle.h:52:9: note: in expansion of macro 'JTEST_SYSTICK_START' 52 | JTEST_SYSTICK_START(SysTick); \ | ^~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.c:160:13: note: in expansion of macro 'JTEST_COUNT_CYCLES' 160 | JTEST_COUNT_CYCLES( \ | ^~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.c:186:1: note: in expansion of macro 'DCT4_FIXED_POINT_DEFINE_TEST' 186 | DCT4_FIXED_POINT_DEFINE_TEST(q15, q15_t, dct4_); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/JTest/inc/jtest_systick.h:84:13: error: 'SysTick_CTRL_CLKSOURCE_Msk' undeclared (first use in this function) 84 | SysTick_CTRL_CLKSOURCE_Msk; /* Internal clk*/ \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/inc/templates/template.h:16:13: note: in definition of macro 'TEMPLATE_LOOP' 16 | body; \ | ^~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/inc/templates/template.h:54:9: note: in expansion of macro 'TEMPLATE_DO_ARR_LIKE' 54 | TEMPLATE_DO_ARR_LIKE( \ | ^~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.c:113:9: note: in expansion of macro 'TEMPLATE_DO_ARR_DESC' 113 | TEMPLATE_DO_ARR_DESC( \ | ^~~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/JTest/inc/jtest_cycle.h:52:9: note: in expansion of macro 'JTEST_SYSTICK_START' 52 | JTEST_SYSTICK_START(SysTick); \ | ^~~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.c:160:13: note: in expansion of macro 'JTEST_COUNT_CYCLES' 160 | JTEST_COUNT_CYCLES( \ | ^~~~~~~~~~~~~~~~~~ ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.c:186:1: note: in expansion of macro 'DCT4_FIXED_POINT_DEFINE_TEST' 186 | DCT4_FIXED_POINT_DEFINE_TEST(q15, q15_t, dct4_); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ make: *** [Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/subdir.mk:37: Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/dct4_tests.o] Error 1 In file included from ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/JTest/inc/jtest_cycle.h:9, from ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/JTest/inc/jtest.h:15, from ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/rfft_fast_tests.c:1: ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/JTest/inc/jtest_systick.h:45:4: warning: #warning "no appropriate header file found!" [-Wcpp] 45 | #warning "no appropriate header file found!" | ^~~~~~~ In file included from ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/inc/templates/test_templates.h:7, from ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/inc/transform_tests/transform_templates.h:8, from ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/rfft_fast_tests.c:4: ../Drivers/CMSIS/DSP/DSP_Lib_TestSuite/Common/src/transform_tests/rfft_fast_tests.c: In function 'arm_rfft_fast_f32_forward_test':

class CSuppSourceBase { public: /// @brief Constructor. explicit CSuppSourceBase(const ESuppReas f_suppReas_e); /// Default virtual destructor. virtual ~CSuppSourceBase() = default; /// @brief RAdd new suppression source into the suppression source vector. /// @details This function adds the pointer to the new suppression source into the fixed vector /// if the vector is not full. If the vector is already full, an assertion is triggered. /// @pre /// @req /// @par Further document /// @param [in] f_ptrSuppSources_rv: The fixed vector to register the suppression source in. void registerSuppSource(vfc::TFixedVector<const CSuppSourceBase*, static_cast<vfc::int32_t>(ESuppReas::SUPPREAS_IDX_MAX)>& f_ptrSuppSources_rv) const; /// @brief Returns type of suppression. inline ESuppType getSuppType() const { return m_confSuppSrcBase.m_suppType_e; } /// @brief Calculates the maximum start time for the given parameter. /// @pre /// @req /// @par Further document /// @param [in] f_paramVgm_r: The parameter object containing the necessary values. /// @return sec_f32_t: The maximum strategy suppression time. sec_f32_t getTStrtgSuppMax(const prm::CPrmOutput::Clds& f_paramVgm_r) const; /// @brief Returns suppression reason. inline ESuppReas getSuppReas() const { return m_confSuppSrcBase.m_suppReas_e; } /// @brief Returns suppression priority. inline u8_t getSuppPrio() const { return m_confSuppSrcBase.m_suppPrio_ui8; } /// @brief Returns suppression sensitivity. inline ESuppSensitivityConfigured getSensitivityConfigured() const { return m_confSuppSrcBase.m_sensitivity_e; } /// @brief Returns whether the suppression is active (for a side). /// @pre /// @req /// @par Further document /// @param [in] f_sideSupp_e: The side for which to check the suppression request flag. /// @return true if a suppression request is active, false otherwise. bool getFlgReq(const ESide f_sideSupp_e) const; /// @brief Configuration of a suppression source (with priority). /// @pre /// @req /// @par Further document /// @param [in] f_tStrtgSuppMax_rf32: The maximum start suppression time in seconds. /// @param [in] f_tDebStrtgSupp_rf32: The start suppression debounce time in seconds. /// @param [in] f_tDebEndgSupp_rf32: The end suppression debounce time in seconds. /// @param [in] f_sensitivity_ui8: The sensitivity level of the suppression source. /// @param [in] f_suppType_ui8: The type of suppression source. /// @param [in] f_suppPrio_ui8: The priority of the suppression source. void config( const sec_f32_t& f_tStrtgSuppMax_rf32, const sec_f32_t& f_tDebStrtgSupp_rf32, const sec_f32_t& f_tDebEndgSupp_rf32, const u8_t f_sensitivity_ui8, const u8_t f_suppType_ui8, const u8_t f_suppPrio_ui8); /// @brief Returns maximal pre suppression time. virtual inline sec_f32_t getTPreSuppMax() const { return sec_f32_t(0.0f); } /// @brief Returns minimal full suppression time. virtual inline sec_f32_t getTMinFullSuppDuration() const { return sec_f32_t(0.0f); } /// @brief Return pointer to the state of suppression request. virtual CStatesSuppRequest* getPtrStatesSuppRequest(const ESide f_sideSupp_e) const = 0; protected: /// @brief /// @brief Update suppression request (and perform debouncing). /// @details This function checks if the suppression is disabled through a parameter. If not disabled, /// it checks the suppression request and handles the start and end suppression conditions. /// The debouncing timer is used to determine if the start or end suppression conditions have elapsed. /// If the suppression is disabled, the request is cleared and the debouncing timer is reset. /// @pre /// @req /// @par Further document /// @param [in] f_strtSupp_b: A boolean indicating if the start suppression condition is fulfilled. /// @param [in] f_endSupp_b: A boolean indicating if the end suppression condition is fulfilled. /// @param [in] f_sideSupp_e: The side of the suppression. /// @param [out] f_dT_f32: The time increment for the debouncing timer. void updateSuppState(const bool f_strtSupp_b, const bool f_endSupp_b, const ESide f_sideSupp_e, sec_f32_t f_dT_f32 = sec_f32_t(0.020f)) const; /// @brief Converts an unsigned 8-bit value to an ESuppSensitivityConfigured enum value. /// @details This function takes an unsigned 8-bit value and maps it to the corresponding ESuppSensitivityConfigured enum value. /// The mapping is as follows: /// - 1u: SENSI_CONFIGURED_LOW_ONLY /// - 2u: SENSI_CONFIGURED_LOW_AND_HIGH /// - 3u: SENSI_CONFIGURED_NOTSELECTED /// - Any other value: SENSI_CONFIGURED_NOTUSED /// @pre /// @req /// @par Further document /// @param [in] f_sensiConfigured_ui8: The unsigned 8-bit value to be converted. /// @return ESuppSensitivityConfigured: The corresponding ESuppSensitivityConfigured enum value. static ESuppSensitivityConfigured convertToSensiConfigured(const u8_t f_sensiConfigured_ui8); /// @brief Converts the given unsigned 8-bit integer to an ESuppType enum value. /// @details This function takes an unsigned 8-bit integer as input and converts it to an ESuppType enum value. /// If the input value is zero, the function returns SUPP_REACT_AND_HMI. /// Otherwise, it returns SUPP_REACT_ONLY. /// @pre /// @req /// @par Further document /// @param [in] f_suppType_ui8: The unsigned 8-bit integer to be converted. /// @return ESuppType: ESuppType The converted ESuppType enum value. static ESuppType convertToSuppType(const u8_t f_suppType_ui8); private: /// @brief Set suppression request flag for a side. void setFlgReq(const ESide f_sideSupp_e) const; /// @brief Clear suppression request flag for a side. void clrFlgReq(const ESide f_sideSupp_e) const; //--------------------------------------------------------------------- // M E M B E R S //--------------------------------------------------------------------- /// (base) configurations of suppression source CConfSuppSrcBase m_confSuppSrcBase; }; // CSuppSourceBase 解释

最新推荐

recommend-type

perl-Sys-CPU-0.61-14.el8.tar.gz

# 适用操作系统:Centos8 #Step1、解压 tar -zxvf xxx.el8.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm
recommend-type

基于C和WPF开发的五子棋网络对战服务器系统-支持双客户端连接自动开始游戏随机决定先手落子顺序实现完整五子棋规则包括胜利判断和落子转发功能提供详细通信协议设计含帧头帧尾校验码及多.zip

基于C和WPF开发的五子棋网络对战服务器系统_支持双客户端连接自动开始游戏随机决定先手落子顺序实现完整五子棋规则包括胜利判断和落子转发功能提供详细通信协议设计含帧头帧尾校验码及多.zip竞赛、考证案例详解
recommend-type

HTML时间格式化工具及测试页面介绍

标题 "BoolStudio.github.io" 暗示这是一个与GitHub相关的在线资源,具体来说是与BoolStudio相关的网页地址。GitHub是一个著名的代码托管平台,它支持Git版本控制系统,允许用户在云端存储和共享代码。BoolStudio可能是GitHub上的一个用户或组织账户名称,而该页面可能是他们托管的项目或个人页面的入口。 描述中的信息包含了HTML元素和JavaScript代码片段。这段描述展示了一个测试页文件的部分代码,涉及到HTML的标题(title)和内嵌框架(iframe)的使用,以及JavaScript中Date对象的扩展功能。 从描述中我们可以分析出以下知识点: 1. HTML标题(Title): 在HTML中,`<title>`标签用于定义网页的标题,它会显示在浏览器的标题栏或页面的标签上。在描述中出现了`<title>现在时间</title>`,这表明网页的标题被设置为了“现在时间”。 2. 微软时间: 这可能指的是在网页中嵌入微软产品的日期和时间显示。尽管这部分内容在描述中被删除了,但微软时间通常与Windows操作系统的日期和时间显示相关联。 3. iframe元素: `<iframe>`标签定义了一个内嵌框架,可以在网页中嵌入另一个文档。在描述中出现的是`<iframe src"></iframe>`,这表示创建了一个空的iframe元素,其src属性为空,实际上没有嵌入任何内容。通常src属性会被设置为另一个HTML文档的URL,用来在当前页面中显示外部页面的内容。 4. JavaScript日期格式化: 描述中包含了一段JavaScript代码,这段代码扩展了Date对象的功能,允许它根据提供的格式字符串(fmt)返回格式化的日期和时间。例如,如果fmt是'y年M月d日 h时m分s秒',则该函数会按照这个格式返回当前日期和时间。 具体到代码实现,以下步骤展示了如何在JavaScript中扩展Date对象并格式化日期: - 首先创建了一个对象o,该对象包含日期和时间的不同部分,例如年(y)、月(M)、日(d)、时(h)、分(m)、秒(s)。 - 使用正则表达式检查格式字符串fmt中是否包含年份的占位符(y+),如果存在则将其替换为四位数的年份,不足部分用0补齐。 - 使用for...in循环遍历对象o中的每一个键值对,并使用正则表达式测试这些键(如年、月、日等)是否在格式字符串中存在。如果存在,则替换为相应的日期时间值。 这个知识点展示了在JavaScript中如何自定义对象的方法,以及如何使用正则表达式进行字符串的搜索和替换。 标签 "HTML" 表明这个文件主要涉及到超文本标记语言(HTML),这是构建网页内容的标准标记语言,它允许开发者使用标签来定义网页的结构和内容。HTML文件通常包含各种元素,如段落、链接、图片、表格和表单等。 压缩包子文件的文件名称列表中的 "BoolStudio.github.io-main" 可能指的是一个包含 "BoolStudio.github.io" 网站主要文件的压缩包。通常,网站项目会包含多个文件和资源,为了便于管理和分发,开发者会将这些文件打包成一个压缩文件。在本例中,"main" 可能表示该压缩包包含了网站的主要文件和代码。 通过对给定文件信息的分析,我们可以了解到网页设计和开发的相关知识点,特别是HTML文档结构、JavaScript对象和函数扩展以及如何在网站项目中组织文件。这些知识对于前端开发者来说是非常重要的,能够帮助他们创建更加动态和功能丰富的网页应用。
recommend-type

Elixir测试:从用例执行到覆盖率分析

### Elixir 测试:从用例执行到覆盖率分析 #### 1. 测试用例执行 在测试中,以 `Test` 结尾且包含 `use ExUnit` 的模块被视为测试用例。测试用例本质上是设置回调和测试的集合。测试用例的执行方式有两种:并发执行或顺序执行。使用 `async: true` 选项的测试用例将并发执行,其余的则按定义顺序(默认随机)顺序执行。 测试用例的执行流程如下: 1. 执行所有 `setup_all` 回调。 2. 执行所有测试及其特定的设置和拆卸回调。 `setup_all` 回调按定义顺序在同一进程中执行。在运行任何测试之前,测试用例将生成一个进程,在该进程中运行所有
recommend-type

Android Studio 时间延时

<think> 我们参考多个引用,总结在Android Studio中实现时间延时的方法。根据引用[1]和[2],我们知道有几种常见的延时方法,包括使用Handler的postDelayed方法、使用Timer和TimerTask以及使用Thread.sleep。引用[3]和[5]则展示了具体代码示例。 具体方法如下: 1. **使用Handler的postDelayed方法**(推荐在主线程中使用,避免直接操作UI线程的问题): ```java new Handler().postDelayed(new Runnable() { @Override
recommend-type

IMS Open Corpus Workbench:打造高效大型文本语料库管理工具

IMS Open Corpus Workbench(以下简称CWB)是一个强大的开源工具集,它专门用于管理和查询大型的、带有语言注释的文本语料库。这项工具有着广泛的应用领域,包括语言学研究、自然语言处理、人文科学研究等。 ### 标题知识点: #### 大型文本语料库的索引和查询工具 大型文本语料库指的是含有大量文本数据的数据库,其中包含的文本量通常以百万计。这些数据可能是书面文本、口语录音文字转写等形式。对于如此庞大的数据集,索引是必要的,它可以帮助研究者快速定位到感兴趣的片段,而查询工具则提供了从这些大量数据中提取特定信息的能力。 #### 开源 CWB作为一个开源工具,意味着其源代码对所有人开放,并且可以免费使用和修改。开源项目通常是由社区驱动,有着活跃的开发者和用户群体,不断对工具进行改进和拓展。这种模式促进了创新,并且有利于长期维护和升级。 ### 描述知识点: #### 管理和查询带有语言注释的文本 在语料库中,文本数据经常会被加上各种形式的语言注释,比如句法结构、词性标注、语义角色等。CWB支持管理这类富含语言信息的语料库,使其不仅仅保存原始文本信息,还整合了深层的语言知识。此外,CWB提供了多种查询语言注释数据的方式,使得用户可以针对特定的注释信息进行精确查询。 #### 核心组件:CQP(Corpus Query Processor) CQP是CWB中的核心组件,是一个高度灵活和高效的查询处理器。它支持在终端会话中交互式地使用,这为熟悉命令行界面的用户提供了一个强大的工具。同时,CQP也可以嵌入到其他程序中,比如Perl脚本,从而提供编程式的语料库访问方式。这为高级用户提供了一个强大的平台,可以编写复杂的查询,并将查询结果集成到其他程序中。 #### 基于Web的GUI CQPweb 除了命令行界面外,CWB还提供了一个基于Web的图形用户界面CQPweb,使得不熟悉命令行的用户也能够方便地使用CWB的强大功能。CQPweb通常允许用户通过网页直接构建查询,并展示查询结果,极大地降低了使用门槛。 ### 标签知识点: #### 开源软件 CWB作为开源软件,其主要特点和优势包括: - **社区支持**:开放源代码鼓励了全球开发者共同参与,提供错误修正、功能增强、新特性开发等。 - **定制化**:用户可以根据自己的需求对源代码进行修改,从而实现定制化的功能。 - **透明性**:源代码的开放确保了软件工作的透明性,用户可以清楚了解软件的工作原理和数据处理方式。 - **可靠性**:由于代码的公开性,很多用户和开发者可以共同审查代码,提高了软件的可靠性和安全性。 - **成本效益**:开源软件通常不需要支付昂贵的许可费用,对预算有限的个人和机构特别友好。 ### 压缩包子文件的文件名称列表知识点: #### cwb-3.0.0-osx-10.5-universal 这个文件名提供了关于该软件包的重要信息: - **cwb**:表示这是IMS Open Corpus Workbench的软件包。 - **3.0.0**:表示这个包的版本号,了解版本信息对于获取支持、查看更新日志、了解新特性等方面很重要。 - **osx**:表示这个软件包是为Mac OS X操作系统设计的。 - **10.5**:这个数字指明了这个软件包支持的操作系统版本至少是Mac OS X 10.5。 - **universal**:表明这个软件包是为不同架构的处理器(比如32位和64位)设计的通用二进制文件,提高了软件包的兼容性和可移植性。 综上所述,IMS Open Corpus Workbench是一个为处理带有语言注释的大型文本语料库而设计的开源工具集,它以高效且灵活的查询处理器CQP为核心,提供了命令行和基于Web的两种交互方式,极大地促进了语言学和语言技术领域的研究与应用。由于其开源特性,CWB得到了广泛的使用和不断的改进。
recommend-type

基于属性测试的深入解析与策略探讨

### 基于属性测试的深入解析与策略探讨 #### 1. 基于属性测试中的收缩机制 在基于属性的测试中,当测试失败时,像 `stream_data` 这样的框架会执行收缩(Shrinking)操作。收缩的目的是简化导致测试失败的输入,同时确保简化后的输入仍然会使测试失败,这样能更方便地定位问题。 为了说明这一点,我们来看一个简单的排序函数测试示例。我们实现了一个糟糕的排序函数,实际上就是恒等函数,它只是原封不动地返回输入列表: ```elixir defmodule BadSortTest do use ExUnit.Case use ExUnitProperties pro
recommend-type

ssh-keygen -t rsa -f /etc/ssh/ssh_host_rsa_key && \

<think> 根据用户的问题要求,我需要详细解释命令`ssh-keygen -t rsa -f /etc/ssh/ssh_host_rsa_key`的含义、后续操作、常见问题及解决办法。同时,我需要参考提供的引用内容,并遵循系统级指令(如LaTeX格式、中文回答、生成相关问题等)。 首先,分析命令的组成部分: - `ssh-keygen`:生成、管理和转换SSH密钥的工具。 - `-t rsa`:指定密钥类型为RSA算法。 - `-f /etc/ssh/ssh_host_rsa_key`:指定生成的私钥文件路径为`/etc/ssh/ssh_host_rsa_key`。对应的公钥文件会在同一
recommend-type

挑战性开源平台游戏YAGAC:无故事忍者冒险

Y.A.G.A.C(Yet Another Great Arcade Classic),是一款免费的开源伪2D平台游戏,它在传统平台游戏的基础上融入了3D游戏元素,让玩家在一个拥有2D精灵的3D环境中进行操作。YAGAC游戏以其高挑战性和上瘾性而著称,吸引了众多游戏爱好者和编程高手的关注。 首先,让我们深入了解这款游戏的核心玩法。YAGAC的最大特点是在一个基本的2D平面内,玩家可以控制角色进行运动,但游戏环境却是3D制作的。这种设计为玩家带来了全新的视觉体验和操作感受。在YAGAC中,玩家扮演的是一个身手敏捷的忍者,任务是在错综复杂的地牢中生存下来,地牢充满了各种陷阱和敌人,如机器人等。为了逃生,玩家需要在各种关卡中寻找隐藏的彩球,这些彩球决定了玩家能够到达的区域范围。 在游戏过程中,收集到的彩球会改变对应颜色平台的属性,使原本脆弱的平台变得牢固,从而为玩家打开新的道路。这样的设计不仅考验玩家的反应和速度,还考验他们的策略和记忆能力。YAGAC的游戏关卡设计非常巧妙,经常需要玩家反复尝试,每一次尝试都可能发现新的线索和策略,这样的设计增加了游戏的重复可玩性。 YAGAC使用的引擎在游戏流畅性方面表现出色,这也是游戏的一大强项。一款游戏引擎的强大与否直接关系到游戏体验的好坏,YAGAC的开发团队选择或者开发了一个能够高效处理3D图形和2D动作的引擎,确保了游戏在各种配置的计算机上都能保持良好的运行状态和响应速度。 接下来,我们来探讨YAGAC的开源属性。由于YAGAC是开源的,这意味着游戏的源代码是开放的,任何个人或组织都可以访问、修改并重新分发该软件。开源软件通常由社区维护,并且鼓励用户贡献代码,共同改进游戏。对于像YAGAC这样的游戏来说,开源可以吸引更多的开发者参与进来,共同完善游戏体验。玩家和开发者可以对游戏进行本地化、修改游戏机制,甚至是增加新的内容和关卡。 开源平台游戏的概念不仅限于提供免费的游戏体验,它还鼓励创新和协作。开源文化促进知识共享和技术进步,这在软件开发领域尤为重要。同时,玩家也可以从中学到编程知识,因为游戏的开源性质允许用户查看和学习游戏背后的代码。 最后,关于YAGAC的文件名称“yagac”,这很可能是游戏的主程序文件名或者主目录名。当玩家在计算机上进行下载和安装时,可能会遇到这样的文件名,识别这一点有助于玩家快速定位和管理游戏文件。 总的来说,Y.A.G.A.C.作为一款开源平台游戏,在游戏玩法设计、开源文化和3D游戏引擎的流畅性等方面,都显示出其独特的优势。游戏的挑战性和上瘾性,以及社区驱动的开发模式,都为游戏爱好者和开源爱好者提供了一个理想的游戏和学习平台。对于对游戏开发感兴趣的玩家来说,YAGAC无疑是一个研究和实践的良好起点。
recommend-type

状态化属性测试与测试数据随机化及测试生命周期解析

# 状态化属性测试与测试数据随机化及测试生命周期解析 ## 状态化属性测试 ### 状态化系统测试的引入 之前我们主要探讨了针对纯无状态函数的属性测试,这类函数接收输入并返回输出。然而,属性测试同样适用于有状态系统的测试。有状态系统是指那些会携带状态的系统,例如数据库。 在之前的示例中,我们仅使用属性测试来生成数据,然后将其输入到代码中并对结果进行断言。但对于有状态系统,情况有所不同:我们需要处理状态的设置,并仅在系统处于特定状态时执行某些操作。 ### 对有状态系统进行建模 我们可以利用属性测试框架生成随机数据的能力,为有状态系统生成随机命令。例如,若有状态系统是数据库,我们就能生成针