Polyp-Mamba代码
时间: 2025-05-09 22:19:09 浏览: 29
### Polyp-Mamba 代码实现概述
Polyp-Mamba 是一种基于状态空间模型 (SSM) 的方法,专门用于医学图像处理中的息肉分割任务。该模型通过结合二元交叉熵损失 \(L_{BCE}\) 和加权 IoU 损失 \(L_{Iou}\),并通过自适应权重调节实现了高性能和快速收敛[^3]。
以下是 Polyp-Mamba 的核心组件及其对应的代码片段:
#### 总体结构
Polyp-Mamba 结合了一个编码器-解码器架构,其中编码器负责特征提取,而解码器则通过跳跃连接恢复细节并生成最终的分割图[^4]。
```python
import torch.nn as nn
import torch
class Encoder(nn.Module):
def __init__(self, channels=[64, 128, 256]):
super(Encoder, self).__init__()
self.patch_merging_layers = nn.ModuleList([
PatchMerging(channels[i]) for i in range(len(channels)-1)
])
def forward(self, x):
features = []
for layer in self.patch_merging_layers:
x = layer(x)
features.append(x)
return features
class Decoder(nn.Module):
def __init__(self, channels=[256, 128, 64], skip_channels=[256, 128, 64]):
super(Decoder, self).__init__()
self.patch_expanding_layers = nn.ModuleList([
PatchExpanding(skip_channels[i], channels[i]) for i in range(len(channels))
])
def forward(self, encoder_features):
x = None
for idx, layer in enumerate(reversed(self.patch_expanding_layers)):
if x is None:
x = encoder_features[-idx-1]
else:
x = layer(torch.cat([x, encoder_features[-idx-1]], dim=1))
return x
class FinalProjectionLayer(nn.Module):
def __init__(self, input_channel, output_channel):
super(FinalProjectionLayer, self).__init__()
self.up_sample = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=True)
self.projection = nn.Conv2d(input_channel, output_channel, kernel_size=1)
def forward(self, x):
x = self.up_sample(x)
x = self.projection(x)
return x
class PolypMambaModel(nn.Module):
def __init__(self, enc_chs=[64, 128, 256], dec_chs=[256, 128, 64], n_classes=1):
super(PolypMambaModel, self).__init__()
self.encoder = Encoder(enc_chs)
self.decoder = Decoder(dec_chs[::-1], enc_chs[:-1])
self.final_projection = FinalProjectionLayer(dec_chs[0], n_classes)
def forward(self, x):
encoded_features = self.encoder(x)
decoded_output = self.decoder(encoded_features)
final_output = self.final_projection(decoded_output)
return final_output
```
#### 损失函数定义
为了优化 Polyp-Mamba 的性能,采用了组合损失函数的形式,即二元交叉熵损失和加权 IoU 损失的线性组合。
```python
def binary_cross_entropy_loss(pred, target):
bce_loss_fn = nn.BCEWithLogitsLoss()
return bce_loss_fn(pred, target)
def weighted_iou_loss(pred, target):
intersection = (pred * target).sum(dim=(1, 2, 3))
union = pred.sum(dim=(1, 2, 3)) + target.sum(dim=(1, 2, 3)) - intersection
epsilon = 1e-7
loss = ((intersection + epsilon) / (union + epsilon)).mean()
return 1 - loss
def total_loss(pred, target, lambda1=1.0, lambda2=1.0):
bce_loss = binary_cross_entropy_loss(pred, target)
iou_loss = weighted_iou_loss(pred, target)
return lambda1 * bce_loss + lambda2 * iou_loss
```
### §相关问题§
1. 如何调整超参数 \(\lambda_1\) 和 \(\lambda_2\) 来进一步提升 Polyp-Mamba 的性能?
2. 在实际部署中,如何加速 Polyp-Mamba 的推理过程而不显著降低精度?
3. 是否可以通过迁移学习将 Polyp-Mamba 扩展到其他医疗影像分割任务?
4. 如果训练数据不足,能否利用半监督或无监督技术增强 Polyp-Mamba 的泛化能力?
5. 对于大规模数据集,如何优化 Polyp-Mamba 的训练效率?
阅读全文
相关推荐



















