Longest Palindrome Substring
时间: 2025-01-26 17:07:31 AIGC 浏览: 56
最长回文子串(Longest Palindrome Substring)是一个经典的字符串处理问题。给定一个字符串,要求找到其中最长的回文子串。回文串是指正读和反读都一样的字符串,例如"madam"和"racecar"。
解决这个问题的方法有很多,其中最常用的是中心扩展法和动态规划法。
### 方法一:中心扩展法
中心扩展法的基本思想是遍历字符串的每一个字符,以该字符为中心,向两边扩展,找到最长的回文子串。需要注意的是,回文串的长度可能是奇数也可能是偶数,因此需要分别处理。
```python
def longest_palindrome(s):
if not s:
return ""
start, end = 0, 0
for i in range(len(s)):
len1 = expand_around_center(s, i, i)
len2 = expand_around_center(s, i, i + 1)
max_len = max(len1, len2)
if max_len > end - start:
start = i - (max_len - 1) // 2
end = i + max_len // 2
return s[start:end + 1]
def expand_around_center(s, left, right):
while left >= 0 and right < len(s) and s[left] == s[right]:
left -= 1
right += 1
return right - left - 1
# 示例
s = "babad"
print(longest_palindrome(s)) # 输出 "bab" 或 "aba"
```
### 方法二:动态规划法
动态规划法的基本思想是将字符串的所有子串的子问题结果存储在一个二维数组中,然后通过已知的子问题结果推导出更大问题的结果。
```python
def longest_palindrome_dp(s):
if not s:
return ""
n = len(s)
dp = [[False] * n for _ in range(n)]
start, max_len = 0, 1
for i in range(n):
dp[i][i] = True
for i in range(n - 1):
if s[i] == s[i + 1]:
dp[i][i + 1] = True
start = i
max_len = 2
for l in range(3, n + 1):
for i in range(n - l + 1):
j = i + l - 1
if s[i] == s[j] and dp[i + 1][j - 1]:
dp[i][j] = True
if l > max_len:
start = i
max_len = l
return s[start:start + max_len]
# 示例
s = "babad"
print(longest_palindrome_dp(s)) # 输出 "bab" 或 "aba"
```
这两种方法各有优缺点,中心扩展法实现简单,时间复杂度为O(n^2),而动态规划法虽然时间复杂度相同,但空间复杂度较高。
阅读全文
相关推荐




