(issacgym) yy@yydsg:~/legged_gym$ pip install -e . Looking in indexes: https://pypi.mirrors.ustc.edu.cn/simple/ Obtaining file:///home/yy/legged_gym Preparing metadata (setup.py) ... done Requirement already satisfied: isaacgym in /home/yy/isaacgym/python (from legged_gym==1.0.0) (1.0rc4) INFO: pip is looking at multiple versions of legged-gym to determine which version is compatible with other requirements. This could take a while. ERROR: Could not find a version that satisfies the requirement rsl-rl (from legged-gym) (from versions: none) ERROR: No matching distribution found for rsl-rl

时间: 2025-07-06 12:44:00 AIGC 浏览: 68
<think>好的,用户遇到了在安装legged_gym时出现的rsl_rl依赖问题,具体错误是“no matching distribution found”。首先,我需要回忆一下常见的导致这个错误的原因,比如Python版本不兼容、包名称错误、依赖项未安装或者网络问题。 根据提供的引用内容,特别是引用[2]和引用[3],用户可能是在克隆rsl_rl仓库并安装时遇到了问题。首先,应该检查用户是否按照正确的步骤安装rsl_rl,比如是否使用了正确的git命令和指定了正确的版本(v1.0.2)。此外,用户提到的distutils.version错误可能暗示Python版本的问题,因为distutils在Python 3.10及以后版本中被弃用,可能导致兼容性问题。 接下来,用户的问题可能出在Python环境配置上。需要确认用户是否在正确的虚拟环境中操作,以及是否安装了正确版本的PyTorch和其他依赖项。例如,rsl_rl可能依赖于特定版本的PyTorch,而用户的环境可能安装了不兼容的版本。 另外,用户提到已经安装了Isaacgym环境,因此需要确保rsl_rl与Isaacgym的兼容性。可能需要检查两者的文档,确认是否有版本冲突或额外的配置步骤。 可能的解决步骤包括:1. 确保Python版本符合要求(如3.7-3.9),避免使用3.10及以上。2. 正确克隆rsl_rl仓库并切换到指定分支。3. 使用pip install -e .进行可编辑安装。4. 安装必要的依赖如PyTorch。5. 如果遇到distutils错误,尝试降级setuptools或使用替代方法。 还需要考虑用户是否在安装过程中遗漏了某些步骤,例如安装系统依赖项或编译器工具链。此外,网络问题可能导致无法找到包,但用户已经成功克隆仓库,所以更可能是环境配置问题。 最后,建议用户详细检查错误日志,确认具体哪个步骤失败,从而更有针对性地解决问题。如果所有步骤都正确,可能需要联系rsl_rl的维护者或查看Issues页面寻求帮助。</think>根据你的需求,安装`legged_gym`时出现`rsl_rl`依赖错误的问题,可能由Python版本、依赖项冲突或安装步骤不规范导致。以下是分步解决方案: --- ### **步骤1:确认Python版本兼容性** `rsl_rl`官方要求Python 3.7-3.9,若使用Python 3.10+会因`distutils`弃用报错[^3]: ```bash python --version # 检查版本 # 若版本过高,建议用conda新建3.9环境: conda create -n legged_env python=3.9 conda activate legged_env ``` --- ### **步骤2:正确安装rsl_rl** 直接从GitHub仓库安装指定版本(避免`pip install rsl-rl`的错误): ```bash git clone https://github.com/leggedrobotics/rsl_rl cd rsl_rl git checkout v1.0.2 # 明确切换到稳定分支[^2] pip install -e . # 开发模式安装 ``` --- ### **步骤3:安装PyTorch依赖** `rsl_rl`依赖特定版本的PyTorch。根据CUDA版本选择安装命令(以CUDA 11.3为例): ```bash pip install torch==1.10.1+cu113 torchvision==0.11.2+cu113 -f https://download.pytorch.org/whl/torch_stable.html ``` --- ### **步骤4:解决distutils报错** 若出现`AttributeError: module 'distutils' has no attribute 'version'`,尝试降级`setuptools`: ```bash pip install setuptools==58.2.0 # 兼容旧版本distutils ``` --- ### **步骤5:安装legged_gym** 完成上述步骤后,再尝试安装`legged_gym`: ```bash git clone https://github.com/leggedrobotics/legged_gym cd legged_gym pip install -e . ``` --- ### **可能的问题排查** 1. **依赖冲突**:确保未混用`conda`和`pip`安装的包,建议全程使用`pip`。 2. **GPU支持**:确认CUDA版本与PyTorch匹配,可通过`nvidia-smi`查看。 3. **系统依赖**:Ubuntu需安装`python3-dev`和`build-essential`: ```bash sudo apt-get install python3-dev build-essential ``` ---
阅读全文

相关推荐

(rlgpu) wasd@KioHerosBook:~/isaacgym/python/examples$ export ISAACGYM_PATH=/path/to/isaacgym export LD_LIBRARY_PATH=$ISAACGYM_PATH/physx/lib:$ISAACGYM_PATH/lib:$LD_LIBRARY_PATH export PYTHONPATH=$ISAACGYM_PATH/python:$PYTHONPATH (rlgpu) wasd@KioHerosBook:~/isaacgym/python/examples$ export ISAACGYM_PATH=~/isaacgym (rlgpu) wasd@KioHerosBook:~/isaacgym/python/examples$ export LD_LIBRARY_PATH=$ISAACGYM_PATH/lib:$LD_LIBRARY_PATH (rlgpu) wasd@KioHerosBook:~/isaacgym/python/examples$ export PYTHONPATH=$ISAACGYM_PATH/python:$PYTHONPATH (rlgpu) wasd@KioHerosBook:~/isaacgym/python/examples$ ldd $ISAACGYM_PATH/lib/libgym.so | grep PhysX ldd: /home/wasd/isaacgym/lib/libgym.so: No such file or directory (rlgpu) wasd@KioHerosBook:~/isaacgym/python/examples$ export LD_LIBRARY_PATH=$ISAACGYM_PATH/physx/lib:$LD_LIBRARY_PATH (rlgpu) wasd@KioHerosBook:~/isaacgym/python/examples$ ldd $ISAACGYM_PATH/lib/libgym.so | grep PhysX ldd: /home/wasd/isaacgym/lib/libgym.so: No such file or directory (rlgpu) wasd@KioHerosBook:~/isaacgym/python/examples$ chmod +x $ISAACGYM_PATH/physx/lib/*.so* chmod: cannot access '/home/wasd/isaacgym/physx/lib/*.so*': No such file or directory (rlgpu) wasd@KioHerosBook:~/isaacgym/python/examples$ python -c "from isaacgym import gymapi; print(gymapi.acquire_gym().get_device_count())" *** Warning: failed to preload CUDA lib *** Warning: failed to preload PhysX libs Importing module 'gym_37' (/home/wasd/isaacgym/python/isaacgym/_bindings/linux-x86_64/gym_37.so) Setting GYM_USD_PLUG_INFO_PATH to /home/wasd/isaacgym/python/isaacgym/_bindings/linux-x86_64/usd/plugInfo.json Traceback (most recent call last): File "<string>", line 1, in <module> AttributeError: 'isaacgym._bindings.linux-x86_64.gym_37.Gym' object has no attribute 'get_device_count' (rlgpu) wasd@KioHerosBook:~/isaacgym/python/examples$ export CUDA_LAUNCH_BLOCKING=1 (rlgpu) wasd@KioHerosBook:~/isaacgym/python/examples$ gdb --ex run --args python your_script.py (rlgpu) wasd@KioHerosBook:~/isaacgym/python/examples$ gdb --ex run --args python your_script.py Command 'gdb' not found, but can be installed with: sudo apt install gdb (rlgpu) wasd@KioHerosBook:~/isaacgym/python/examples$ python $ISAACGYM_PATH/python/examples/cartpole.py python: can't open file '/home/wasd/isaacgym/python/examples/cartpole.py': [Errno 2] No such file or directory (rlgpu) wasd@KioHerosBook:~/isaacgym/python/examples$ python 1080_balls_of_solitude.py *** Warning: failed to preload CUDA lib *** Warning: failed to preload PhysX libs Importing module 'gym_37' (/home/wasd/isaacgym/python/isaacgym/_bindings/linux-x86_64/gym_37.so) Setting GYM_USD_PLUG_INFO_PATH to /home/wasd/isaacgym/python/isaacgym/_bindings/linux-x86_64/usd/plugInfo.json WARNING: Forcing CPU pipeline. Not connected to PVD /buildAgent/work/99bede84aa0a52c2/source/physx/src/gpu/PxPhysXGpuModuleLoader.cpp (148) : internal error : libcuda.so! [Warning] [carb.gym.plugin] Failed to create a PhysX CUDA Context Manager. Falling back to CPU. Physics Engine: PhysX Physics Device: cpu GPU Pipeline: disabled Segmentation fault (core dumped)

(issacgym) abc@mypc:~/isaacgym/rsl_rl/legged_gym$ python legged_gym/scripts/train.py --task=anymal_c_flat --num_envs=1024 --headless Importing module 'gym_38' (/home/abc/isaacgym/python/isaacgym/_bindings/linux-x86_64/gym_38.so) Setting GYM_USD_PLUG_INFO_PATH to /home/abc/isaacgym/python/isaacgym/_bindings/linux-x86_64/usd/plugInfo.json PyTorch version 2.2.2 Device count 1 /home/abc/isaacgym/python/isaacgym/_bindings/src/gymtorch Using /home/abc/.cache/torch_extensions/py38_cu121 as PyTorch extensions root... Creating extension directory /home/abc/.cache/torch_extensions/py38_cu121/gymtorch... Emitting ninja build file /home/abc/.cache/torch_extensions/py38_cu121/gymtorch/build.ninja... Building extension module gymtorch... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) [1/2] c++ -MMD -MF gymtorch.o.d -DTORCH_EXTENSION_NAME=gymtorch -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -isystem /home/abc/miniconda3/envs/issacgym/lib/python3.8/site-packages/torch/include -isystem /home/abc/miniconda3/envs/issacgym/lib/python3.8/site-packages/torch/include/torch/csrc/api/include -isystem /home/abc/miniconda3/envs/issacgym/lib/python3.8/site-packages/torch/include/TH -isystem /home/abc/miniconda3/envs/issacgym/lib/python3.8/site-packages/torch/include/THC -isystem /home/abc/miniconda3/envs/issacgym/include/python3.8 -D_GLIBCXX_USE_CXX11_ABI=0 -fPIC -std=c++17 -DTORCH_MAJOR=2 -DTORCH_MINOR=2 -c /home/abc/isaacgym/python/isaacgym/_bindings/src/gymtorch/gymtorch.cpp -o gymtorch.o [2/2] c++ gymtorch.o -shared -L/home/abc/miniconda3/envs/issacgym/lib/python3.8/site-packages/torch/lib -lc10 -ltorch_cpu -ltorch -ltorch_python -o gymtorch.so Loading extension module gymtorch... Traceback (most recent call last): File "legged_gym/scripts/train.py", line 36, in <module> from legged_gym.envs import * File "/home/abc/isaacgym/rsl_rl/legged_gym/legged_gym/envs/__init__.py", line 33, in <module> from .base.legged_robot import LeggedRobot File "/home/abc/isaacgym/rsl_rl/legged_gym/legged_gym/envs/base/legged_robot.py", line 46, in <module> from legged_gym.utils.terrain import Terrain File "/home/abc/isaacgym/rsl_rl/legged_gym/legged_gym/utils/__init__.py", line 32, in <module> from .task_registry import task_registry File "/home/abc/isaacgym/rsl_rl/legged_gym/legged_gym/utils/task_registry.py", line 38, in <module> from rsl_rl.runners import OnPolicyRunner File "/home/abc/isaacgym/rsl_rl/rsl_rl/runners/__init__.py", line 8, in <module> from .on_policy_runner import OnPolicyRunner File "/home/abc/isaacgym/rsl_rl/rsl_rl/runners/on_policy_runner.py", line 15, in <module> from rsl_rl.algorithms import PPO, Distillation File "/home/abc/isaacgym/rsl_rl/rsl_rl/algorithms/__init__.py", line 8, in <module> from .distillation import Distillation File "/home/abc/isaacgym/rsl_rl/rsl_rl/algorithms/distillation.py", line 16, in <module> class Distillation: File "/home/abc/isaacgym/rsl_rl/rsl_rl/algorithms/distillation.py", line 19, in Distillation policy: StudentTeacher | StudentTeacherRecurrent TypeError: unsupported operand type(s) for |: 'type' and 'type'

(host) tsx@WP:~/vscode/HoST-main/legged_gym$ python legged_gym/scripts/train.py --task g1_ground --run_name test_g1 --headless Importing module 'gym_38' (/home/tsx/isaac/IsaacGym_Preview_4_Package/isaacgym/python/isaacgym/_bindings/linux-x86_64/gym_38.so) Setting GYM_USD_PLUG_INFO_PATH to /home/tsx/isaac/IsaacGym_Preview_4_Package/isaacgym/python/isaacgym/_bindings/linux-x86_64/usd/plugInfo.json PyTorch version 1.10.0+cu113 Device count 1 /home/tsx/isaac/IsaacGym_Preview_4_Package/isaacgym/python/isaacgym/_bindings/src/gymtorch Using /home/tsx/.cache/torch_extensions/py38_cu113 as PyTorch extensions root... Emitting ninja build file /home/tsx/.cache/torch_extensions/py38_cu113/gymtorch/build.ninja... Building extension module gymtorch... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) ninja: no work to do. Loading extension module gymtorch... Setting seed: 1 Not connected to PVD +++ Using GPU PhysX Physics Engine: PhysX Physics Device: cuda:0 GPU Pipeline: enabled /home/tsx/miniconda3/envs/host/lib/python3.8/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] Traceback (most recent call last): File "legged_gym/scripts/train.py", line 18, in <module> train(args) File "legged_gym/scripts/train.py", line 12, in train env, env_cfg = task_registry.make_env(name=args.task, args=args) File "/home/tsx/vscode/HoST-main/legged_gym/legged_gym/utils/task_registry.py", line 68, in make_env env = task_class( cfg=env_cfg, File "/home/tsx/vscode/HoST-main/legged_gym/legged_gym/envs/base/host_ground.py", line 76, in __init__ self._init_buffers() File "/home/tsx/vscode/HoST-main/legged_gym/legged_gym/envs/base/host_ground.py", line 556, in _init_buffers self.rpy = get_euler_xyz_in_tensor(self.base_quat) File "/home/tsx/vscode/HoST-main/legged_gym/legged_gym/utils/isaacgym_utils.py", line 22, in get_euler_xyz torch.abs(sinp) >= 1, copysign(np.pi / 2.0, sinp), torch.asin(sinp)) RuntimeError: The following operation failed in the TorchScript interpreter. Traceback of TorchScript (most recent call last): RuntimeError: nvrtc: error: invalid value for --gpu-architecture (-arch)怎么解决

(amp_hw) tsx@WP:~/vscode/AMP_for_hardware-main$ python legged_gym/scripts/train.py --task=a1_amp --headless --sim_device=cuda --rl_device=cuda Importing module 'gym_38' (/home/tsx/isaac/IsaacGym_Preview_4_Package/isaacgym/python/isaacgym/_bindings/linux-x86_64/gym_38.so) Setting GYM_USD_PLUG_INFO_PATH to /home/tsx/isaac/IsaacGym_Preview_4_Package/isaacgym/python/isaacgym/_bindings/linux-x86_64/usd/plugInfo.json PyTorch version 1.10.0+cu113 Device count 1 /home/tsx/isaac/IsaacGym_Preview_4_Package/isaacgym/python/isaacgym/_bindings/src/gymtorch Using /home/tsx/.cache/torch_extensions/py38_cu113 as PyTorch extensions root... Emitting ninja build file /home/tsx/.cache/torch_extensions/py38_cu113/gymtorch/build.ninja... Building extension module gymtorch... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) ninja: no work to do. Loading extension module gymtorch... Setting seed: 1 Not connected to PVD +++ Using GPU PhysX Physics Engine: PhysX Physics Device: cuda:0 GPU Pipeline: enabled /home/tsx/miniconda3/envs/amp_hw/lib/python3.8/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] Traceback (most recent call last): File "legged_gym/scripts/train.py", line 47, in <module> train(args) File "legged_gym/scripts/train.py", line 41, in train env, env_cfg = task_registry.make_env(name=args.task, args=args) File "/home/tsx/vscode/AMP_for_hardware-main/legged_gym/utils/task_registry.py", line 97, in make_env env = task_class( cfg=env_cfg, File "/home/tsx/vscode/AMP_for_hardware-main/legged_gym/envs/base/legged_robot.py", line 81, in __init__ super().__init__(self.cfg, sim_params, physics_engine, sim_device, headless) File "/home/tsx/vscode/AMP_for_hardware-main/legged_gym/envs/base/base_task.py", line 92, in __init__ self.create_sim() File "/home/tsx/vscode/AMP_for_hardware-main/legged_gym/envs/base/legged_robot.py", line 310, in create_sim self._create_envs() File "/home/tsx/vscode/AMP_for_hardware-main/legged_gym/envs/base/legged_robot.py", line 831, in _create_envs pos[:2] += torch_rand_float(-1., 1., (2,1), device=self.device).squeeze(1) RuntimeError: The following operation failed in the TorchScript interpreter. Traceback of TorchScript (most recent call last): RuntimeError: nvrtc: error: invalid value for --gpu-architecture (-arch)

(jjp) arx@arx:~/isaac/ts_rc/legged_gym/legged_gym/scripts$ pip install mujoco Requirement already satisfied: mujoco in /home/arx/miniconda3/envs/jjp/lib/python3.8/site-packages (2.3.7) Requirement already satisfied: absl-py in /home/arx/miniconda3/envs/jjp/lib/python3.8/site-packages (from mujoco) (2.3.1) Requirement already satisfied: glfw in /home/arx/miniconda3/envs/jjp/lib/python3.8/site-packages (from mujoco) (2.9.0) Requirement already satisfied: numpy in /home/arx/miniconda3/envs/jjp/lib/python3.8/site-packages (from mujoco) (1.24.4) Requirement already satisfied: pyopengl in /home/arx/miniconda3/envs/jjp/lib/python3.8/site-packages (from mujoco) (3.1.9) (jjp) arx@arx:~/isaac/ts_rc/legged_gym/legged_gym/scripts$ python sim2sim.py Importing module 'gym_38' (/home/arx/isaac/isaacgym1/isaacgym/python/isaacgym/_bindings/linux-x86_64/gym_38.so) Setting GYM_USD_PLUG_INFO_PATH to /home/arx/isaac/isaacgym1/isaacgym/python/isaacgym/_bindings/linux-x86_64/usd/plugInfo.json PyTorch version 2.4.1+cu121 Device count 1 /home/arx/isaac/isaacgym1/isaacgym/python/isaacgym/_bindings/src/gymtorch Using /home/arx/.cache/torch_extensions/py38_cu121 as PyTorch extensions root... Emitting ninja build file /home/arx/.cache/torch_extensions/py38_cu121/gymtorch/build.ninja... Building extension module gymtorch... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) ninja: no work to do. Loading extension module gymtorch... Use arrow keys to move the robot. 'l': turn left 'r': turn left UP: move forward, DOWN: move backward, LEFT: move left, RIGHT: move right. Traceback (most recent call last): File "sim2sim.py", line 165, in <module> model = mujoco.MjModel.from_xml_path(Sim2simCfg.sim_config.mujoco_model_path)#载入初始化位置由XML决定 ValueError: XML Error: Schema violation: unrecognized attribute: 'actuatorfrcrange' Element 'joint', line 0

(Model) shong@shong-Legion-Y7000P-IRX9:~/footstep_rl$ /home/shong/anaconda3/envs/Model/bin/python /home/shong/footstep_rl/gym/scripts/play.py Importing module 'gym_38' (/home/shong/下载/isaacgym/python/isaacgym/_bindings/linux-x86_64/gym_38.so) Setting GYM_USD_PLUG_INFO_PATH to /home/shong/下载/isaacgym/python/isaacgym/_bindings/linux-x86_64/usd/plugInfo.json PyTorch version 1.10.0+cu113 Device count 1 /home/shong/下载/isaacgym/python/isaacgym/_bindings/src/gymtorch Using /home/shong/.cache/torch_extensions/py38_cu113 as PyTorch extensions root... Emitting ninja build file /home/shong/.cache/torch_extensions/py38_cu113/gymtorch/build.ninja... Building extension module gymtorch... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) ninja: no work to do. Loading extension module gymtorch... Setting seed: 1 Not connected to PVD +++ Using GPU PhysX Physics Engine: PhysX Physics Device: cuda:0 GPU Pipeline: enabled Fatal Python error: Segmentation fault Current thread 0x00007fccf6d93280 (most recent call first): File "/home/shong/footstep_rl/gym/envs/base/legged_robot.py", line 207 in create_sim File "/home/shong/footstep_rl/gym/envs/base/base_task.py", line 81 in __init__ File "/home/shong/footstep_rl/gym/envs/base/legged_robot.py", line 79 in __init__ File "/home/shong/footstep_rl/gym/envs/hi_cl_12/hi_cl12_controller.py", line 49 in __init__ File "/home/shong/footstep_rl/gym/utils/task_registry.py", line 144 in make_env File "/home/shong/footstep_rl/gym/scripts/play.py", line 82 in play File "/home/shong/footstep_rl/gym/scripts/play.py", line 223 in <module> Fatal Python error: (pygame parachute) Segmentation Fault Python runtime state: initialized Current thread 0x00007fccf6d93280 (most recent call first): File "/home/shong/footstep_rl/gym/envs/base/legged_robot.py", line 207 in create_sim File "/home/shong/footstep_rl/gym/envs/base/base_task.py", line 81 in __init__ File "/home/shong/footstep_rl/gym/envs/base/legged_robot.py", line 79 in __init__ File "/home/shong/footstep_rl/gym/envs/hi_cl_12/hi_cl12_controller.py", line 49 in __init__ File "/home/shong/footstep_rl/gym/utils/task_registry.py", line 144 in make_env File "/home/shong/footstep_rl/gym/scripts/play.py", line 82 in play File "/home/shong/footstep_rl/gym/scripts/play.py", line 223 in <module> free(): invalid pointer 已放弃 (核心已转储)

dyf@dyf-System-Product-Name:~/MPC$ roslaunch legged_unitree_description zsl1.launch ... logging to /home/dyf/.ros/log/55f7897c-86fc-11f0-9474-abfa48ba1627/roslaunch-dyf-System-Product-Name-77384.log Checking log directory for disk usage. This may take a while. Press Ctrl-C to interrupt Done checking log file disk usage. Usage is <1GB. started roslaunch server http://dyf-System-Product-Name:34475/ SUMMARY ======== CLEAR PARAMETERS * /spawn_urdf/ PARAMETERS * /gazebo/contacts: ['LF_FOOT', 'LH_F... * /gazebo/delay: 0.009 * /gazebo/enable_ros_network: True * /gazebo/imus/base_imu/angular_velocity_covariance: [0.0004, 0.0004, ... * /gazebo/imus/base_imu/frame_id: base_imu * /gazebo/imus/base_imu/linear_acceleration_covariance: [0.01, 0.01, 0.01] * /gazebo/imus/base_imu/orientation_covariance_diagonal: [0.0012, 0.0012, ... * /legged_robot_description: <?xml version="1.... * /rosdistro: noetic * /rosversion: 1.17.4 * /use_sim_time: True NODES / gazebo (gazebo_ros/gzserver) gazebo_gui (gazebo_ros/gzclient) spawn_urdf (gazebo_ros/spawn_model) auto-starting new master process[master]: started with pid [77393] ROS_MASTER_URI=http://localhost:11311 setting /run_id to 55f7897c-86fc-11f0-9474-abfa48ba1627 process[rosout-1]: started with pid [77403] started core service [/rosout] process[gazebo-2]: started with pid [77411] process[gazebo_gui-3]: started with pid [77416] process[spawn_urdf-4]: started with pid [77421] [INFO] [1756707878.540121, 0.000000]: Loading model XML from ros parameter legged_robot_description [INFO] [1756707878.543038, 0.000000]: Waiting for service /gazebo/spawn_urdf_model [INFO] [1756707878.559421905]: Finished loading Gazebo ROS API Plugin. [INFO] [1756707878.559891898]: waitForService: Service [/gazebo/set_physics_properties] has not been advertised, waiting... [INFO] [1756707878.593631974]: Finished loading Gazebo ROS API Plugin. [INFO] [1756707878.594000639]: waitForService: Service [/gazebo_gui/set_physics_properties] has not been advertised, waiting... [INFO] [1756707879.066910354, 0.013000000]: waitForService: Service [/gazebo/set_physics_properties] is now available. [INFO] [1756707879.097062692, 0.042000000]: Physics dynamic reconfigure ready. [INFO] [1756707879.146187, 0.089000]: Calling service /gazebo/spawn_urdf_model [INFO] [1756707879.444590, 0.181000]: Spawn status: SpawnModel: Successfully spawned entity [INFO] [1756707879.457984265, 0.181000000]: Loading gazebo_ros_control plugin [INFO] [1756707879.458027447, 0.181000000]: Starting gazebo_ros_control plugin in namespace: / [INFO] [1756707879.458500357, 0.181000000]: gazebo_ros_control plugin is waiting for model URDF in parameter [legged_robot_description] on the ROS param server. [INFO] [1756707879.575990881, 0.181000000]: Loaded gazebo_ros_control. Segmentation fault [gazebo-2] process has died [pid 77411, exit code 139, cmd /opt/ros/noetic/lib/gazebo_ros/gzserver -e ode /home/dyf/MPC/src/legged_control/legged_gazebo/worlds/empty_world.world __name:=gazebo __log:=/home/dyf/.ros/log/55f7897c-86fc-11f0-9474-abfa48ba1627/gazebo-2.log]. log file: /home/dyf/.ros/log/55f7897c-86fc-11f0-9474-abfa48ba1627/gazebo-2*.log [spawn_urdf-4] process has finished cleanly log file: /home/dyf/.ros/log/55f7897c-86fc-11f0-9474-abfa48ba1627/spawn_urdf-4*.log ^C[gazebo_gui-3] killing on exit ^C^C[gazebo_gui-3] escalating to SIGTERM [rosout-1] killing on exit [master] killing on exit shutting down processing monitor... ... shutting down processing monitor complete done dyf@dyf-System-Product-Name:~/MPC$

Initialized new catkin workspace in /home/mwq/leg/legged_robot_lr-master/rl_controllers -------------------------------------------------------------------------------- Profile: default Extending: [env] /opt/ros/noetic:/home/mwq/carkin_ws/devel_isolated/wpr_simulation:/home/mwq/carkin_ws/devel_isolated/turtlesim:/home/mwq/carkin_ws/devel_isolated/rospy_tutorials:/home/mwq/carkin_ws/devel_isolated/roscpp_tutorials:/home/mwq/carkin_ws/devel_isolated/ros_tutorials:/home/mwq/carkin_ws/devel:/opt/ros/noetic Workspace: /home/mwq/leg/legged_robot_lr-master/rl_controllers -------------------------------------------------------------------------------- Build Space: [exists] /home/mwq/leg/legged_robot_lr-master/rl_controllers/build Devel Space: [exists] /home/mwq/leg/legged_robot_lr-master/rl_controllers/devel Install Space: [unused] /home/mwq/leg/legged_robot_lr-master/rl_controllers/install Log Space: [missing] /home/mwq/leg/legged_robot_lr-master/rl_controllers/logs Source Space: [exists] /home/mwq/leg/legged_robot_lr-master/rl_controllers/src DESTDIR: [unused] None -------------------------------------------------------------------------------- Devel Space Layout: linked Install Space Layout: None -------------------------------------------------------------------------------- Additional CMake Args: None Additional Make Args: None Additional catkin Make Args: None Internal Make Job Server: True Cache Job Environments: False -------------------------------------------------------------------------------- Buildlisted Packages: None Skiplisted Packages: None -------------------------------------------------------------------------------- Workspace configuration appears valid. NOTE: Forcing CMake to run for each package. -------------------------------------------------------------------------------- [build] No packages were found in the source space '/home/mwq/leg/legged_robot_lr-master/rl_controllers/src' [build] No packages to be built. [build] Package table is up to date. Starting >>> catkin_tools_prebuild Finished <<< catkin_tools_prebuild [ 0.9 seconds ] [build] Summary: All 1 packages succeeded! [build] Ignored: None. [build] Warnings: None. [build] Abandoned: None. [build] Failed: None. [build] Runtime: 1.0 seconds total.

/home/ubuntu/miniforge3/envs/isaac/lib/python3.8/site-packages/torch/functional.py:507: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3549.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] Traceback (most recent call last): File "legged_gym/scripts/train.py", line 18, in <module> train(args) File "legged_gym/scripts/train.py", line 14, in train ppo_runner.learn(num_learning_iterations=train_cfg.runner.max_iterations, init_at_random_ep_len=train_cfg.runner.init_at_random_ep_len) File "/home/ubuntu/ws/HoST/rsl_rl/rsl_rl/runners/on_policy_runner.py", line 135, in learn mean_value_loss, mean_surrogate_loss = self.alg.update() File "/home/ubuntu/ws/HoST/rsl_rl/rsl_rl/algorithms/ppo.py", line 190, in update value_smooth_loss = torch.square(torch.norm(value_batch - self.actor_critic.evaluate(mix_obs_batch), dim=-1)).mean() File "/home/ubuntu/ws/HoST/rsl_rl/rsl_rl/modules/actor_critic.py", line 133, in evaluate values = torch.concat([critic(critic_observations) for critic in self.critics], dim=-1) File "/home/ubuntu/ws/HoST/rsl_rl/rsl_rl/modules/actor_critic.py", line 133, in values = torch.concat([critic(critic_observations) for critic in self.critics], dim=-1) File "/home/ubuntu/miniforge3/envs/isaac/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/ubuntu/miniforge3/envs/isaac/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl return forward_call(*args, **kwargs) File "/home/ubuntu/miniforge3/envs/isaac/lib/python3.8/site-packages/torch/nn/modules/container.py", line 217, in forward input = module(input) File "/home/ubuntu/miniforge3/envs/isaac/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/ubuntu/miniforge3/envs/isaac/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl return forward_call(*args, **kwargs) File "/home/ubuntu/miniforge3/envs/isaac/lib/python3.8/site-packages/torch/nn/modules/activation.py", line 514, in forward return F.elu(input, self.alpha, self.inplace) File "/home/ubuntu/miniforge3/envs/isaac/lib/python3.8/site-packages/torch/nn/functional.py", line 1564, in elu result = torch._C._nn.elu(input, alpha) torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 98.00 MiB. GPU 0 has a total capacity of 7.74 GiB of which 27.81 MiB is free. Process 1771 has 94.00 MiB memory in use. Including non-PyTorch memory, this process has 7.22 GiB memory in use. Of the allocated memory 2.64 GiB is allocated by PyTorch, and 24.85 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)

大家在看

recommend-type

基于USB3.0电路可靠性的PTC/ESD方案

USB 3.0传输速率高达5Gbit/s,且电源汇流排也有高达900毫安培的输出电流,因此电路电气瞬变和过流故障的预防极为重要,设计人员必须慎选适当的热敏电阻(PTC)和静电放电(ESD)方案,才能确保讯号完整性,并降低系统故障风险。   通用序列汇流排(USB)规范自1996年发布以来,截至2012年为止已累积超过三十五亿个电脑周边设备的USB连接装置出货量。2010年,当批支援USB 3.0规格的装置上市,销售量就达到约一百万个,2012年更一举增长至五百万个左右,足见其市场成长相当迅速。   相较于USB 2.0,USB 3.0拥有四个额外数据通道,传输速率高达5Gbit/s(图1)
recommend-type

只输入固定-vc实现windows多显示器编程的方法

P0.0 只输入固定 P0.1 P0CON.1 P0.2 P0CON.2 PORT_SET.PORT_REFEN P0.3 P0CON.3 自动“偷”从C2的交易应用程序在. PORT_SET.PORT_CLKEN PORT_SET.PORT_CLKOUT[0] P0.4 P0CON.4 C2调试的LED驱动器的时钟输入,如果作为 未启用. P0.5 PORT_CTRL.PORT_LED[1:0] 输出港口被迫为.阅读 实际LED驱动器的状态(开/关) 用户应阅读 RBIT_DATA.GPIO_LED_DRIVE 14只脚 不能用于在开发系统中,由于C2交易扰 乱输出. 参考区间的时钟频率 对抗 控制控制 评论评论 NVM的编程电压 VPP = 6.5 V 矩阵,和ROFF工业* PORT_CTRL 2 GPIO 1 矩阵,和ROFF工业* PORT_CTRL 3 参考 clk_ref GPIO 矩阵 4 C2DAT 产量 CLK_OUT GPIO 5 C2CLK LED驱动器 1 2 工业* PORT_CTRL 1 2 3 1 2 6 产量 CLK_OUT GPIO 1 2 1 1 1 PORT_SET.PORT_CLKEN PORT_SET.PORT_CLKOUT[1] P0.6 P0CON.6 P0.7 P0CON.7 P1.0 P1CON.0 P1.1 P1CON.1 7 8 9 GPIO GPIO GPIO 14只脚 14只脚 14只脚 *注:工业注:工业 代表“独立报”设置. “ 矩阵矩阵 and Roff 模式控制模拟垫电路. 116 修订版修订版1.0
recommend-type

oracle 官方下载包 客户端 安全无插件无修改

oracle 官方下载包 客户端 安全无插件无修改 11.2.0.4.0版本 完整版
recommend-type

SPP Workshop.pdf

SPP Overall introduction SPP介绍 服务备件计划介绍 含某知名车企的实际案例
recommend-type

3GPP 5G射频指标详细解释-适合射频工程师

3GPP 5G射频指标详细解释---适合射频工程师(初级和中级),本文重点讲述SA架构下5G的射频指标,也就是38.101-1

最新推荐

recommend-type

美国职业棒球大联盟历史数据SQL数据库项目-19世纪至今的棒球比赛数据球队信息球员统计127个CSV文件相互关联-用于存储查询分析美国职业棒球大联盟从19世纪至今的完整历史数据支持.zip

fpga美国职业棒球大联盟历史数据SQL数据库项目_19世纪至今的棒球比赛数据球队信息球员统计127个CSV文件相互关联_用于存储查询分析美国职业棒球大联盟从19世纪至今的完整历史数据支持.zip
recommend-type

pyjson5-0.9.1-1.el8.tar.gz

# 适用操作系统:Centos8 #Step1、解压 tar -zxvf xxx.el8.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm
recommend-type

探寻数学活动经验的本质-助力学生深度学习.doc

探寻数学活动经验的本质-助力学生深度学习.doc
recommend-type

polkit-devel-0.115-12.el8.tar.gz

# 适用操作系统:Centos8 #Step1、解压 tar -zxvf xxx.el8.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm
recommend-type

【MATLAB绘图进阶教程】(4-1)科学视图(等值线图、三维矢量场流场模拟、曲面拟合与插值)

【MATLAB绘图进阶教程】(4-1)科学视图(等值线图、三维矢量场流场模拟、曲面拟合与插值)
recommend-type

SSRSSubscriptionManager工具:简化SSRS订阅的XML文件导入

### 知识点概述 #### 标题知识点 1. **SSRSSubscriptionManager**: 这是一个专门用于管理SQL Server Reporting Services (SSRS) 订阅的工具或脚本。它允许用户从一个集中的位置管理SSRS订阅。 2. **从XML文件导入SSRS订阅**: 描述了一个通过读取XML文件来配置SSRS订阅的过程。这可能是为了减少重复的手动设置和避免错误,提高管理效率。 #### 描述知识点 3. **快速部署多个SSRS订阅**: 该工具或脚本的一个主要功能是能够快速设置多个订阅,这比传统的SSRS在线向导更为高效。 4. **标准SSRS在线向导的局限性**: 描述了标准SSRS向导的不足之处,例如操作缓慢、单次只能设置一个订阅,以及易于出现人为错误。 5. **SSRS订阅管理器的优势**: 解释了为什么使用SSRS订阅管理器比标准向导更可靠。它允许使用预定义的XML文档进行设置,这些文档可以经过测试和验证以减少错误。 6. **受控文档**: 强调了使用SSRS订阅管理器的一个好处是能够控制订阅设置,使其更为可靠且易于管理。 7. **版本控制和订阅设置**: 讨论了SSRS报告可以进行版本控制,但是传统的订阅设置通常不包含在版本控制中,而SSRS订阅管理器提供了一种方式,可以对这些设置进行记录和控制。 #### 标签知识点 8. **C#**: 指示了实现SSRSSubscriptionManager可能使用的技术,C# 是一种面向对象的编程语言,通常用于开发.NET应用程序,包括SSRS订阅管理器。 #### 压缩包子文件名列表 9. **SSRSSubscriptionManager-master**: 表示这是一个开源项目或组件的主干文件夹。名称表明这是一个版本控制仓库中的主分支,可能包含了源代码、项目文件和其他资源文件。 ### 详细知识点 #### 关于SSRS - SQL Server Reporting Services (SSRS) 是一个服务器基础的报告平台,它能够通过Web界面、文件共享和电子邮件来交付报表内容。SSRS用户可以根据数据源生成数据驱动的报表,并设置订阅以便自动分发这些报表。 - SSRS订阅是一个功能,允许用户根据设定的计划或用户触发条件自动获取报表。订阅可以是快照订阅、数据驱动订阅或基于事件的订阅。 #### 关于SSRSSubscriptionManager - SSRSSubscriptionManager是一个工具,其设计意图是简化SSRS订阅的管理过程。它允许管理员在单个操作中部署大量订阅,相比于传统方法,它极大地节省了时间。 - 通过使用XML文件来定义订阅的设置,该工具提供了更高的准确性和一致性,因为XML文件可以被严格地测试和审核。 - 自动化和批量操作可以减少因手动设置造成的错误,并且提高了操作效率。这对于有大量报表和订阅需求的企业来说尤为重要。 - SSRSSubscriptionManager的出现也表明了开发人员对IT自动化、脚本化操作和管理工具的需求,这可以视为一种持续的向DevOps文化和实践的推进。 #### 关于C# - C# 是一种由微软开发的通用编程语言,它被广泛应用于开发Windows应用程序、服务器端Web应用程序以及移动和游戏开发。 - 在开发SSRSSubscriptionManager时,C# 语言的利用可能涉及到多种.NET框架中的类库,例如System.Xml用于解析和操作XML文件,System.Data用于数据库操作等。 - 使用C# 实现SSRS订阅管理器可以享受到.NET平台的诸多优势,比如类型安全、内存管理和跨平台兼容性。 #### 关于版本控制 - 版本控制是一种记录源代码文件更改历史的方法,它允许开发团队追踪和管理代码随时间的变化。常见的版本控制系统包括Git、Subversion等。 - 在SSRS订阅的上下文中,版本控制意味着可以追踪每个订阅设置的变更,从而保证订阅设置的一致性和可追溯性。 - SSRSSubscriptionManager通过使用XML文件,可以使得版本控制变得更加容易,因为XML文件可以被版本控制系统跟踪。 - 这种做法还确保了订阅设置文件的历史版本可以被审计,对企业的合规性和管理都有积极影响。 ### 结论 SSRSSubscriptionManager通过集成自动化、XML文件和版本控制,为SSRS订阅管理提供了更高效、可信赖和可管理的解决方案。使用C# 实现的这一工具能够极大提高IT专业人员在创建和维护SSRS订阅时的工作效率,并减少可能由手工操作引入的错误。通过强调自动化和可控制的文档处理,它也反映了IT行业的趋势,即追求效率、可靠性和版本管理。
recommend-type

图形缩放与平移实现全攻略:Delphi视图变换核心技术详解

# 摘要 本文系统探讨了图形缩放与平移技术的基本原理及其在实际开发中的应用,涵盖从数学基础到编程实现的全过程。文章首先介绍了图形变换的数学模型,包括坐标系统、矩
recommend-type

Unknown custom element: <CustomForm> - did you register the component correctly? For recursive components, make sure to provide the "name" option.

在使用 Vue.js 时,如果遇到未知自定义组件 `<CustomForm>` 的错误提示,通常是由于组件注册过程中存在某些疏漏或错误。以下是常见的原因及对应的解决方案: ### 1. 组件未正确注册 确保 `<CustomForm>` 组件已经在使用它的父组件或全局中进行了注册。如果未注册,Vue 会提示该组件是未知的。 正确的注册方式如下: - **全局注册**(适用于所有组件都能访问的场景): ```javascript import CustomForm from '@/components/CustomForm.vue' Vue.component('CustomForm',
recommend-type

使用KnockoutJS开发的黑客新闻阅读器 hn-ko

在给定的文件信息中,我们可以提炼出以下IT相关知识点: ### 标题知识点 #### KnockoutJS - **KnockoutJS定义**:Knockout是一个轻量级的JavaScript库,它允许开发者利用声明式绑定方式创建富交互的Web应用程序。它特别擅长于实现UI的自动更新,当模型的数据发生变化时,视图会自动响应这些变化而更新,无需手动操作DOM。 - **KnockoutJS核心特性**: - **依赖项跟踪**:Knockout能够跟踪数据模型中的变化,当数据更新时自动更新相关联的UI元素。 - **声明式绑定**:开发者可以使用简单的数据绑定语法在HTML标记中直接指定数据与DOM元素之间的关系,这样可以使代码更加清晰和易于维护。 - **模板和自定义绑定**:Knockout提供了灵活的模板系统,可以创建可复用的UI组件,并通过自定义绑定来扩展其核心功能,以满足特定需求。 - **组件化**:Knockout支持创建独立的、可复用的视图模型组件,以构建复杂的用户界面。 ### 描述知识点 #### 入门和运行应用 - **Git克隆**:通过`git clone`命令可以从远程仓库克隆代码到本地环境,这是版本控制中常见的操作,有助于团队协作和代码共享。`https://github.com/crissdev/hn-ko.git`指向一个特定的GitHub仓库,其中包含着使用KnockoutJS编写的黑客新闻应用代码。 - **NPM(Node Package Manager)**:NPM是随Node.js一起安装的一个包管理工具,它用于安装和管理JavaScript项目依赖。`npm install`命令用于安装项目中的所有依赖项,这可能包括KnockoutJS库以及其他可能用到的库或框架。 - **启动应用**:`npm start`是启动脚本的命令,它通常在`package.json`文件的scripts部分定义,用以启动开发服务器或运行应用。 #### 麻省理工学院许可证 - **MIT许可证**:这是一种常见的开源许可证,允许用户在任何类型的项目中免费使用软件,无论是个人的还是商业的。在保留原作者版权声明的同时,用户可以根据自己的需要修改和分发代码。这是很多开源项目选择的许可证。 ### 标签知识点 #### JavaScript - **JavaScript作用**:JavaScript是一种高级的、解释执行的编程语言,它通常是运行在浏览器中的脚本语言,用于实现网页的动态效果和用户交互。JavaScript作为全栈开发的关键技术之一,也被广泛用于服务器端开发(Node.js)。 - **JavaScript特点**: - **事件驱动**:JavaScript可以响应用户的点击、输入等事件,并据此进行操作。 - **对象导向**:JavaScript支持面向对象编程,可以通过创建对象、继承、多态等特性来组织代码。 - **异步编程**:JavaScript支持异步编程模型,利用回调函数、Promises、async/await等技术,可以有效处理网络请求、用户输入等异步操作。 ### 压缩包子文件的文件名称列表知识点 - **hn-ko-master**:这表明压缩包中的文件是从名为`hn-ko`的GitHub仓库的`master`分支获取的。文件列表中的这个名称可以帮助开发者快速识别包含KnockoutJS项目的代码仓库版本。 ### 总结 以上知识点总结了文件信息中提及的关于KnockoutJS、Git、NPM、MIT许可证和JavaScript的核心概念和应用实践。KnockoutJS作为一个功能强大的前端库,特别适用于复杂用户界面的数据绑定和动态更新。而通过Git的使用可以方便地管理项目的版本,并与其他开发者协作。NPM则使得项目的依赖管理和模块化开发变得更加简单高效。MIT许可证为项目的使用者提供了法律上的许可,确保了软件使用的自由度。JavaScript作为一种多用途的编程语言,在前端开发中扮演了不可替代的角色。理解并运用这些知识点,将有助于进行现代Web应用的开发工作。
recommend-type

Delphi图层管理机制设计:打造高效绘图控件的架构之道

# 摘要 本文系统研究了Delphi图层管理机制的核心概念、理论基础与实现细节,重点分析了图层的数据模型、渲染流程及其交互机制。通过对图层容器设计、绘制性能优化与事件分发模型的深入探讨,提出了一个高效、可扩展的图层管理架构,并结合实际绘图控件开发,验证了该机制