活动介绍

Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting pytorch Downloading https://pypi.tuna.tsinghua.edu.cn/packages/ee/67/f403d4ae6e9cd74b546ee88cccdb29b8415a9c1b3d80aebeb20c9ea91d96/pytorch-1.0.2.tar.gz (689 bytes) Preparing metada

时间: 2025-07-12 16:46:16 浏览: 28
<think>好的,用户现在遇到了在安装PyTorch时的问题,具体是在使用清华镜像源下载pytorch-1.0.2.tar.gz时,可能出现了版本错误或者下载不完整的情况。首先,我需要回想之前的对话历史。之前用户遇到的是conda环境创建时的元数据收集失败,现在则是使用pip安装PyTorch时的问题,虽然都涉及到清华镜像源,但问题不同。 首先,用户提供的错误信息显示他们在使用清华的PyPI镜像源,但下载的是pytorch-1.0.2.tar.gz,这个版本非常旧,可能用户的环境文件或安装命令指定了错误的版本,或者镜像源没有正确配置。PyTorch的官方安装通常推荐通过conda或pip安装,并且需要指定正确的版本和CUDA版本。 接下来,我需要分析可能的原因。首先,用户可能直接运行了`pip install pytorch`,但正确的包名应该是`torch`,而不是`pytorch`。PyPI上的pytorch包可能是一个老版本或非官方版本。因此,用户可能因为包名错误导致下载了错误的文件。 另外,用户可能没有指定正确的版本号,导致pip尝试安装旧版本,而清华镜像源可能没有该旧版本的资源,或者资源不完整。此外,网络问题也可能导致下载中断,但根据错误信息,可能是元数据准备失败,可能因为安装包本身有问题。 解决方案方面,首先需要纠正包名,使用`torch`而不是`pytorch`。然后,指导用户使用PyTorch官方推荐的安装命令,并指定正确的镜像源。同时,建议用户检查Python版本和CUDA版本是否兼容,以及是否需要安装CPU版本的PyTorch。 另外,用户可能混淆了conda和pip的安装方式。如果用户之前使用的是conda,可能需要检查conda的镜像源配置,或者尝试用conda安装PyTorch,因为conda的包管理可能更可靠一些。不过用户当前使用的是pip,所以重点应放在pip的安装上。 还需要考虑用户的操作系统,如果是Windows,某些版本的PyTorch可能需要特定的依赖项,或者安装命令需要调整。例如,在Windows上安装PyTorch时,官方推荐通过特定命令指定CUDA版本。 最后,需要建议用户验证安装是否成功,通过简单的Python脚本来检查torch是否能正常导入以及CUDA是否可用。如果问题仍然存在,可能需要进一步检查网络环境,或者尝试其他镜像源如阿里云、豆瓣源等。 总结下来,步骤应该是:1. 纠正包名为torch;2. 使用正确的安装命令和镜像源;3. 检查版本兼容性;4. 验证安装。同时,提供备选方案如使用conda安装或更换镜像源。</think>--- ### 问题分析 你正在尝试通过清华镜像源安装PyTorch,但下载的包是`pytorch-1.0.2.tar.gz`(一个非常旧的版本),且可能因包名错误或版本不匹配导致安装失败。这是因为PyTorch官方包的名称是`torch`,而非`pytorch`。 --- ### 分步解决方案 #### 1. **纠正包名** PyTorch的正式PyPI包名为`torch`,安装时应使用: ```bash pip install torch ``` #### 2. **指定官方镜像源+版本号(推荐)** 使用清华镜像源并明确指定PyTorch版本(以最新稳定版为例): ```bash pip install torch torchvision torchaudio --index-url https://pypi.tuna.tsinghua.edu.cn/simple ``` #### 3. **检查版本兼容性** - 确认Python版本(PyTorch 2.x需Python ≥3.8): ```bash python --version ``` - 根据CUDA版本选择安装命令(无GPU则用CPU版本): ```bash # CUDA 12.1 pip install torch torchvision torchaudio --index-url https://pypi.tuna.tsinghua.edu.cn/simple # CPU only pip install torch torchvision torchaudio --index-url https://pypi.tuna.tsinghua.edu.cn/simple --extra-index-url https://download.pytorch.org/whl/cpu ``` #### 4. **强制重新下载(若缓存导致问题)** 添加`--force-reinstall`和禁用缓存: ```bash pip install torch --force-reinstall --no-cache-dir --index-url https://pypi.tuna.tsinghua.edu.cn/simple ``` #### 5. **验证安装** 运行Python检查是否安装成功: ```python import torch print(torch.__version__) # 应输出类似2.1.0 print(torch.cuda.is_available()) # 检查GPU支持 ``` --- ### 常见问题补充 - **错误包名`pytorch`的来源** PyPI上存在非官方的`pytorch`包(最后一次更新于2018年),与官方`torch`无关,直接忽略。 - **镜像源同步延迟** 若清华源未及时同步最新版本,可临时切换其他源(如阿里云): ```bash pip install torch --index-url https://mirrors.aliyun.com/pypi/simple/ ``` - **Windows系统依赖问题** 如果报错`Microsoft Visual C++ 14.0 required`,需安装[Visual Studio Build Tools](https://visualstudio.microsoft.com/zh-hans/visual-cpp-build-tools/)。 --- ### 附:PyTorch官方推荐命令 访问[PyTorch官网](https://pytorch.org/get-started/locally/),选择操作系统、包管理器(pip/conda)、CUDA版本后,会自动生成安装命令。
阅读全文

相关推荐

(smol-env) [heng2@localhost ~]$ pip install transformers -i https://pypi.tuna.tsinghua.edu.cn/simple Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting transformers Downloading https://pypi.tuna.tsinghua.edu.cn/packages/51/51/b87caa939fedf307496e4dbf412f4b909af3d9ca8b189fc3b65c1faa456f/transformers-4.46.3-py3-none-any.whl (10.0 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 10.0/10.0 MB 1.4 MB/s eta 0:00:00 Collecting filelock (from transformers) Downloading https://pypi.tuna.tsinghua.edu.cn/packages/b9/f8/feced7779d755758a52d1f6635d990b8d98dc0a29fa568bbe0625f18fdf3/filelock-3.16.1-py3-none-any.whl (16 kB) Collecting huggingface-hub<1.0,>=0.23.2 (from transformers) Downloading https://pypi.tuna.tsinghua.edu.cn/packages/40/0c/37d380846a2e5c9a3c6a73d26ffbcfdcad5fc3eacf42fdf7cff56f2af634/huggingface_hub-0.29.3-py3-none-any.whl (468 kB) Collecting numpy>=1.17 (from transformers) Downloading https://pypi.tuna.tsinghua.edu.cn/packages/98/5d/5738903efe0ecb73e51eb44feafba32bdba2081263d40c5043568ff60faf/numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 17.3/17.3 MB 2.6 MB/s eta 0:00:00 Collecting packaging>=20.0 (from transformers) Downloading https://pypi.tuna.tsinghua.edu.cn/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl (65 kB) Collecting pyyaml>=5.1 (from transformers) Downloading https://pypi.tuna.tsinghua.edu.cn/packages/fd/7f/2c3697bba5d4aa5cc2afe81826d73dfae5f049458e44732c7a0938baa673/PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (746 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 746.5/746.5 kB 1.7 MB/s eta 0:00:00 Collecting regex!=2019.12.17 (from transformers) Downloading https://pypi.tuna.tsinghua.edu.cn/packages/5a/c8/dc7153ceb5bcc344f5c4f0291ea45925a5f00009afa3849e91561ac2e847/regex-2024.11.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (785 kB)

m>pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu Defaulting to user installation because normal site-packages is not writeable Looking in indexes: https://download.pytorch.org/whl/cpu Collecting torch Downloading https://download.pytorch.org/whl/cpu/torch-2.6.0%2Bcpu-cp312-cp312-win_amd64.whl.metadata (28 kB) Collecting torchvision Downloading https://download.pytorch.org/whl/cpu/torchvision-0.21.0%2Bcpu-cp312-cp312-win_amd64.whl.metadata (6.3 kB) Collecting torchaudio Downloading https://download.pytorch.org/whl/cpu/torchaudio-2.6.0%2Bcpu-cp312-cp312-win_amd64.whl.metadata (6.7 kB) Requirement already satisfied: filelock in d:\condas\lib\site-packages (from torch) (3.13.1) Requirement already satisfied: typing-extensions>=4.10.0 in d:\condas\lib\site-packages (from torch) (4.11.0) Requirement already satisfied: networkx in d:\condas\lib\site-packages (from torch) (3.3) Requirement already satisfied: jinja2 in d:\condas\lib\site-packages (from torch) (3.1.4) Requirement already satisfied: fsspec in d:\condas\lib\site-packages (from torch) (2024.6.1) Requirement already satisfied: setuptools in d:\condas\lib\site-packages (from torch) (75.1.0) Collecting sympy==1.13.1 (from torch) Using cached https://download.pytorch.org/whl/sympy-1.13.1-py3-none-any.whl (6.2 MB) Requirement already satisfied: mpmath<1.4,>=1.1.0 in d:\condas\lib\site-packages (from sympy==1.13.1->torch) (1.3.0) Requirement already satisfied: numpy in d:\condas\lib\site-packages (from torchvision) (1.26.4) Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in d:\condas\lib\site-packages (from torchvision) (10.4.0) Requirement already satisfied: MarkupSafe>=2.0 in d:\condas\lib\site-packages (from jinja2->torch) (2.1.3) Downloading https://download.pytorch.org/whl/cpu/torch-2.6.0%2Bcpu-cp312-cp312-win_amd64.whl (206.5 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 206.5/206.5 MB 260.0 kB/s eta 0:00:00 Downloading https://download.pytorch.org/whl/如何

pip install vtx Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting vtx Downloading https://pypi.tuna.tsinghua.edu.cn/packages/f7/54/83bf194abc3d8a384caf1b10ca25789412176e9460555b531b48d2ac7fa5/vtx-1.0.1.tar.gz (26.4 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 26.4/26.4 MB 10.4 MB/s eta 0:00:00 Installing build dependencies ... done Getting requirements to build wheel ... error error: subprocess-exited-with-error × Getting requirements to build wheel did not run successfully. │ exit code: 1 ╰─> [27 lines of output] <string>:22: UserWarning: CUDA_HOME is not set; NVCC may not be available. Traceback (most recent call last): File "/home/share/huadjyin/home/chenjunhong/.conda/envs/evo2/lib/python3.11/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 389, in <module> main() File "/home/share/huadjyin/home/chenjunhong/.conda/envs/evo2/lib/python3.11/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 373, in main json_out["return_val"] = hook(**hook_input["kwargs"]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/share/huadjyin/home/chenjunhong/.conda/envs/evo2/lib/python3.11/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 143, in get_requires_for_build_wheel return hook(config_settings) ^^^^^^^^^^^^^^^^^^^^^ File "/tmp/pip-build-env-78wchmjg/overlay/lib/python3.11/site-packages/setuptools/build_meta.py", line 334, in get_requires_for_build_wheel return self._get_build_requires(config_settings, requirements=[]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/tmp/pip-build-env-78wchmjg/overlay/lib/python3.11/site-packages/setuptools/build_meta.py", line 304, in _get_build_requires self.run_setup() File "/tmp/pip-build-env-78wchmjg/overlay/lib/python3.11/site-packages/setuptools/build_meta.py", line 320, in run_setup exec(code, locals()) File "<string>", line 61, in <module> File "/tmp/pip-build-env-78wchmjg/overlay/lib/python3.11/site-packages/torch/utils/cpp_extension.py", line 1130, in CUDAExtension library_dirs += library_paths(device_type="cuda") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/tmp/pip-build-env-78wchmjg/overlay/lib/python3.11/site-packages/torch/utils/cpp_extension.py", line 1264, in library_paths if (not os.path.exists(_join_cuda_home(lib_dir)) and ^^^^^^^^^^^^^^^^^^^^^^^^ File "/tmp/pip-build-env-78wchmjg/overlay/lib/python3.11/site-packages/torch/utils/cpp_extension.py", line 2525, in _join_cuda_home raise OSError('CUDA_HOME environment variable is not set. ' OSError: CUDA_HOME environment variable is not set. Please set it to your CUDA install root. [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: subprocess-exited-with-error × Getting requirements to build wheel did not run successfully. │ exit code: 1 ╰─> See above for output. note: This error originates from a subprocess, and is likely not a problem with pip.

(base) (.venv) PS E:\1-MasterFold\1-Research\paper_code\LLMNodeBed-main> pip install torch-sparse -f https://data.pyg.org/whl/torch-2.7.1+cu118.html Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Looking in links: https://data.pyg.org/whl/torch-2.7.1+cu118.html Collecting torch-sparse Downloading https://pypi.tuna.tsinghua.edu.cn/packages/42/e2/cddf10a8e32a0b214918943e6173672c8ec11000e69c36dad8e6b141cb60/torch_sparse-0.6.18.tar.gz (209 kB) Installing build dependencies ... done Getting requirements to build wheel ... error error: subprocess-exited-with-error × Getting requirements to build wheel did not run successfully. │ exit code: 1 ╰─> [20 lines of output] Traceback (most recent call last): File "E:\1-MasterFold\1-Research\paper_code\LLMNodeBed-main\.venv\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 389, in <module> main() File "E:\1-MasterFold\1-Research\paper_code\LLMNodeBed-main\.venv\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 373, in main json_out["return_val"] = hook(**hook_input["kwargs"]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\1-MasterFold\1-Research\paper_code\LLMNodeBed-main\.venv\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 143, in get_requires_for_build_wheel return hook(config_settings) ^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Administrator\AppData\Local\Temp\pip-build-env-ml4ruu_s\overlay\Lib\site-packages\setuptools\build_meta.py", line 331, in get_requires_for_build_wheel return self._get_build_requires(config_settings, requirements=[]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Administrator\AppData\Local\Temp\pip-build-env-ml4ruu_s\overlay\Lib\site-packages\setuptools\build_meta.py", line 301, in _get_build_requires self.run_setup() File "C:\Users\Administrator\AppData\Local\Temp\pip-build-env-ml4ruu_s\overlay\Lib\site-packages\setuptools\build_meta.py", line 512, in run_setup super().run_setup(setup_script=setup_script) File "C:\Users\Administrator\AppData\Local\Temp\pip-build-env-ml4ruu_s\overlay\Lib\site-packages\setuptools\build_meta.py", line 317, in run_setup exec(code, locals()) File "<string>", line 8, in <module> ModuleNotFoundError: No module named 'torch' [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: subprocess-exited-with-error × Getting requirements to build wheel did not run successfully. │ exit code: 1 ╰─> See above for output. note: This error originates from a subprocess, and is likely not a problem with pip.

(rdt) qfw@LAPTOP-IQ27EG3H:~/RoboticsDiffusionTransformer$ pip install flash-attn --no-build-isolation Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting flash-attn Downloading https://pypi.tuna.tsinghua.edu.cn/packages/11/34/9bf60e736ed7bbe15055ac2dab48ec67d9dbd088d2b4ae318fd77190ab4e/flash_attn-2.7.4.post1.tar.gz (6.0 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.0/6.0 MB 8.2 MB/s eta 0:00:00 Preparing metadata (setup.py) ... done Requirement already satisfied: torch in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from flash-attn) (2.1.0) Collecting einops (from flash-attn) Downloading https://pypi.tuna.tsinghua.edu.cn/packages/87/62/9773de14fe6c45c23649e98b83231fffd7b9892b6cf863251dc2afa73643/einops-0.8.1-py3-none-any.whl (64 kB) Requirement already satisfied: filelock in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from torch->flash-attn) (3.18.0) Requirement already satisfied: typing-extensions in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from torch->flash-attn) (4.13.2) Requirement already satisfied: sympy in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from torch->flash-attn) (1.14.0) Requirement already satisfied: networkx in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from torch->flash-attn) (3.4.2) Requirement already satisfied: jinja2 in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from torch->flash-attn) (3.1.6) Requirement already satisfied: fsspec in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from torch->flash-attn) (2025.3.2) Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from torch->flash-attn) (12.1.105) Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from torch->flash-attn) (12.1.105) Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from torch->flash-attn) (12.1.105) Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from torch->flash-attn) (8.9.2.26) Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from torch->flash-attn) (12.1.3.1) Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from torch->flash-attn) (11.0.2.54) Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from torch->flash-attn) (10.3.2.106) Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from torch->flash-attn) (11.4.5.107) Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from torch->flash-attn) (12.1.0.106) Requirement already satisfied: nvidia-nccl-cu12==2.18.1 in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from torch->flash-attn) (2.18.1) Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from torch->flash-attn) (12.1.105) Requirement already satisfied: triton==2.1.0 in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from torch->flash-attn) (2.1.0) Requirement already satisfied: nvidia-nvjitlink-cu12 in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch->flash-attn) (12.9.41) Requirement already satisfied: MarkupSafe>=2.0 in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from jinja2->torch->flash-attn) (3.0.2) Requirement already satisfied: mpmath<1.4,>=1.1.0 in /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages (from sympy->torch->flash-attn) (1.3.0) Building wheels for collected packages: flash-attn DEPRECATION: Building 'flash-attn' using the legacy setup.py bdist_wheel mechanism, which will be removed in a future version. pip 25.3 will enforce this behaviour change. A possible replacement is to use the standardized build interface by setting the --use-pep517 option, (possibly combined with --no-build-isolation), or adding a pyproject.toml file to the source tree of 'flash-attn'. Discussion can be found at https://github.com/pypa/pip/issues/6334 Building wheel for flash-attn (setup.py) ... error error: subprocess-exited-with-error × python setup.py bdist_wheel did not run successfully. │ exit code: 1 ╰─> [31 lines of output] torch.__version__ = 2.1.0+cu121 /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages/setuptools/__init__.py:94: _DeprecatedInstaller: setuptools.installer and fetch_build_eggs are deprecated. !! ******************************************************************************** Requirements should be satisfied by a PEP 517 installer. If you are using pip, you can try pip install --use-pep517. ******************************************************************************** !! dist.fetch_build_eggs(dist.setup_requires) /home/qfw/miniconda3/envs/rdt/lib/python3.10/site-packages/setuptools/dist.py:759: SetuptoolsDeprecationWarning: License classifiers are deprecated. !! ******************************************************************************** Please consider removing the following classifiers in favor of a SPDX license expression: License :: OSI Approved :: BSD License See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! self._finalize_license_expression() running bdist_wheel Guessing wheel URL: https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl error: Remote end closed connection without response [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for flash-attn Running setup.py clean for flash-attn Failed to build flash-attn ERROR: Failed to build installable wheels for some pyproject.toml based projects (flash-attn)遇到这个问题怎么解决?

(Log) PS D:\Project\Y\project\GraphLogAD-main> pip install --no-cache-dir torch-scatter Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting torch-scatter Downloading https://pypi.tuna.tsinghua.edu.cn/packages/f5/ab/2a44ecac0f891dd0d765fc59ac8d277c6283a31907626560e72685df2ed6/torch_scatter-2.1.2.tar.gz (108 kB) Preparing metadata (setup.py) ... done Building wheels for collected packages: torch-scatter DEPRECATION: Building 'torch-scatter' using the legacy setup.py bdist_wheel mechanism, which will be removed in a future version. pip 25.3 will enforce this behaviour change. A possible replacement is to use the standardized build interface by setting the --use-pep517 option, (possibly combined with --no-build-isolation), or adding a pyproject.toml file to the source tree of 'torch-scatter'. Discussion can be found at https://github.com/pypa/pip/issues/6334 Building wheel for torch-scatter (setup.py) ... error error: subprocess-exited-with-error × python setup.py bdist_wheel did not run successfully. │ exit code: 1 ╰─> [44 lines of output] C:\Users\23833\.conda\envs\Log\lib\site-packages\setuptools\dist.py:759: SetuptoolsDeprecationWarning: License classifiers are deprecated. !! ******************************************************************************** Please consider removing the following classifiers in favor of a SPDX license expression: License :: OSI Approved :: MIT License See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! self._finalize_license_expression() running bdist_wheel running build running build_py creating build\lib.win-amd64-cpython-310\torch_scatter copying torch_scatter\placeholder.py -> build\lib.win-amd64-cpython-310\torch_scatter copying torch_scatter\scatter.py -> build\lib.win-amd64-cpython-310\torch_scatter copying torch_scatter\segment_coo.py -> build\lib.win-amd64-cpython-310\torch_scatter copying torch_scatter\segment_csr.py -> build\lib.win-amd64-cpython-310\torch_scatter copying torch_scatter\testing.py -> build\lib.win-amd64-cpython-310\torch_scatter copying torch_scatter\utils.py -> build\lib.win-amd64-cpython-310\torch_scatter copying torch_scatter\__init__.py -> build\lib.win-amd64-cpython-310\torch_scatter creating build\lib.win-amd64-cpython-310\torch_scatter\composite copying torch_scatter\composite\logsumexp.py -> build\lib.win-amd64-cpython-310\torch_scatter\composite copying torch_scatter\composite\softmax.py -> build\lib.win-amd64-cpython-310\torch_scatter\composite copying torch_scatter\composite\std.py -> build\lib.win-amd64-cpython-310\torch_scatter\composite copying torch_scatter\composite\__init__.py -> build\lib.win-amd64-cpython-310\torch_scatter\composite running egg_info writing torch_scatter.egg-info\PKG-INFO writing dependency_links to torch_scatter.egg-info\dependency_links.txt writing requirements to torch_scatter.egg-info\requires.txt writing top-level names to torch_scatter.egg-info\top_level.txt reading manifest file 'torch_scatter.egg-info\SOURCES.txt' reading manifest template 'MANIFEST.in' warning: no previously-included files matching '*' found under directory 'test' adding license file 'LICENSE' writing manifest file 'torch_scatter.egg-info\SOURCES.txt' running build_ext C:\Users\23833\.conda\envs\Log\lib\site-packages\torch\utils\cpp_extension.py:382: UserWarning: Error checking compiler version for cl: [WinError 2] 系统找不到指定的文件。 warnings.warn(f'Error checking compiler version for {compiler}: {error}') building 'torch_scatter._scatter_cpu' extension error: Microsoft Visual C++ 14.0 or greater is required. Get it with "Microsoft C++ Build Tools": https://visualstudio.microsoft.com/visual-cpp-build-tools/ [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for torch-scatter Running setup.py clean for torch-scatter Failed to build torch-scatter ERROR: Failed to build installable wheels for some pyproject.toml based projects (torch-scatter)

(Log) PS D:\Project\Y\project\GraphLogAD-main\GraphLogAD-main> pip install torch_scatter Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting torch_scatter Downloading https://pypi.tuna.tsinghua.edu.cn/packages/f5/ab/2a44ecac0f891dd0d765fc59ac8d277c6283a31907626560e72685df2ed6/torch_scatter-2.1.2.tar.gz (108 kB) Preparing metadata (setup.py) ... done Building wheels for collected packages: torch_scatter DEPRECATION: Building 'torch_scatter' using the legacy setup.py bdist_wheel mechanism, which will be removed in a future version. pip 25.3 will enforce this behaviour change. A possible replacement is to use the standardized b uild interface by setting the --use-pep517 option, (possibly combined with --no-build-isolation), or adding a pyproject.toml file to the source tree of 'torch_scatter'. Discussion can be found at https://github.com/pypa/pip/issues/6334 Building wheel for torch_scatter (setup.py) ... error error: subprocess-exited-with-error × python setup.py bdist_wheel did not run successfully. │ exit code: 1 ╰─> [44 lines of output] C:\Users\23833\.conda\envs\Log\lib\site-packages\setuptools\dist.py:759: SetuptoolsDeprecationWarning: License classifiers are deprecated. !! ******************************************************************************** Please consider removing the following classifiers in favor of a SPDX license expression: License :: OSI Approved :: MIT License See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! self._finalize_license_expression() running bdist_wheel running build running build_py creating build\lib.win-amd64-cpython-310\torch_scatter copying torch_scatter\placeholder.py -> build\lib.win-amd64-cpython-310\torch_scatter copying torch_scatter\scatter.py -> build\lib.win-amd64-cpython-310\torch_scatter copying torch_scatter\segment_coo.py -> build\lib.win-amd64-cpython-310\torch_scatter copying torch_scatter\segment_csr.py -> build\lib.win-amd64-cpython-310\torch_scatter copying torch_scatter\testing.py -> build\lib.win-amd64-cpython-310\torch_scatter copying torch_scatter\utils.py -> build\lib.win-amd64-cpython-310\torch_scatter copying torch_scatter\__init__.py -> build\lib.win-amd64-cpython-310\torch_scatter creating build\lib.win-amd64-cpython-310\torch_scatter\composite copying torch_scatter\composite\logsumexp.py -> build\lib.win-amd64-cpython-310\torch_scatter\composite copying torch_scatter\composite\softmax.py -> build\lib.win-amd64-cpython-310\torch_scatter\composite copying torch_scatter\composite\std.py -> build\lib.win-amd64-cpython-310\torch_scatter\composite copying torch_scatter\composite\__init__.py -> build\lib.win-amd64-cpython-310\torch_scatter\composite running egg_info writing torch_scatter.egg-info\PKG-INFO writing dependency_links to torch_scatter.egg-info\dependency_links.txt writing requirements to torch_scatter.egg-info\requires.txt writing top-level names to torch_scatter.egg-info\top_level.txt reading manifest file 'torch_scatter.egg-info\SOURCES.txt' reading manifest template 'MANIFEST.in' warning: no previously-included files matching '*' found under directory 'test' adding license file 'LICENSE' writing manifest file 'torch_scatter.egg-info\SOURCES.txt' running build_ext C:\Users\23833\.conda\envs\Log\lib\site-packages\torch\utils\cpp_extension.py:382: UserWarning: Error checking compiler version for cl: [WinError 2] 系统找不到指定的文件。 warnings.warn(f'Error checking compiler version for {compiler}: {error}') building 'torch_scatter._scatter_cpu' extension error: Microsoft Visual C++ 14.0 or greater is required. Get it with "Microsoft C++ Build Tools": https://visualstudio.microsoft.com/visual-cpp-build-tools/ [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for torch_scatter Running setup.py clean for torch_scatter Failed to build torch_scatter ERROR: Failed to build installable wheels for some pyproject.toml based projects (torch_scatter)

(openmmlab) C:\Users\陈慧琳>pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 Looking in indexes: https://download.pytorch.org/whl/cu118 Collecting torch Downloading https://download.pytorch.org/whl/cu118/torch-2.4.1%2Bcu118-cp38-cp38-win_amd64.whl (2695.5 MB) ━━━━━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━━━━━━ 1.5/2.7 GB 25.1 MB/s eta 0:00:47 ERROR: Exception: Traceback (most recent call last): File "E:\anaconda3\envs\openmmlab\lib\site-packages\pip\_vendor\urllib3\response.py", line 438, in _error_catcher yield File "E:\anaconda3\envs\openmmlab\lib\site-packages\pip\_vendor\urllib3\response.py", line 561, in read data = self._fp_read(amt) if not fp_closed else b"" File "E:\anaconda3\envs\openmmlab\lib\site-packages\pip\_vendor\urllib3\response.py", line 527, in _fp_read return self._fp.read(amt) if amt is not None else self._fp.read() File "E:\anaconda3\envs\openmmlab\lib\site-packages\pip\_vendor\cachecontrol\filewrapper.py", line 102, in read self.__buf.write(data) File "E:\anaconda3\envs\openmmlab\lib\tempfile.py", line 489, in func_wrapper return func(*args, **kwargs) OSError: [Errno 28] No space left on device During handling of the above exception, another exception occurred: Traceback (most recent call last): File "E:\anaconda3\envs\openmmlab\lib\site-packages\pip\_internal\cli\base_command.py", line 105, in _run_wrapper status = _inner_run() File "E:\anaconda3\envs\openmmlab\lib\site-packages\pip\_internal\cli\base_command.py", line 96, in _inner_run return self.run(options, args) File "E:\anaconda3\envs\openmmlab\lib\site-packages\pip\_internal\cli\req_command.py", line 67, in wrapper return func(self, options, args) File "E:\anaconda3\envs\openmmlab\lib\site-packages\pip\_internal\commands\install.py", line 379, in run requirement_set = resolver.resolve( File "E:\anaconda3\envs\openmmlab\lib\site-packages\pip\_internal\resolution\resolvelib\resolver.py", line 9

最新推荐

recommend-type

MinIO mc 客户端20250722

MinIO mc 客户端20250722
recommend-type

django餐厅推荐系统_ve4u1ds7.zip

django餐厅推荐系统_ve4u1ds7
recommend-type

LVGFC1E73SG001003 转毂.log

LVGFC1E73SG001003 转毂.log
recommend-type

应急管理网络明示图(1页).doc

应急管理网络明示图(1页).doc
recommend-type

dockertar包:filebrowser/filebrowser:latest

dockertar包:filebrowser/filebrowser:latest
recommend-type

掌握XFireSpring整合技术:HELLOworld原代码使用教程

标题:“xfirespring整合使用原代码”中提到的“xfirespring”是指将XFire和Spring框架进行整合使用。XFire是一个基于SOAP的Web服务框架,而Spring是一个轻量级的Java/Java EE全功能栈的应用程序框架。在Web服务开发中,将XFire与Spring整合能够发挥两者的优势,例如Spring的依赖注入、事务管理等特性,与XFire的简洁的Web服务开发模型相结合。 描述:“xfirespring整合使用HELLOworld原代码”说明了在这个整合过程中实现了一个非常基本的Web服务示例,即“HELLOworld”。这通常意味着创建了一个能够返回"HELLO world"字符串作为响应的Web服务方法。这个简单的例子用来展示如何设置环境、编写服务类、定义Web服务接口以及部署和测试整合后的应用程序。 标签:“xfirespring”表明文档、代码示例或者讨论集中于XFire和Spring的整合技术。 文件列表中的“index.jsp”通常是一个Web应用程序的入口点,它可能用于提供一个用户界面,通过这个界面调用Web服务或者展示Web服务的调用结果。“WEB-INF”是Java Web应用中的一个特殊目录,它存放了应用服务器加载的Servlet类文件和相关的配置文件,例如web.xml。web.xml文件中定义了Web应用程序的配置信息,如Servlet映射、初始化参数、安全约束等。“META-INF”目录包含了元数据信息,这些信息通常由部署工具使用,用于描述应用的元数据,如manifest文件,它记录了归档文件中的包信息以及相关的依赖关系。 整合XFire和Spring框架,具体知识点可以分为以下几个部分: 1. XFire框架概述 XFire是一个开源的Web服务框架,它是基于SOAP协议的,提供了一种简化的方式来创建、部署和调用Web服务。XFire支持多种数据绑定,包括XML、JSON和Java数据对象等。开发人员可以使用注解或者基于XML的配置来定义服务接口和服务实现。 2. Spring框架概述 Spring是一个全面的企业应用开发框架,它提供了丰富的功能,包括但不限于依赖注入、面向切面编程(AOP)、数据访问/集成、消息传递、事务管理等。Spring的核心特性是依赖注入,通过依赖注入能够将应用程序的组件解耦合,从而提高应用程序的灵活性和可测试性。 3. XFire和Spring整合的目的 整合这两个框架的目的是为了利用各自的优势。XFire可以用来创建Web服务,而Spring可以管理这些Web服务的生命周期,提供企业级服务,如事务管理、安全性、数据访问等。整合后,开发者可以享受Spring的依赖注入、事务管理等企业级功能,同时利用XFire的简洁的Web服务开发模型。 4. XFire与Spring整合的基本步骤 整合的基本步骤可能包括添加必要的依赖到项目中,配置Spring的applicationContext.xml,以包括XFire特定的bean配置。比如,需要配置XFire的ServiceExporter和ServicePublisher beans,使得Spring可以管理XFire的Web服务。同时,需要定义服务接口以及服务实现类,并通过注解或者XML配置将其关联起来。 5. Web服务实现示例:“HELLOworld” 实现一个Web服务通常涉及到定义服务接口和服务实现类。服务接口定义了服务的方法,而服务实现类则提供了这些方法的具体实现。在XFire和Spring整合的上下文中,“HELLOworld”示例可能包含一个接口定义,比如`HelloWorldService`,和一个实现类`HelloWorldServiceImpl`,该类有一个`sayHello`方法返回"HELLO world"字符串。 6. 部署和测试 部署Web服务时,需要将应用程序打包成WAR文件,并部署到支持Servlet 2.3及以上版本的Web应用服务器上。部署后,可以通过客户端或浏览器测试Web服务的功能,例如通过访问XFire提供的服务描述页面(WSDL)来了解如何调用服务。 7. JSP与Web服务交互 如果在应用程序中使用了JSP页面,那么JSP可以用来作为用户与Web服务交互的界面。例如,JSP可以包含JavaScript代码来发送异步的AJAX请求到Web服务,并展示返回的结果给用户。在这个过程中,JSP页面可能使用XMLHttpRequest对象或者现代的Fetch API与Web服务进行通信。 8. 项目配置文件说明 项目配置文件如web.xml和applicationContext.xml分别在Web应用和服务配置中扮演关键角色。web.xml负责定义Web组件,比如Servlet、过滤器和监听器,而applicationContext.xml则负责定义Spring容器中的bean,包括数据源、事务管理器、业务逻辑组件和服务访问器等。 总之,通过上述整合使用原代码的知识点,可以深入理解XFire与Spring框架的结合使用,以及如何开发和部署基本的Web服务。这些技术知识有助于进行更高层次的Web服务开发,以及在复杂的IT环境中灵活运用各种框架和工具。
recommend-type

【Unity2018汉化大揭秘】:一步到位优化中文用户体验

# 摘要 本论文详细介绍了Unity2018汉化项目的实施过程,从理论准备到实践步骤,再到后期的测试与优化,最终分享了汉化经验和心得。首先,强调了汉化项目对于用户体验提升和产品国际化的重要性,并分析了汉化资源的分类、识别与管理方法。接着,详细阐述了汉化工具的选择、脚本编写、资源手动调整等实践步骤,以及汉化质量测试、体验优化和项目维护更新的重要性。论文最后通过案例研究,分析了汉化中的挑战和应对策略,并预测了汉化技术未来的发展方向。整个汉化过程不仅涉及技术层面的操作,还包含了深入的理论研究和实践心得分享,对提升汉化项目的效率和质量具有指导意义。 # 关键字 Unity汉化;用户体验;国际化;资源
recommend-type

iPhone

<think>我们注意到用户意图不明确,但提到了“照片提取”和“其他功能帮助”。因此,我们需要通过搜索来获取关于iPhone照片提取的常见方法以及其他可能的功能帮助。由于用户问题比较宽泛,我们将重点放在照片提取上,因为这是明确提到的关键词。同时,我们也会考虑一些其他常用功能的帮助。首先,针对照片提取,可能涉及从iPhone导出照片、从备份中提取照片、或者从损坏的设备中恢复照片等。我们将搜索这些方面的信息。其次,关于其他功能帮助,我们可以提供一些常见问题的快速指南,如电池优化、屏幕时间管理等。根据要求,我们需要将答案组织为多个方法或步骤,并在每个步骤间换行。同时,避免使用第一人称和步骤词汇。由于
recommend-type

驾校一点通软件:提升驾驶证考试通过率

标题“驾校一点通”指向的是一款专门为学员考取驾驶证提供帮助的软件,该软件强调其辅助性质,旨在为学员提供便捷的学习方式和复习资料。从描述中可以推断出,“驾校一点通”是一个与驾驶考试相关的应用软件,这类软件一般包含驾驶理论学习、模拟考试、交通法规解释等内容。 文件标题中的“2007”这个年份标签很可能意味着软件的最初发布时间或版本更新年份,这说明了软件具有一定的历史背景和可能经过了多次更新,以适应不断变化的驾驶考试要求。 压缩包子文件的文件名称列表中,有以下几个文件类型值得关注: 1. images.dat:这个文件名表明,这是一个包含图像数据的文件,很可能包含了用于软件界面展示的图片,如各种标志、道路场景等图形。在驾照学习软件中,这类图片通常用于帮助用户认识和记忆不同交通标志、信号灯以及驾驶过程中需要注意的各种道路情况。 2. library.dat:这个文件名暗示它是一个包含了大量信息的库文件,可能包含了法规、驾驶知识、考试题库等数据。这类文件是提供给用户学习驾驶理论知识和准备科目一理论考试的重要资源。 3. 驾校一点通小型汽车专用.exe:这是一个可执行文件,是软件的主要安装程序。根据标题推测,这款软件主要是针对小型汽车驾照考试的学员设计的。通常,小型汽车(C1类驾照)需要学习包括车辆构造、基础驾驶技能、安全行车常识、交通法规等内容。 4. 使用说明.html:这个文件是软件使用说明的文档,通常以网页格式存在,用户可以通过浏览器阅读。使用说明应该会详细介绍软件的安装流程、功能介绍、如何使用软件的各种模块以及如何通过软件来帮助自己更好地准备考试。 综合以上信息,我们可以挖掘出以下几个相关知识点: - 软件类型:辅助学习软件,专门针对驾驶考试设计。 - 应用领域:主要用于帮助驾考学员准备理论和实践考试。 - 文件类型:包括图片文件(images.dat)、库文件(library.dat)、可执行文件(.exe)和网页格式的说明文件(.html)。 - 功能内容:可能包含交通法规知识学习、交通标志识别、驾驶理论学习、模拟考试、考试题库练习等功能。 - 版本信息:软件很可能最早发布于2007年,后续可能有多个版本更新。 - 用户群体:主要面向小型汽车驾照考生,即C1类驾照学员。 - 使用方式:用户需要将.exe安装文件进行安装,然后根据.html格式的使用说明来熟悉软件操作,从而利用images.dat和library.dat中的资源来辅助学习。 以上知识点为从给定文件信息中提炼出来的重点,这些内容对于了解“驾校一点通”这款软件的功能、作用、使用方法以及它的发展历史都有重要的指导意义。
recommend-type

【DFLauncher自动化教程】:简化游戏启动流程,让游戏体验更流畅

# 摘要 DFLauncher是一个功能丰富的游戏启动和管理平台,本论文将介绍其安装、基础使用、高级设置、社区互动以及插件开发等方面。通过对配置文件的解析、界面定制、自动化功能的实现、高级配置选项、安全性和性能监控的详细讨论,本文阐述了DFLauncher如何帮助用户更高效地管理和优化游戏环境。此外,本文还探讨了DFLauncher社区的资源分享、教育教程和插件开发等内容,