活动介绍

class OrientedASPP(nn.Module): def __init__(self, dim_in, dim_out, rate=1): super().__init__() # 方向滤波器组:0°, 45°, 90°, 135° self.conv_arrange = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=True), nn.BatchNorm2d(dim_out), nn.ReLU(inplace=True) ) self.branch1 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 1, 1, padding=0, dilation=rate, bias=True), # SynchronizedBatchNorm2d(dim_out, momentum=bn_mom), nn.BatchNorm2d(dim_out), nn.ReLU(inplace=True), ) self.branch2 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=6 * rate, dilation=6 * rate, bias=True), # SynchronizedBatchNorm2d(dim_out, momentum=bn_mom), nn.BatchNorm2d(dim_out), nn.ReLU(inplace=True), ) self.branch3 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=12 * rate, dilation=12 * rate, bias=True), # SynchronizedBatchNorm2d(dim_out, momentum=bn_mom), nn.BatchNorm2d(dim_out), nn.ReLU(inplace=True), ) self.branch4 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=18 * rate, dilation=18 * rate, bias=True), # SynchronizedBatchNorm2d(dim_out, momentum=bn_mom), nn.BatchNorm2d(dim_out), nn.ReLU(inplace=True), ) self.orient_att = nn.Sequential( # 方向注意力 nn.Conv2d(4 * dim_out, 4, 1), nn.Softmax(dim=1) ) def forward(self, x): feats = [] branch1 = self.branch1(x) branch2 = self.branch2(x) branch3 = self.branch3(x) branch4 = self.branch4(x) feats.append(branch1) feats.append(branch2) feats.append(branch3) feats.append(branch4) fused = torch.cat(feats, dim=1) att = self.orient_att(fused) # [N,4,H,W] # 方向加权融合 return sum([att[:, i:i + 1] * feats for i in range(4)])报错TypeError: only integer tensors of a single element can be converted to an index如何解决

时间: 2025-06-19 21:21:50 AIGC 浏览: 39
<think>好的,我现在要解决用户提出的关于PyTorch模型中的TypeError问题。首先,我需要理解用户提供的代码结构和报错信息。用户定义的OrientedASPP模块在forward时遇到了“TypeError: only integer tensors of a single element can be converted to an index”错误。让我逐步分析可能的原因。 首先,用户提供的代码中,OrientedASPP类在forward方法中执行了以下步骤: 1. 通过四个分支(branch1到branch4)处理输入x,得到四个特征图。 2. 将这四个特征图存入feats列表。 3. 使用torch.cat将四个特征图在通道维度(dim=1)拼接,得到fused。 4. 将fused输入到orient_att模块,得到注意力图att,形状为[N,4,H,W]。 5. 对att进行切片,分别取出每个通道(i从0到3),并与对应的feats[i]相乘,最后求和。 错误发生在最后一步的sum函数中,具体是att[:, i:i+1] * feats。这里需要检查att的切片是否正确,以及乘法的操作是否符合广播规则。 可能的错误点有几个: 首先,检查att的形状是否为[N,4,H,W]。假设orient_att的输出是正确的,那么att应该有4个通道,每个通道对应一个分支的注意力权重。在sum函数中,遍历0到3,每次取att的第i个通道,形状为[N,1,H,W],然后与feats[i]相乘。每个feats[i]的形状应为[N,C,H,W],其中C是dim_out。这里需要注意,att[:,i:i+1]的通道数为1,而feats[i]的通道数为dim_out。因此,乘法操作是否可行?这里可能需要将注意力权重应用到每个通道上,或者可能存在通道数不匹配的问题。 假设这里的设计是,每个分支的特征图有dim_out个通道,而注意力图att的每个通道对应一个分支的权重。那么,当使用att[:,i:i+1] * feats[i]时,由于feats[i]的通道数是dim_out,而注意力权重只有1个通道,这会触发广播机制,将注意力权重应用到所有通道上。这在维度上是可行的,因为[N,1,H,W]乘以[N,C,H,W]会广播到[N,C,H,W]。 但是问题出在列表推导中的feats可能没有被正确索引。例如,在sum函数中,列表推导是[att[:,i:i+1] * feats for i in range(4)],但这里的feats是四个元素的列表。此时,对于每个i,会遍历range(4),然后将att[:,i:i+1]乘以整个feats列表?这显然不对,因为乘法需要在每个i对应的feats[i]上。因此,这里应该是对每个i,取att的第i个通道,然后乘以对应的feats[i]。 但用户原来的代码是sum([att[:,i:i +1] * feats for i in range(4)]),这会导致循环中的每个i,将att的切片与整个feats列表相乘,而列表中的每个元素是一个特征图。这显然会导致类型错误,因为feats是一个Python列表,无法直接与张量相乘。例如,当i=0时,att[:,0:1]的形状是[N,1,H,W],而feats是四个张量的列表,这时候乘法操作会尝试将张量与列表相乘,这在PyTorch中是不允许的,从而导致TypeError。 因此,问题的根源在于列表推导中的feats没有被正确索引。正确的做法应该是对于每个i,取出feats[i],然后与对应的att切片相乘。所以原来的代码应该是: sum([att[:, i:i+1] * feats[i] for i in range(4)]) 而用户原来的代码中,写的是att[:,i:i+1] * feats,这里feats是列表,而不是feats[i]。因此,这会导致每个元素是att切片乘以整个列表,而不是对应的特征图。这显然会引发错误,因为张量和列表不能相乘。 所以,解决方法是将列表推导中的feats改为feats[i]。这样,每个分支的特征图与对应的注意力权重相乘,然后求和。 验证这一点,用户可能在编写代码时,将feats误写为整个列表,而不是每个元素。例如,正确的表达式应该是: sum([att[:, i:i+1] * feats[i] for i in range(4)]) 这样,对于每个i,取出feats的第i个元素(即branch1到branch4的特征图),然后与对应的att切片相乘。这样,每个乘积都是一个张量,然后将这四个张量相加,得到最终的输出。 此外,可能还需要检查其他可能的错误,例如orient_att的输出是否正确。假设orient_att是一个卷积层将4*dim_out的通道数降到4,然后应用Softmax,这应该是正确的。假设输入fused的形状是[N,4*dim_out,H,W],经过Conv2d(4*dim_out,4,1)后,输出形状为[N,4,H,W],然后Softmax在通道维度(dim=1)上应用,得到每个位置的四个权重,和为1。 总结,错误的原因是列表推导中的feats没有被正确索引为feats[i],导致张量与列表相乘,从而引发TypeError。修正方法是将feats改为feats[i],这样每个分支的特征图与其对应的注意力权重相乘。</think>在代码的`forward`方法中,方向加权融合部分的列表推导式存在索引错误。具体错误和修复步骤如下: --- ### **错误分析** 错误行: ```python sum([att[:, i:i + 1] * feats for i in range(4)]) ``` 错误原因: - `feats`是一个包含4个张量的列表(`[branch1, branch2, branch3, branch4]`) - 列表推导式中错误地直接使用`feats`,导致`att[:,i:i+1]`(张量)与整个`feats`列表相乘,引发类型不匹配。 --- ### **修复方法** 需要逐个索引`feats`中的张量,修改为: ```python sum([att[:, i:i + 1] * feats[i] for i in range(4)]) ``` --- ### **修正后完整代码段** ```python def forward(self, x): feats = [] branch1 = self.branch1(x) branch2 = self.branch2(x) branch3 = self.branch3(x) branch4 = self.branch4(x) feats.append(branch1) feats.append(branch2) feats.append(branch3) feats.append(branch4) fused = torch.cat(feats, dim=1) att = self.orient_att(fused) # [N,4,H,W] # 修复方向加权融合:逐个索引feats[i] return sum([att[:, i:i + 1] * feats[i] for i in range(4)]) ``` --- ### **代码解释** 1. **方向注意力机制**: - `orient_att`输出形状为$[N,4,H,W]$,表示4个方向的注意力权重。 - `att[:, i:i+1]`切片操作保留维度,得到形状$[N,1,H,W]$的权重张量。 2. **逐分支加权**: - `feats[i]`是第$i$个分支的输出,形状为$[N,C,H,W]$($C$是`dim_out`)。 - 通过广播机制,`att[:,i:i+1] * feats[i]`将权重应用到对应分支的所有通道上。 3. **加权求和**: - `sum()`对4个加权后的特征图进行逐元素相加,得到最终输出。 --- ### **其他潜在问题** 若仍报错,需检查: 1. **输入输出维度**:确保`dim_in`和`dim_out`与上下游网络匹配。 2. **空洞卷积参数**:`padding=6*rate`等参数是否导致特征图尺寸过小(需满足$H,W \geq 1$)。
阅读全文

相关推荐

""" This part contains UNet series models, including UNet, R2UNet, Attention UNet, R2Attention UNet, DenseUNet """ import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init # ==========================Core Module================================ class conv_block(nn.Module): def __init__(self, ch_in, ch_out): super(conv_block, self).__init__() self.conv = nn.Sequential( nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(ch_out), nn.ReLU(inplace=True), nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(ch_out), nn.ReLU(inplace=True) ) def forward(self, x): x = self.conv(x) return x class up_conv(nn.Module): def __init__(self, ch_in, ch_out): super(up_conv, self).__init__() self.up = nn.Sequential( nn.Upsample(scale_factor=2), nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(ch_out), nn.ReLU(inplace=True) ) def forward(self, x): x = self.up(x) return x class Recurrent_block(nn.Module): def __init__(self, ch_out, t=2): super(Recurrent_block, self).__init__() self.t = t self.ch_out = ch_out self.conv = nn.Sequential( nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(ch_out), nn.ReLU(inplace=True) ) def forward(self, x): for i in range(self.t): if i == 0: x1 = self.conv(x) x1 = self.conv(x + x1) return x1 class RRCNN_block(nn.Module): def __init__(self, ch_in, ch_out, t=2): super(RRCNN_block, self).__init__() self.RCNN = nn.Sequential( Recurrent_block(ch_out, t=t), Recurrent_block(ch_out, t=t) ) self.Conv_1x1 = nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=1, padding=0) def forward(self, x): x = self.Conv_1x1(x) x1 = self.RCNN(x) return x + x1 class single_conv(nn.Module): def __init__(self, ch_in, ch_out): super(single_conv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(ch_out), nn.ReLU(inplace=True) ) def forward(self, x): x = self.conv(x) return x class Attention_block(nn.Module): # attention Gate def __init__(self, F_g, F_l, F_int): super(Attention_block, self).__init__() self.W_g = nn.Sequential( nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(F_int) ) self.W_x = nn.Sequential( nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(F_int) ) self.psi = nn.Sequential( nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(1), nn.Sigmoid() ) self.relu = nn.ReLU(inplace=True) def forward(self, g, x): g1 = self.W_g(g) x1 = self.W_x(x) psi = self.relu(g1 + x1) psi = self.psi(psi) return x * psi # ================================================================== class U_Net(nn.Module): def __init__(self, img_ch=3, output_ch=1): super(U_Net, self).__init__() self.Maxpool = nn.MaxPool2d(kernel_size=2, stride=2) self.Conv1 = conv_block(ch_in=img_ch, ch_out=64) self.Conv2 = conv_block(ch_in=64, ch_out=128) self.Conv3 = conv_block(ch_in=128, ch_out=256) self.Conv4 = conv_block(ch_in=256, ch_out=512) self.Conv5 = conv_block(ch_in=512, ch_out=1024) self.Up5 = up_conv(ch_in=1024, ch_out=512) self.Up_conv5 = conv_block(ch_in=1024, ch_out=512) self.Up4 = up_conv(ch_in=512, ch_out=256) self.Up_conv4 = conv_block(ch_in=512, ch_out=256) self.Up3 = up_conv(ch_in=256, ch_out=128) self.Up_conv3 = conv_block(ch_in=256, ch_out=128) self.Up2 = up_conv(ch_in=128, ch_out=64) self.Up_conv2 = conv_block(ch_in=128, ch_out=64) self.Conv_1x1 = nn.Conv2d(64, output_ch, kernel_size=1, stride=1, padding=0) def forward(self, x): # encoding path x1 = self.Conv1(x) x2 = self.Maxpool(x1) x2 = self.Conv2(x2) x3 = self.Maxpool(x2) x3 = self.Conv3(x3) x4 = self.Maxpool(x3) x4 = self.Conv4(x4) x5 = self.Maxpool(x4) x5 = self.Conv5(x5) # decoding + concat path d5 = self.Up5(x5) d5 = torch.cat((x4, d5), dim=1) d5 = self.Up_conv5(d5) d4 = self.Up4(d5) d4 = torch.cat((x3, d4), dim=1) d4 = self.Up_conv4(d4) d3 = self.Up3(d4) d3 = torch.cat((x2, d3), dim=1) d3 = self.Up_conv3(d3) d2 = self.Up2(d3) d2 = torch.cat((x1, d2), dim=1) d2 = self.Up_conv2(d2) d1 = self.Conv_1x1(d2) d1 = F.softmax(d1,dim=1) # mine return d1 # ============================================================ class R2U_Net(nn.Module): def __init__(self, img_ch=3, output_ch=1, t=2): super(R2U_Net, self).__init__() self.Maxpool = nn.MaxPool2d(kernel_size=2, stride=2) self.Upsample = nn.Upsample(scale_factor=2) self.RRCNN1 = RRCNN_block(ch_in=img_ch, ch_out=64, t=t) self.RRCNN2 = RRCNN_block(ch_in=64, ch_out=128, t=t) self.RRCNN3 = RRCNN_block(ch_in=128, ch_out=256, t=t) self.RRCNN4 = RRCNN_block(ch_in=256, ch_out=512, t=t) self.RRCNN5 = RRCNN_block(ch_in=512, ch_out=1024, t=t) self.Up5 = up_conv(ch_in=1024, ch_out=512) self.Up_RRCNN5 = RRCNN_block(ch_in=1024, ch_out=512, t=t) self.Up4 = up_conv(ch_in=512, ch_out=256) self.Up_RRCNN4 = RRCNN_block(ch_in=512, ch_out=256, t=t) self.Up3 = up_conv(ch_in=256, ch_out=128) self.Up_RRCNN3 = RRCNN_block(ch_in=256, ch_out=128, t=t) self.Up2 = up_conv(ch_in=128, ch_out=64) self.Up_RRCNN2 = RRCNN_block(ch_in=128, ch_out=64, t=t) self.Conv_1x1 = nn.Conv2d(64, output_ch, kernel_size=1, stride=1, padding=0) def forward(self, x): # encoding path x1 = self.RRCNN1(x) x2 = self.Maxpool(x1) x2 = self.RRCNN2(x2) x3 = self.Maxpool(x2) x3 = self.RRCNN3(x3) x4 = self.Maxpool(x3) x4 = self.RRCNN4(x4) x5 = self.Maxpool(x4) x5 = self.RRCNN5(x5) # decoding + concat path d5 = self.Up5(x5) d5 = torch.cat((x4, d5), dim=1) d5 = self.Up_RRCNN5(d5) d4 = self.Up4(d5) d4 = torch.cat((x3, d4), dim=1) d4 = self.Up_RRCNN4(d4) d3 = self.Up3(d4) d3 = torch.cat((x2, d3), dim=1) d3 = self.Up_RRCNN3(d3) d2 = self.Up2(d3) d2 = torch.cat((x1, d2), dim=1) d2 = self.Up_RRCNN2(d2) d1 = self.Conv_1x1(d2) d1 = F.softmax(d1,dim=1) return d1 # =========================================================== class AttU_Net(nn.Module): def __init__(self, img_ch=3, output_ch=1): super(AttU_Net, self).__init__() self.Maxpool = nn.MaxPool2d(kernel_size=2, stride=2) self.Conv1 = conv_block(ch_in=img_ch, ch_out=64) self.Conv2 = conv_block(ch_in=64, ch_out=128) self.Conv3 = conv_block(ch_in=128, ch_out=256) self.Conv4 = conv_block(ch_in=256, ch_out=512) self.Conv5 = conv_block(ch_in=512, ch_out=1024) self.Up5 = up_conv(ch_in=1024, ch_out=512) self.Att5 = Attention_block(F_g=512, F_l=512, F_int=256) self.Up_conv5 = conv_block(ch_in=1024, ch_out=512) self.Up4 = up_conv(ch_in=512, ch_out=256) self.Att4 = Attention_block(F_g=256, F_l=256, F_int=128) self.Up_conv4 = conv_block(ch_in=512, ch_out=256) self.Up3 = up_conv(ch_in=256, ch_out=128) self.Att3 = Attention_block(F_g=128, F_l=128, F_int=64) self.Up_conv3 = conv_block(ch_in=256, ch_out=128) self.Up2 = up_conv(ch_in=128, ch_out=64) self.Att2 = Attention_block(F_g=64, F_l=64, F_int=32) self.Up_conv2 = conv_block(ch_in=128, ch_out=64) self.Conv_1x1 = nn.Conv2d(64, output_ch, kernel_size=1, stride=1, padding=0) def forward(self, x): # encoding path x1 = self.Conv1(x) x2 = self.Maxpool(x1) x2 = self.Conv2(x2) x3 = self.Maxpool(x2) x3 = self.Conv3(x3) x4 = self.Maxpool(x3) x4 = self.Conv4(x4) x5 = self.Maxpool(x4) x5 = self.Conv5(x5) # decoding + concat path d5 = self.Up5(x5) x4 = self.Att5(g=d5, x=x4) d5 = torch.cat((x4, d5), dim=1) d5 = self.Up_conv5(d5) d4 = self.Up4(d5) x3 = self.Att4(g=d4, x=x3) d4 = torch.cat((x3, d4), dim=1) d4 = self.Up_conv4(d4) d3 = self.Up3(d4) x2 = self.Att3(g=d3, x=x2) d3 = torch.cat((x2, d3), dim=1) d3 = self.Up_conv3(d3) d2 = self.Up2(d3) x1 = self.Att2(g=d2, x=x1) d2 = torch.cat((x1, d2), dim=1) d2 = self.Up_conv2(d2) d1 = self.Conv_1x1(d2) d1 = F.sigmoid(d1) return d1 # =========================================================== class ChannelAttention(nn.Module): def __init__(self, channel, reduction=16): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc = nn.Sequential( nn.Conv2d(channel, channel // reduction, 1, bias=False), nn.ReLU(inplace=True), nn.Conv2d(channel // reduction, channel, 1, bias=False) ) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc(self.avg_pool(x)) max_out = self.fc(self.max_pool(x)) out = avg_out + max_out return self.sigmoid(out) * x class conv_block(nn.Module): def __init__(self, ch_in, ch_out): super(conv_block, self).__init__() self.conv = nn.Sequential( nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(ch_out), nn.ReLU(inplace=True), nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(ch_out), nn.ReLU(inplace=True) ) def forward(self, x): x = self.conv(x) return x class up_conv(nn.Module): def __init__(self, ch_in, ch_out): super(up_conv, self).__init__() self.up = nn.Sequential( nn.Upsample(scale_factor=2), nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(ch_out), nn.ReLU(inplace=True) ) def forward(self, x): x = self.up(x) return x class Attention_block(nn.Module): def __init__(self, F_g, F_l, F_int): super(Attention_block, self).__init__() self.W_g = nn.Sequential( nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(F_int) ) self.W_x = nn.Sequential( nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(F_int) ) self.psi = nn.Sequential( nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(1), nn.Sigmoid() ) self.relu = nn.ReLU(inplace=True) def forward(self, g, x): g1 = self.W_g(g) x1 = self.W_x(x) psi = self.relu(g1 + x1) psi = self.psi(psi) return x * psi class CSAU_Net(nn.Module): def __init__(self, img_ch=3, output_ch=1): super(CSAU_Net, self).__init__() self.Maxpool = nn.MaxPool2d(kernel_size=2, stride=2) self.Conv1 = conv_block(ch_in=img_ch, ch_out=64) self.CA1 = ChannelAttention(channel=64) self.Conv2 = conv_block(ch_in=64, ch_out=128) self.CA2 = ChannelAttention(channel=128) self.Conv3 = conv_block(ch_in=128, ch_out=256) self.CA3 = ChannelAttention(channel=256) self.Conv4 = conv_block(ch_in=256, ch_out=512) self.CA4 = ChannelAttention(channel=512) self.Conv5 = conv_block(ch_in=512, ch_out=1024) self.CA5 = ChannelAttention(channel=1024) self.Up5 = up_conv(ch_in=1024, ch_out=512) self.Att5 = Attention_block(F_g=512, F_l=512, F_int=256) self.Up_conv5 = conv_block(ch_in=1024, ch_out=512) self.CA_Up5 = ChannelAttention(channel=512) self.Up4 = up_conv(ch_in=512, ch_out=256) self.Att4 = Attention_block(F_g=256, F_l=256, F_int=128) self.Up_conv4 = conv_block(ch_in=512, ch_out=256) self.CA_Up4 = ChannelAttention(channel=256) self.Up3 = up_conv(ch_in=256, ch_out=128) self.Att3 = Attention_block(F_g=128, F_l=128, F_int=64) self.Up_conv3 = conv_block(ch_in=256, ch_out=128) self.CA_Up3 = ChannelAttention(channel=128) self.Up2 = up_conv(ch_in=128, ch_out=64) self.Att2 = Attention_block(F_g=64, F_l=64, F_int=32) self.Up_conv2 = conv_block(ch_in=128, ch_out=64) self.CA_Up2 = ChannelAttention(channel=64) self.Conv_1x1 = nn.Conv2d(64, output_ch, kernel_size=1, stride=1, padding=0) def forward(self, x): # 编码路径 x1 = self.Conv1(x) x1 = self.CA1(x1) x2 = self.Maxpool(x1) x2 = self.Conv2(x2) x2 = self.CA2(x2) x3 = self.Maxpool(x2) x3 = self.Conv3(x3) x3 = self.CA3(x3) x4 = self.Maxpool(x3) x4 = self.Conv4(x4) x4 = self.CA4(x4) x5 = self.Maxpool(x4) x5 = self.Conv5(x5) x5 = self.CA5(x5) # 解码路径 + 连接路径 d5 = self.Up5(x5) x4 = self.Att5(g=d5, x=x4) d5 = torch.cat((x4, d5), dim=1) d5 = self.Up_conv5(d5) d5 = self.CA_Up5(d5) d4 = self.Up4(d5) x3 = self.Att4(g=d4, x=x3) d4 = torch.cat((x3, d4), dim=1) d4 = self.Up_conv4(d4) d4 = self.CA_Up4(d4) d3 = self.Up3(d4) x2 = self.Att3(g=d3, x=x2) d3 = torch.cat((x2, d3), dim=1) d3 = self.Up_conv3(d3) d3 = self.CA_Up3(d3) d2 = self.Up2(d3) x1 = self.Att2(g=d2, x=x1) d2 = torch.cat((x1, d2), dim=1) d2 = self.Up_conv2(d2) d2 = self.CA_Up2(d2) d1 = self.Conv_1x1(d2) d1 = F.sigmoid(d1) return d1 from torchsummary import summary if __name__ == '__main__': model = AttU_Net(3,1).to('cuda') summary(model, input_size=(3, 128, 128)) #EOF

def gcd(a, b): while b: a, b = b, a % b return a # Other types of layers can go here (e.g., nn.Linear, etc.) def _init_weights(module, name, scheme=''): if isinstance(module, nn.Conv2d) or isinstance(module, nn.Conv3d): if scheme == 'normal': nn.init.normal_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif scheme == 'trunc_normal': trunc_normal_tf_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif scheme == 'xavier_normal': nn.init.xavier_normal_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) elif scheme == 'kaiming_normal': nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') if module.bias is not None: nn.init.zeros_(module.bias) else: # efficientnet like fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels fan_out //= module.groups nn.init.normal_(module.weight, 0, math.sqrt(2.0 / fan_out)) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.BatchNorm2d) or isinstance(module, nn.BatchNorm3d): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) elif isinstance(module, nn.LayerNorm): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) def act_layer(act, inplace=False, neg_slope=0.2, n_prelu=1): # activation layer act = act.lower() if act == 'relu': layer = nn.ReLU(inplace) elif act == 'relu6': layer = nn.ReLU6(inplace) elif act == 'leakyrelu': layer = nn.LeakyReLU(neg_slope, inplace) elif act == 'prelu': layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope) elif act == 'gelu': layer = nn.GELU() elif act == 'hswish': layer = nn.Hardswish(inplace) else: raise NotImplementedError('activation layer [%s] is not found' % act) return layer def channel_shuffle(x, groups): batchsize, num_channels, height, width = x.data.size() channels_per_group = num_channels // groups # reshape x = x.view(batchsize, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batchsize, -1, height, width) return x # Multi-scale depth-wise convolution (MSDC) class MSDC(nn.Module): def __init__(self, in_channels, kernel_sizes, stride, activation='relu6', dw_parallel=True): super(MSDC, self).__init__() self.in_channels = in_channels self.kernel_sizes = kernel_sizes self.activation = activation self.dw_parallel = dw_parallel self.dwconvs = nn.ModuleList([ nn.Sequential( nn.Conv2d(self.in_channels, self.in_channels, kernel_size, stride, kernel_size // 2, groups=self.in_channels, bias=False), nn.BatchNorm2d(self.in_channels), act_layer(self.activation, inplace=True) ) for kernel_size in self.kernel_sizes ]) self.init_weights('normal') def init_weights(self, scheme=''): named_apply(partial(_init_weights, scheme=scheme), self) def forward(self, x): # Apply the convolution layers in a loop outputs = [] for dwconv in self.dwconvs: dw_out = dwconv(x) outputs.append(dw_out) if self.dw_parallel == False: x = x + dw_out # You can return outputs based on what you intend to do with them return outputs class MSCB(nn.Module): """ Multi-scale convolution block (MSCB) """ def __init__(self, in_channels, out_channels, shortcut=False, stride=1, kernel_sizes=[1, 3, 5], expansion_factor=2, dw_parallel=True, activation='relu6'): super(MSCB, self).__init__() add = shortcut self.in_channels = in_channels self.out_channels = out_channels self.stride = stride self.kernel_sizes = kernel_sizes self.expansion_factor = expansion_factor self.dw_parallel = dw_parallel self.add = add self.activation = activation self.n_scales = len(self.kernel_sizes) # check stride value assert self.stride in [1, 2] # Skip connection if stride is 1 self.use_skip_connection = True if self.stride == 1 else False # expansion factor self.ex_channels = int(self.in_channels * self.expansion_factor) self.pconv1 = nn.Sequential( # pointwise convolution nn.Conv2d(self.in_channels, self.ex_channels, 1, 1, 0, bias=False), nn.BatchNorm2d(self.ex_channels), act_layer(self.activation, inplace=True) ) self.msdc = MSDC(self.ex_channels, self.kernel_sizes, self.stride, self.activation, dw_parallel=self.dw_parallel) if self.add == True: self.combined_channels = self.ex_channels * 1 else: self.combined_channels = self.ex_channels * self.n_scales self.pconv2 = nn.Sequential( # pointwise convolution nn.Conv2d(self.combined_channels, self.out_channels, 1, 1, 0, bias=False), nn.BatchNorm2d(self.out_channels), ) if self.use_skip_connection and (self.in_channels != self.out_channels): self.conv1x1 = nn.Conv2d(self.in_channels, self.out_channels, 1, 1, 0, bias=False) self.init_weights('normal') def init_weights(self, scheme=''): named_apply(partial(_init_weights, scheme=scheme), self) def forward(self, x): pout1 = self.pconv1(x) msdc_outs = self.msdc(pout1) if self.add == True: dout = 0 for dwout in msdc_outs: dout = dout + dwout else: dout = torch.cat(msdc_outs, dim=1) dout = channel_shuffle(dout, gcd(self.combined_channels, self.out_channels)) out = self.pconv2(dout) if self.use_skip_connection: if self.in_channels != self.out_channels: x = self.conv1x1(x) return x + out else: return out def autopad(k, p=None, d=1): # kernel, padding, dilation """Pad to 'same' shape outputs.""" if d > 1: k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad return p class Conv(nn.Module): """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation).""" default_act = nn.SiLU() # default activation def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): """Initialize Conv layer with given arguments including activation.""" super().__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() def forward(self, x): """Apply convolution, batch normalization and activation to input tensor.""" return self.act(self.bn(self.conv(x))) def forward_fuse(self, x): """Perform transposed convolution of 2D data.""" return self.act(self.conv(x)) import torch from torch import nn from ultralytics.nn.modules.conv import Conv from torch.nn import functional as F class Channel_Att(nn.Module): def __init__(self, channels, t=16): super(Channel_Att, self).__init__() self.channels = channels self.bn2 = nn.BatchNorm2d(self.channels, affine=True) def forward(self, x): residual = x x = self.bn2(x) weight_bn = self.bn2.weight.data.abs() / torch.sum(self.bn2.weight.data.abs()) x = x.permute(0, 2, 3, 1).contiguous() x = torch.mul(weight_bn, x) x = x.permute(0, 3, 1, 2).contiguous() x = torch.sigmoid(x) * residual # return x class NAMAttention(nn.Module): def __init__(self, channels, shape, out_channels=None, no_spatial=True): super(NAMAttention, self).__init__() self.Channel_Att = Channel_Att(channels) def forward(self, x): x_out1 = self.Channel_Att(x) return x_out1 根据这些代码,参考Conv的结构,创建一个名为MSConv的模块,输入分为两个分支,第一个是MSDC模块到BatchNorm2d到SiLU,另一个是NAM注意力,注意力机制与其他三个模块并行,最后将SiLU的输出与NAM的输出合并为最终的输出。请编辑代码实现这个思路。注意NAM注意力机制的参数问题

import numpy as np from resnet import resnet50 import torch import torch.nn as nn from densenet3D import DenseNet3D from vit3D import ViT class AttentionFusion(nn.Module): def __init__(self, input_dim, hidden_dim): super(AttentionFusion, self).__init__() # Attention layers self.attention = nn.Sequential( nn.Linear(input_dim * 2, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 2), nn.Softmax(dim=1) ) def forward(self, feat1, feat2): combined_feat = torch.cat((feat1, feat2), dim=1) weights = self.attention(combined_feat) feat_fused = weights[:, 0:1] * feat1 + weights[:, 1:2] * feat2 return feat_fused class ImageFusionModel(nn.Module): def __init__(self, img_encoder = 'resnet50', device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')): super(ImageFusionModel, self).__init__() self.img_encoder = img_encoder if img_encoder == 'resnet50': self.DWI_ImgEncoder = resnet50().to(device) self.T2_ImgEncoder = resnet50().to(device) input_dim = 2048 elif img_encoder == 'vit': self.DWI_ImgEncoder = ViT( image_size = 224, # image size frames = 12, # number of frames image_patch_size = 4, # image patch size frame_patch_size = 2, # frame patch size num_classes=1024, mlp_dim = 2048, dim = 1024, depth = 6, heads = 8, dropout = 0.1, emb_dropout = 0.1 ) self.T2_ImgEncoder = ViT( image_size = 224, # image size frames = 12, # number of frames image_patch_size = 4, # image patch size frame_patch_size = 2, # frame patch size num_classes=1024, mlp_dim = 2048, dim = 1024, depth = 6, heads = 8, dropout = 0.1, emb_dropout = 0.1 ) input_dim = 1024 elif img_encoder == 'dense3D': self.DWI_ImgEncoder = DenseNet3D() self.T2_ImgEncoder = DenseNet3D() input_dim = 1024 # Attention layers self.ImgAttentionFusion = AttentionFusion(input_dim=input_dim, hidden_dim=256).to(device) def forward(self, DWI_ImgTensor, T2_ImgTensor): if self.img_encoder == 'resnet50': _, DWI_features = self.DWI_ImgEncoder(DWI_ImgTensor) _, T2_features = self.T2_ImgEncoder(T2_ImgTensor) else: DWI_features = self.DWI_ImgEncoder(DWI_ImgTensor) T2_features = self.T2_ImgEncoder(T2_ImgTensor) print (f"DWI_features", DWI_features.shape) fused_features = self.ImgAttentionFusion(DWI_features, T2_features) return fused_features class MLP(nn.Module): """ Standard fully-connected MLP with configurable hidden layers, batch norm, activation, and dropout. Args: input_dim (int): hidden_dims (list of int): output_dim (int): activation (callable or nn.Module): (e.g., nn.ReLU or nn.ReLU()) dropout (float): dropout rate batchnorm (bool): BatchNorm1d """ def __init__( self, input_dim, hidden_dims, output_dim, activation = nn.ReLU, dropout = 0.0, batchnorm = False, ): super().__init__() if isinstance(activation, type) and issubclass(activation, nn.Module): activation_layer = activation elif isinstance(activation, nn.Module): activation_layer = lambda: activation else: raise ValueError("activation must be an nn.Module class or instance") layers = [] in_dim = input_dim for h_dim in hidden_dims: layers.append(nn.Linear(in_dim, h_dim)) if batchnorm: layers.append(nn.BatchNorm1d(h_dim)) layers.append(activation_layer()) if dropout > 0: layers.append(nn.Dropout(dropout)) in_dim = h_dim layers.append(nn.Linear(in_dim, output_dim)) self.net = nn.Sequential(*layers) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Args: x: shape (batch_size, input_dim) Returns: shape (batch_size, output_dim) """ return self.net(x) class End2EndModel(nn.Module): def __init__(self, img_encoder = 'resnet50', device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')): super(End2EndModel, self).__init__() self.img_encoder = img_encoder if img_encoder == 'resnet50': input_dim = 2048 elif img_encoder == 'vit': input_dim = 1024 elif img_encoder == 'dense3D': input_dim = 1024 self.ImageFusionLayer = ImageFusionModel(img_encoder=self.img_encoder, device=torch.device('cpu')) self.extractedImageFusedLayer = AttentionFusion(input_dim=2030, hidden_dim=2048) self.ImageMLP = MLP(input_dim=input_dim, hidden_dims=[1024], output_dim=512) self.ExtractedImageMLP = MLP(input_dim=2030, hidden_dims=[1024], output_dim=512) self.concat_fusion_layer = MLP(input_dim=512+512+16, hidden_dims=[512], output_dim=1) def forward(self, DWI_ImgTensor, T2_ImgTensor, DWI_feature_tensor, T2_feature_tensor, clinical_features): image_fused_features = self.ImageFusionLayer(DWI_ImgTensor=DWI_ImgTensor, T2_ImgTensor=T2_ImgTensor) extracted_fusion_features = self.extractedImageFusedLayer(feat1=DWI_feature_tensor, feat2=T2_feature_tensor) image_X = self.ImageMLP(image_fused_features) extracted_image_X = self.ExtractedImageMLP(extracted_fusion_features) x = torch.cat((image_X, extracted_image_X, clinical_features), dim=1) output = self.concat_fusion_layer(x) output = nn.Sigmoid()(output) return output, x 在该代码中增加交叉注意力机制模块,DWI_ImgTensor, T2_ImgTensor通过原有的fusion进行融合,DWI_feature_tensor, T2_feature_tensor不做原有的attention fusion ,其后续纳入同一个表格,20个特征,定义为omicsfestures,clinical_features改为3个特征,进一步的,将image_X 分别与omicsfestures和clinical_features进行cross attention 机制融合,其中image_X 作为Q,其余两个为K V。进一步的,将image_X ,cross attention后的omicsfestures,cross attention后的clinical_features进行contact,得到x

#增加 多头注意力机制 import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader, TensorDataset import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler from TCN.tcn import TemporalConvNet,Chomp1d,TemporalBlock import matplotlib.pyplot as plt import time # 配置参数 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") SEQ_LENGTH = 120 BATCH_SIZE = 128 # 减小批次以适应注意力计算 EPOCHS = 100 LEARNING_RATE = 5e-5 # 调整学习率 SPLIT_RATIO = 0.8 # 多头时间注意力模块 class MultiHeadTemporalAttention(nn.Module): def __init__(self, embed_size, heads=4): super().__init__() self.embed_size = embed_size self.heads = heads self.head_dim = embed_size // heads self.query = nn.Linear(embed_size, embed_size) self.key = nn.Linear(embed_size, embed_size) self.value = nn.Linear(embed_size, embed_size) self.fc_out = nn.Linear(embed_size, embed_size) def forward(self, x): batch_size, seq_len, _ = x.shape Q = self.query(x).view(batch_size, seq_len, self.heads, self.head_dim).permute(0, 2, 1, 3) K = self.key(x).view(batch_size, seq_len, self.heads, self.head_dim).permute(0, 2, 1, 3) V = self.value(x).view(batch_size, seq_len, self.heads, self.head_dim).permute(0, 2, 1, 3) energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / (self.head_dim ** 0.5) attention = F.softmax(energy, dim=-1) out = torch.matmul(attention, V) out = out.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_len, self.embed_size) return self.fc_out(out) # 带注意力的时序块 class AttentiveTemporalBlock(nn.Module): def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2): super().__init__() self.conv1 = nn.utils.weight_norm(nn.Conv1d( n_inputs, n_outputs, kernel_size, stride=stride, padding=p针对TCN模型改进的 多头注意力机制 的原理是什么 然后使用多头注意力机制进行改进TCN的步骤及流程是什么

import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader import torchaudio import numpy as np import os class WaveNetLayer(nn.Module): """修正后的WaveNet层,确保输出尺寸一致""" def __init__(self, in_channels, out_channels, dilation): super().__init__() self.conv_filter = nn.Conv1d(in_channels, out_channels, kernel_size=2, dilation=dilation, padding=dilation) self.conv_gate = nn.Conv1d(in_channels, out_channels, kernel_size=2, dilation=dilation, padding=dilation) self.res_conv = nn.Conv1d(out_channels, in_channels, kernel_size=1) self.skip_conv = nn.Conv1d(out_channels, out_channels, kernel_size=1) def forward(self, x): filtered = torch.tanh(self.conv_filter(x)) gated = torch.sigmoid(self.conv_gate(x)) combined = filtered * gated res = self.res_conv(combined) + x skip = self.skip_conv(combined) return res, skip class WaveNet(nn.Module): """修正后的WaveNet结构,确保特征提取能力""" def __init__(self, in_channels, hidden_size=128): super().__init__() self.layers = nn.ModuleList() num_layers = 8 channels = 64 self.start_conv = nn.Conv1d(in_channels, channels, kernel_size=1) # 创建多个膨胀卷积层 for i in range(num_layers): dilation = 2 ** i self.layers.append(WaveNetLayer(channels, channels, dilation)) self.end_conv1 = nn.Conv1d(channels, hidden_size, kernel_size=1) self.end_conv2 = nn.Conv1d(hidden_size, hidden_size, kernel_size=1) def forward(self, x): x = self.start_conv(x) skip_connections = [] for layer in self.layers: x, skip = layer(x) skip_connections.append(skip) # 聚合所有跳跃连接 x = torch.stack(skip_connections).sum(dim=0) x = F.relu(self.end_conv1(x)) x = self.end_conv2(x) return x class OneClassModel(nn.Module): def __init__(self, encod

import torch import torch.nn as nn import torch.nn.init as init from TransformerBlock import MultiheadAttention from .NeuralNetwork import NeuralNetwork import torch.nn.functional as F from .GAT import GATConv import torch_geometric.utils as utils class Attention(nn.Module): def __init__(self, in_features, hidden_size): super(Attention, self).__init__() self.linear1 = nn.Linear(in_features*2, hidden_size) self.linear2 = nn.Linear(hidden_size, 1) self.activation = nn.ReLU() self.dropout = nn.Dropout(0.5) self.reset_parameters() def reset_parameters(self): init.xavier_normal_(self.linear1.weight) init.xavier_normal_(self.linear2.weight) def forward(self, K, V, mask = None): ''' :param K: (batch_size, d) :param V: (batch_size, hist_len, d) :return: (batch_size, d) ''' K = K.unsqueeze(dim=1).expand(V.size()) fusion = torch.cat([K, V], dim=-1) fc1 = self.activation(self.linear1(fusion)) score = self.linear2(fc1) if mask is not None: mask = mask.unsqueeze(dim=-1) score = score.masked_fill(mask, -2 ** 32 + 1) alpha = F.softmax(score, dim=1) alpha = self.dropout(alpha) att = (alpha * V).sum(dim=1) return att class GLAN(NeuralNetwork): def __init__(self, config, graph): super(GLAN, self).__init__() self.config = config embedding_weights = config['embedding_weights'] V, D = embedding_weights.shape maxlen = config['maxlen'] dropout_rate = config['dropout'] alpha = 0.4 self.graph = graph self.word_embedding = nn.Embedding(V, D, padding_idx=0, _weight=torch.from_numpy(embedding_weights)) self.user_tweet_embedding = nn.Embedding(graph.num_nodes, 300, padding_idx=0) self.mh_attention = MultiheadAttention(input_size=300, output_size=300) self.linear_fuse = nn.Lin

# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """wide and deep model""" import time import numpy as np from mindspore import nn, context from mindspore import Parameter, ParameterTuple import mindspore.common.dtype as mstype import mindspore.ops as ops from mindspore.nn import Dropout from mindspore.nn.optim import Adam, FTRL from mindspore.common.initializer import Uniform, initializer from mindspore.context import ParallelMode from mindspore.nn.wrap.grad_reducer import DistributedGradReducer from mindspore.communication.management import get_group_size np_type = np.float32 ms_type = mstype.float32 def init_method(method, shape, name, max_val=1.0): ''' parameter init method ''' if method in ['uniform']: params = Parameter(initializer( Uniform(max_val), shape, ms_type), name=name) elif method == "one": params = Parameter(initializer("ones", shape, ms_type), name=name) elif method == 'zero': params = Parameter(initializer("zeros", shape, ms_type), name=name) elif method == "normal": params = Parameter(initializer("normal", shape, ms_type), name=name) return params def init_var_dict(init_args, in_vars): ''' var init function ''' var_map = {} _, _max_val = init_args for _, item in enumerate(in_vars): key, shape, method = item if key not in var_map.keys(): if method in ['random', 'uniform']: var_map[key] = Parameter(initializer( Uniform(_max_val), shape, ms_type), name=key) elif method == "one": var_map[key] = Parameter(initializer( "ones", shape, ms_type), name=key) elif method == "zero": var_map[key] = Parameter(initializer( "zeros", shape, ms_type), name=key) elif method == 'normal': var_map[key] = Parameter(initializer( "normal", shape, ms_type), name=key) return var_map class DenseLayer(nn.Cell): """ Dense Layer for Deep Layer of WideDeep Model; Containing: activation, matmul, bias_add; Args: """ def __init__(self, input_dim, output_dim, weight_bias_init, act_str, keep_prob=0.5, use_activation=True, convert_dtype=True, drop_out=False): super(DenseLayer, self).__init__() weight_init, bias_init = weight_bias_init self.weight = init_method( weight_init, [input_dim, output_dim], name="weight") self.bias = init_method(bias_init, [output_dim], name="bias") self.act_func = self._init_activation(act_str) self.matmul = ops.MatMul(transpose_b=False) self.bias_add = ops.BiasAdd() self.cast = ops.Cast() self.dropout = Dropout(keep_prob=(1 - keep_prob)) self.use_activation = use_activation self.convert_dtype = convert_dtype self.drop_out = drop_out def _init_activation(self, act_str): act_str = act_str.lower() if act_str == "relu": act_func = ops.ReLU() elif act_str == "sigmoid": act_func = ops.Sigmoid() elif act_str == "tanh": act_func = ops.Tanh() return act_func def construct(self, x): ''' Construct Dense layer ''' if self.training and self.drop_out: x = self.dropout(x) if self.convert_dtype: x = self.cast(x, mstype.float16) weight = self.cast(self.weight, mstype.float16) bias = self.cast(self.bias, mstype.float16) wx = self.matmul(x, weight) wx = self.bias_add(wx, bias) if self.use_activation: wx = self.act_func(wx) wx = self.cast(wx, mstype.float32) else: wx = self.matmul(x, self.weight) wx = self.bias_add(wx, self.bias) if self.use_activation: wx = self.act_func(wx) return wx class WideDeepModel(nn.Cell): """ From paper: " Wide & Deep Learning for Recommender Systems" Args: config (Class): The default config of Wide&Deep """ def __init__(self, config): super(WideDeepModel, self).__init__() self.batch_size = config.batch_size host_device_mix = bool(config.host_device_mix) parameter_server = bool(config.parameter_server) parallel_mode = context.get_auto_parallel_context("parallel_mode") is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL) if is_auto_parallel: self.batch_size = self.batch_size * get_group_size() sparse = config.sparse self.field_size = config.field_size self.emb_dim = config.emb_dim self.weight_init, self.bias_init = config.weight_bias_init self.deep_input_dims = self.field_size * self.emb_dim self.all_dim_list = [self.deep_input_dims] + config.deep_layer_dim + [1] init_acts = [('Wide_b', [1], config.emb_init)] var_map = init_var_dict(config.init_args, init_acts) self.wide_b = var_map["Wide_b"] self.dense_layer_1 = DenseLayer(self.all_dim_list[0], self.all_dim_list[1], config.weight_bias_init, config.deep_layer_act, convert_dtype=True, drop_out=config.dropout_flag) self.dense_layer_2 = DenseLayer(self.all_dim_list[1], self.all_dim_list[2], config.weight_bias_init, config.deep_layer_act, convert_dtype=True, drop_out=config.dropout_flag) self.dense_layer_3 = DenseLayer(self.all_dim_list[2], self.all_dim_list[3], config.weight_bias_init, config.deep_layer_act, convert_dtype=True, drop_out=config.dropout_flag) self.dense_layer_4 = DenseLayer(self.all_dim_list[3], self.all_dim_list[4], config.weight_bias_init, config.deep_layer_act, convert_dtype=True, drop_out=config.dropout_flag) self.dense_layer_5 = DenseLayer(self.all_dim_list[4], self.all_dim_list[5], config.weight_bias_init, config.deep_layer_act, use_activation=False, convert_dtype=True, drop_out=config.dropout_flag) self.wide_mul = ops.Mul() self.deep_mul = ops.Mul() self.reduce_sum = ops.ReduceSum(keep_dims=False) self.reshape = ops.Reshape() self.deep_reshape = ops.Reshape() self.square = ops.Square() self.concat = ops.Concat(axis=1) self.unique = ops.Unique().shard(((1,),)) self.wide_gatherv2 = ops.Gather() self.deep_gatherv2 = ops.Gather() if is_auto_parallel and sparse and not config.field_slice and not parameter_server: target = 'CPU' if host_device_mix else 'DEVICE' self.wide_embeddinglookup = nn.EmbeddingLookup(config.vocab_size, 1, target=target, slice_mode=nn.EmbeddingLookup.TABLE_ROW_SLICE) if config.deep_table_slice_mode == "column_slice": self.deep_embeddinglookup = nn.EmbeddingLookup(config.vocab_size, self.emb_dim, target=target, slice_mode=nn.EmbeddingLookup.TABLE_COLUMN_SLICE) if config.use_sp: self.dense_layer_1.matmul.shard(((1, get_group_size()), (get_group_size(), 1))) self.dense_layer_1.bias_add.shard(((get_group_size(), 1), (1,))) self.deep_mul.shard(((1, 1, get_group_size()), (1, 1, 1))) else: self.dense_layer_1.dropout.dropout.shard(((1, get_group_size()),)) self.dense_layer_1.matmul.shard(((1, get_group_size()), (get_group_size(), 1))) self.deep_mul.shard(((1, 1, get_group_size()), (1, 1, 1))) self.dense_layer_1.matmul.add_prim_attr("field_size", self.field_size) self.deep_reshape.add_prim_attr("skip_redistribution", True) else: self.deep_embeddinglookup = nn.EmbeddingLookup(config.vocab_size, self.emb_dim, target=target, slice_mode=nn.EmbeddingLookup.TABLE_ROW_SLICE) self.reduce_sum.add_prim_attr("cross_batch", True) self.embedding_table = self.deep_embeddinglookup.embedding_table elif is_auto_parallel and host_device_mix and config.field_slice and config.full_batch and config.manual_shape: manual_shapes = tuple((s[0] for s in config.manual_shape)) self.deep_embeddinglookup = nn.EmbeddingLookup(config.vocab_size, self.emb_dim, slice_mode=nn.EmbeddingLookup.FIELD_SLICE, manual_shapes=manual_shapes) self.wide_embeddinglookup = nn.EmbeddingLookup(config.vocab_size, 1, slice_mode=nn.EmbeddingLookup.FIELD_SLICE, manual_shapes=manual_shapes) self.deep_mul.shard(((1, get_group_size(), 1), (1, get_group_size(), 1))) self.wide_mul.shard(((1, get_group_size(), 1), (1, get_group_size(), 1))) self.reduce_sum.shard(((1, get_group_size(), 1),)) self.dense_layer_1.dropout.dropout.shard(((1, get_group_size()),)) self.dense_layer_1.matmul.shard(((1, get_group_size()), (get_group_size(), 1))) self.embedding_table = self.deep_embeddinglookup.embedding_table elif parameter_server: cache_enable = config.vocab_cache_size > 0 target = 'DEVICE' if cache_enable else 'CPU' if not cache_enable: sparse = True if is_auto_parallel and config.full_batch and cache_enable: self.deep_embeddinglookup = nn.EmbeddingLookup(config.vocab_size, self.emb_dim, target=target, slice_mode=nn.EmbeddingLookup.TABLE_ROW_SLICE, sparse=sparse, vocab_cache_size=config.vocab_cache_size) self.wide_embeddinglookup = nn.EmbeddingLookup(config.vocab_size, 1, target=target, slice_mode=nn.EmbeddingLookup.TABLE_ROW_SLICE, sparse=sparse, vocab_cache_size=config.vocab_cache_size) else: self.deep_embeddinglookup = nn.EmbeddingLookup(config.vocab_size, self.emb_dim, target=target, sparse=sparse, vocab_cache_size=config.vocab_cache_size) self.wide_embeddinglookup = nn.EmbeddingLookup(config.vocab_size, 1, target=target, sparse=sparse, vocab_cache_size=config.vocab_cache_size) self.embedding_table = self.deep_embeddinglookup.embedding_table self.deep_embeddinglookup.embedding_table.set_param_ps() self.wide_embeddinglookup.embedding_table.set_param_ps() else: self.deep_embeddinglookup = nn.EmbeddingLookup(config.vocab_size, self.emb_dim, target='DEVICE', sparse=sparse, vocab_cache_size=config.vocab_cache_size) self.wide_embeddinglookup = nn.EmbeddingLookup(config.vocab_size, 1, target='DEVICE', sparse=sparse, vocab_cache_size=config.vocab_cache_size) self.embedding_table = self.deep_embeddinglookup.embedding_table def construct(self, id_hldr, wt_hldr): """ Args: id_hldr: batch ids; wt_hldr: batch weights; """ # Wide layer wide_id_weight = self.wide_embeddinglookup(id_hldr) # Deep layer deep_id_embs = self.deep_embeddinglookup(id_hldr) mask = self.reshape(wt_hldr, (self.batch_size, self.field_size, 1)) # Wide layer wx = self.wide_mul(wide_id_weight, mask) wide_out = self.reshape(self.reduce_sum(wx, 1) + self.wide_b, (-1, 1)) # Deep layer vx = self.deep_mul(deep_id_embs, mask) deep_in = self.deep_reshape(vx, (-1, self.field_size * self.emb_dim)) deep_in = self.dense_layer_1(deep_in) deep_in = self.dense_layer_2(deep_in) deep_in = self.dense_layer_3(deep_in) deep_in = self.dense_layer_4(deep_in) deep_out = self.dense_layer_5(deep_in) out = wide_out + deep_out return out, self.embedding_table class NetWithLossClass(nn.Cell): """" Provide WideDeep training loss through network. Args: network (Cell): The training network config (Class): WideDeep config """ def __init__(self, network, config): super(NetWithLossClass, self).__init__(auto_prefix=False) host_device_mix = bool(config.host_device_mix) parameter_server = bool(config.parameter_server) sparse = config.sparse parallel_mode = context.get_auto_parallel_context("parallel_mode") is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL) self.no_l2loss = (is_auto_parallel if (host_device_mix or config.field_slice) else parameter_server) if sparse: self.no_l2loss = True self.network = network self.l2_coef = config.l2_coef self.loss = ops.SigmoidCrossEntropyWithLogits() self.square = ops.Square() self.reduceMean_false = ops.ReduceMean(keep_dims=False) if is_auto_parallel: self.reduceMean_false.add_prim_attr("cross_batch", True) self.reduceSum_false = ops.ReduceSum(keep_dims=False) def construct(self, batch_ids, batch_wts, label): ''' Construct NetWithLossClass ''' predict, embedding_table = self.network(batch_ids, batch_wts) log_loss = self.loss(predict, label) wide_loss = self.reduceMean_false(log_loss) if self.no_l2loss: deep_loss = wide_loss else: l2_loss_v = self.reduceSum_false(self.square(embedding_table)) / 2 deep_loss = self.reduceMean_false(log_loss) + self.l2_coef * l2_loss_v return wide_loss, deep_loss class IthOutputCell(nn.Cell): def __init__(self, network, output_index): super(IthOutputCell, self).__init__() self.network = network self.output_index = output_index def construct(self, x1, x2, x3): predict = self.network(x1, x2, x3)[self.output_index] return predict class TrainStepWrap(nn.Cell): """ Encapsulation class of WideDeep network training. Append Adam and FTRL optimizers to the training network after that construct function can be called to create the backward graph. Args: network (Cell): The training network. Note that loss function should have been added. sens (Number): The adjust parameter. Default: 1024.0 host_device_mix (Bool): Whether run in host and device mix mode. Default: False parameter_server (Bool): Whether run in parameter server mode. Default: False """ def __init__(self, network, sens=1024.0, host_device_mix=False, parameter_server=False, sparse=False, cache_enable=False): super(TrainStepWrap, self).__init__() parallel_mode = context.get_auto_parallel_context("parallel_mode") is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL) self.network = network self.network.set_train() self.trainable_params = network.trainable_params() weights_w = [] weights_d = [] for params in self.trainable_params: if 'wide' in params.name: weights_w.append(params) else: weights_d.append(params) self.weights_w = ParameterTuple(weights_w) self.weights_d = ParameterTuple(weights_d) if (sparse and is_auto_parallel) or (sparse and parameter_server): self.optimizer_d = Adam( self.weights_d, learning_rate=5e-4, eps=1e-8, loss_scale=sens, use_lazy=True) self.optimizer_w = FTRL(learning_rate=1e-3, params=self.weights_w, l1=1e-8, l2=1e-8, initial_accum=1.0, loss_scale=sens) if host_device_mix or (parameter_server and not cache_enable): self.optimizer_w.target = "CPU" self.optimizer_d.target = "CPU" else: self.optimizer_d = Adam( self.weights_d, learning_rate=5e-4, eps=1e-8, loss_scale=sens) self.optimizer_w = FTRL(learning_rate=1e-3, params=self.weights_w, l1=1e-8, l2=1e-8, initial_accum=1.0, loss_scale=sens) self.hyper_map = ops.HyperMap() self.grad_w = ops.GradOperation(get_by_list=True, sens_param=True) self.grad_d = ops.GradOperation(get_by_list=True, sens_param=True) self.sens = sens self.loss_net_w = IthOutputCell(network, output_index=0) self.loss_net_d = IthOutputCell(network, output_index=1) self.loss_net_w.set_grad() self.loss_net_d.set_grad() self.reducer_flag = False self.grad_reducer_w = None self.grad_reducer_d = None self.reducer_flag = parallel_mode in (ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL) if self.reducer_flag: mean = context.get_auto_parallel_context("gradients_mean") degree = context.get_auto_parallel_context("device_num") self.grad_reducer_w = DistributedGradReducer(self.optimizer_w.parameters, mean, degree) self.grad_reducer_d = DistributedGradReducer(self.optimizer_d.parameters, mean, degree) def construct(self, batch_ids, batch_wts, label): ''' Construct wide and deep model ''' weights_w = self.weights_w weights_d = self.weights_d loss_w, loss_d = self.network(batch_ids, batch_wts, label) sens_w = ops.Fill()(ops.DType()(loss_w), ops.Shape()(loss_w), self.sens) sens_d = ops.Fill()(ops.DType()(loss_d), ops.Shape()(loss_d), self.sens) grads_w = self.grad_w(self.loss_net_w, weights_w)(batch_ids, batch_wts, label, sens_w) grads_d = self.grad_d(self.loss_net_d, weights_d)(batch_ids, batch_wts, label, sens_d) if self.reducer_flag: grads_w = self.grad_reducer_w(grads_w) grads_d = self.grad_reducer_d(grads_d) return ops.depend(loss_w, self.optimizer_w(grads_w)), ops.depend(loss_d, self.optimizer_d(grads_d)) class PredictWithSigmoid(nn.Cell): """ Predict definition """ def __init__(self, network): super(PredictWithSigmoid, self).__init__() self.network = network self.sigmoid = ops.Sigmoid() parallel_mode = context.get_auto_parallel_context("parallel_mode") full_batch = context.get_auto_parallel_context("full_batch") is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL) if is_auto_parallel and full_batch: self.sigmoid.shard(((1, 1),)) def construct(self, batch_ids, batch_wts, labels): logits, _, = self.network(batch_ids, batch_wts) pred_probs = self.sigmoid(logits) return logits, pred_probs, labels # Pre processing def pre_process_criteo_wide_deep(x): return x class WideDeepPostProcess: def __init__(self): self.good = 0 self.total = 0 self.roc_auc = 0 self.results = [] self.labels = [] def __call__(self, results, expected=None, result_dict=None): processed_results = [] n = len(results) for idx in range(0, n): result = results['auc'] processed_results.append(result) self.good += 1 self.total += 1 return processed_results def add_results(self, labels, results): self.results.append(results) self.labels.append(labels) def start(self): self.good = 0 self.total = 0 self.roc_auc = 0 self.results = [] def finalize(self, result_dict, ds=False, output_dir=None): result_dict["good"] = self.good result_dict["total"] = self.total 我在将模型和权重转化成onnx文件时需要将模型代码中的训练部分去除么?

运行以下Python代码:import torchimport torch.nn as nnimport torch.optim as optimfrom torchvision import datasets, transformsfrom torch.utils.data import DataLoaderfrom torch.autograd import Variableclass Generator(nn.Module): def __init__(self, input_dim, output_dim, num_filters): super(Generator, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.num_filters = num_filters self.net = nn.Sequential( nn.Linear(input_dim, num_filters), nn.ReLU(), nn.Linear(num_filters, num_filters*2), nn.ReLU(), nn.Linear(num_filters*2, num_filters*4), nn.ReLU(), nn.Linear(num_filters*4, output_dim), nn.Tanh() ) def forward(self, x): x = self.net(x) return xclass Discriminator(nn.Module): def __init__(self, input_dim, num_filters): super(Discriminator, self).__init__() self.input_dim = input_dim self.num_filters = num_filters self.net = nn.Sequential( nn.Linear(input_dim, num_filters*4), nn.LeakyReLU(0.2), nn.Linear(num_filters*4, num_filters*2), nn.LeakyReLU(0.2), nn.Linear(num_filters*2, num_filters), nn.LeakyReLU(0.2), nn.Linear(num_filters, 1), nn.Sigmoid() ) def forward(self, x): x = self.net(x) return xclass ConditionalGAN(object): def __init__(self, input_dim, output_dim, num_filters, learning_rate): self.generator = Generator(input_dim, output_dim, num_filters) self.discriminator = Discriminator(input_dim+1, num_filters) self.optimizer_G = optim.Adam(self.generator.parameters(), lr=learning_rate) self.optimizer_D = optim.Adam(self.discriminator.parameters(), lr=learning_rate) def train(self, data_loader, num_epochs): for epoch in range(num_epochs): for i, (inputs, labels) in enumerate(data_loader): # Train discriminator with real data real_inputs = Variable(inputs) real_labels = Variable(labels) real_labels = real_labels.view(real_labels.size(0), 1) real_inputs = torch.cat((real_inputs, real_labels), 1) real_outputs = self.discriminator(real_inputs) real_loss = nn.BCELoss()(real_outputs, torch.ones(real_outputs.size())) # Train discriminator with fake data noise = Variable(torch.randn(inputs.size(0), self.generator.input_dim)) fake_labels = Variable(torch.LongTensor(inputs.size(0)).random_(0, 10)) fake_labels = fake_labels.view(fake_labels.size(0), 1) fake_inputs = self.generator(torch.cat((noise, fake_labels.float()), 1)) fake_inputs = torch.cat((fake_inputs, fake_labels), 1) fake_outputs = self.discriminator(fake_inputs) fake_loss = nn.BCELoss()(fake_outputs, torch.zeros(fake_outputs.size())) # Backpropagate and update weights for discriminator discriminator_loss = real_loss + fake_loss self.discriminator.zero_grad() discriminator_loss.backward() self.optimizer_D.step() # Train generator noise = Variable(torch.randn(inputs.size(0), self.generator.input_dim)) fake_labels = Variable(torch.LongTensor(inputs.size(0)).random_(0,

class ASPP(nn.Module): def __init__(self, dim_in, dim_out, rate=1, bn_mom=0.1): super(ASPP, self).__init__() self.branch1 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 1, 1, padding=0, dilation=rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch2 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=4 * rate, dilation=4 * rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch3 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=8 * rate, dilation=8 * rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch4 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=12 * rate, dilation=12 * rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch5 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=16 * rate, dilation=16 * rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch6 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=20 * rate, dilation=20 * rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True) ) self.branch7 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=24 * rate, dilation=24 * rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True) ) self.branch8_conv = nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=True) self.branch8_bn = nn.BatchNorm2d(dim_out, momentum=bn_mom) self.branch8_relu = nn.ReLU(inplace=True) self.conv_cat = nn.Sequential( nn.Conv2d(dim_out * 8, dim_out, 1, 1, padding=0, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), )用1×3卷积和3×1卷积代替这段代码的3×3卷积

class OrientedASPP(nn.Module): def __init__(self, dim_in, dim_out, rate=1): super().__init__() # 方向滤波器组:0°, 45°, 90°, 135° self.conv_arrange = nn.Sequential( nn.AdaptiveAvgPool2d((1, 1)), nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=True), nn.BatchNorm2d(dim_out), nn.ReLU(inplace=True) ) self.branch1 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 1, 1, padding=0, dilation=rate, bias=True), # SynchronizedBatchNorm2d(dim_out, momentum=bn_mom), nn.BatchNorm2d(dim_out), nn.ReLU(inplace=True), ) self.branch2 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=6 * rate, dilation=6 * rate, bias=True), # SynchronizedBatchNorm2d(dim_out, momentum=bn_mom), nn.BatchNorm2d(dim_out), nn.ReLU(inplace=True), ) self.branch3 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=12 * rate, dilation=12 * rate, bias=True), # SynchronizedBatchNorm2d(dim_out, momentum=bn_mom), nn.BatchNorm2d(dim_out), nn.ReLU(inplace=True), ) self.branch4 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=18 * rate, dilation=18 * rate, bias=True), # SynchronizedBatchNorm2d(dim_out, momentum=bn_mom), nn.BatchNorm2d(dim_out), nn.ReLU(inplace=True), ) self.convs = nn.ModuleList([ self.branch1, self.branch2, self.branch3, self.branch4, self.conv_arrange ]) self.orient_att = nn.Sequential( # 方向注意力 nn.Conv2d(5 * dim_out, 5, 1), nn.Softmax(dim=1) ) def forward(self, x): feats = [conv(x) for conv in self.convs] fused = torch.cat(feats, dim=1) att = self.orient_att(fused) # [N,4,H,W] # 方向加权融合 return sum([att[:, i:i + 1] * feats[i] for i in range(5)]) 报错RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 288 but got size 1 for tensor number 4 in the list.如何解决

大家在看

recommend-type

ISO/IEC 27001:2022与ISO 27002:2022最新版中英文版合集

集合了ISO 27001:2022和ISO 27002:2022的英文及中文版PDF文件,均为最终翻译版本,包含完整的目录和标签。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

华为模拟器(Enterprise Network Simulator )命令参考手册.zip

eNsp命令参考手册,各种设备配置命令齐全,可以边查边学习,格式为*.chm,从入门到放弃,fighting!
recommend-type

dspic最小系统

4011开发板的原理图、pcb,原理介绍,dspic30f4011是16位的处理器
recommend-type

斯蒂芬-玻尔兹曼定律-红外成像论文资料

斯蒂芬-玻尔兹曼定律 在全部波长范围内对普朗克公式积分,得到从黑体单位面积辐射到半球空间的总辐射功率,即总辐射出射度的表达式,通常称为斯蒂芬-玻尔兹曼定律: M表示黑体的总辐射出射度,单位W•cm-2。 =5.669610-8(W•m-2•k-4),为斯蒂芬-玻尔兹曼常数。 由斯蒂芬-玻尔兹曼定律可以看出:黑体的总辐射出射度与绝对温度的四次方成正比,因此即使温度变化相当小,都会引起辐射出射度很大的变化。 斯蒂芬-玻尔兹曼定律表明了黑体辐射功率和绝对温度之间的关系,它是通过物体辐射功率测量物体温度的主要理论依据。 1.2.4 基本的辐射定理
recommend-type

删除ip gurad软件,拒绝监管

删除ip gurad 拒绝监管,放心使用,运行完成请重启动! 如果不成功可能是个人机器设置问题,不要喷我!

最新推荐

recommend-type

Info2007v1.0更新至v2.0:优化管理与前台功能

根据提供的文件信息,可以挖掘出以下知识点: ### 标题知识点: 1. **免费时代WEB程序INFO2007 V1.0:** - 该标题表明存在一个名为INFO2007的WEB程序版本1.0,该版本是在免费时代推出的,可能意味着该程序是开源的或者提供免费下载。 ### 描述知识点: 1. **软件缺陷说明:** - 开发者提到程序存在BUG(程序缺陷),并提供了一个更新和反馈的渠道,说明软件仍在开发中,且有后续版本计划。 2. **联系方式:** - 开发者提供了QQ和邮箱作为联系方式,用于反馈问题或询问更新情况。 3. **Info2007v2.0更新内容:** - 提及了升级后的版本INFO2007v2.0新增功能,包括数据库结构变化(添加会员和公告表)、后台管理功能的增加与优化、前台功能的增加与优化等。 4. **安装要求:** - 软件需要特定的服务器环境支持,比如FSO(文件系统对象)、数据采集功能和JMAIL(邮件发送组件)。 5. **配置与安装细节:** - 对config.asp下的目录配置和pageurlsa变量做了说明,这些通常涉及程序的运行环境和安全设置。 6. **默认登录信息:** - 提供了默认的管理员用户名和密码,以及后台管理的默认目录,这对于安装和测试程序很重要。 7. **使用前的必要步骤:** - 强调了解压后生成静态页面的重要性,这可能是确保网站内容可被正确浏览的前置操作。 ### 标签知识点: 1. **ASP源码其他类别:** - 这表明该程序使用ASP(Active Server Pages)作为后端编程语言,并且归类于其他类别,可能意味着它不局限于某一特定功能或领域。 ### 压缩包文件名称列表知识点: 1. **www.codejia.com:** - 这个文件名可能指示了程序被托管或下载的来源网站,也暗示了可能含有与网站域名相关的程序文件。 ### 综合知识点: 1. **软件开发与维护:** - 从描述中可以看出开发者在推动软件的持续改进,并鼓励用户参与软件的测试和反馈过程。 2. **软件环境配置:** - 软件对运行环境有所要求,特别是服务器端的支持,需要了解FSO、数据采集、JMAIL等组件的使用和配置。 3. **后台管理系统:** - 更新内容中提及的后台管理功能,如会员管理、公告管理、文章管理等,显示了该程序提供了一套用于网站内容和用户管理的后台解决方案。 4. **前台展示优化:** - 对前台页面的优化和增加功能,如会员注册、文章页、下载页和分类栏目的改进,说明了对用户体验的重视。 5. **安全与权限控制:** - 默认用户名和密码的提供,以及后台目录的默认设置,强调了安装过程中应立即更改编译以提高安全性。 6. **静态页面生成:** - 生成静态页面作为必要步骤可能涉及到网站的性能优化和安全措施。 7. **开源与社区支持:** - 由于提及了更新的可能和用户反馈渠道,这表明软件具有一定的开源特性或至少鼓励社区参与。 综上所述,这些知识点涵盖了软件开发的常见方面,包括软件生命周期的维护、功能更新、环境配置、安全实践以及优化用户体验。了解和掌握这些知识点可以帮助开发者和用户更好地利用和改进免费时代WEB程序INFO2007 V1.0。
recommend-type

Rust测试实战:错误处理、环境变量与模拟服务器

### Rust 测试实战:错误处理、环境变量与模拟服务器 在 Rust 开发中,测试是确保代码质量和稳定性的重要环节。本文将深入探讨 Rust 中的测试技巧,包括错误处理、使用环境变量测试 Config 模块以及使用模拟服务器测试 profanity 模块。 #### 1. 错误处理与比较 在 Rust 中,我们可以为自定义错误类型实现 `std::fmt::Display` 特征,以便将错误转换为字符串。以下是一个示例: ```rust impl std::fmt::Display for Error { fn fmt(&self, f: &mut std::fmt::For
recommend-type

请分析下面代码:<tbody> <#if (paginationSupport.items)?has_content> <#list paginationSupport.items?sort_by('caseNo') as s> <tr class="b"> <td><a href="../user/viewRequestForm.action?requestFormId=${s.id}">${s.caseNo?default("Not Assigned")?if_exists}</a></td> <td>${s.lotId?if_exists}</td> <td><@m.directoryLink s.applicant?if_exists /></td> <td>${s.prodId?if_exists}</td> <td>${s.lotStageId?if_exists}</td> <td>${s.status?if_exists}</td> <td> <#if s.status!="Waiting For STR"> <#if s.workflowId?exists> <#list s.queuedOwners as owner> <#if owner?matches("[MmAaEeTt]\\d{3}.*")> <@m.directoryLink owner/> <#elseif owner?matches("[K-Z][A-Z][A-Z].*[_].*")> <#list adminService.loadGroupMembersByName(owner) as member> <@m.directoryLink member/><!--by Group--> </#list> <#else> <@m.orgManager owner?if_exists/><!--by Org--> </#if> </#list> </#if> <#else> <#if s.ercCategory=="Input the STR Number"||s.ercCategory=="STR"||s.ercCategory=="MSTR"> STR NO:<a href="${ercService.strLink?if_exists}${s.strEnNo?if_exists}" target="_blank">${s.strEnNo?if_exists}</a> is not effective <#else> EN NO:<a href="${ercService.enLink?if_exists}${s.strEnNo?if_exists}" target="_blank">${s.strEnNo?if_exists}</a> is not effective </#if> </#if> </td> <td><#if s.submitDate?exists>${s.submitDate?datetime?if_exists}</#if></td> <td>${s.purpose?default('')}</td> </tr> </#list> </#if> </tbody>

这段代码是使用 FreeMarker 模板引擎生成 HTML 表格内容的一部分,主要功能是根据分页数据展示请求表单的信息。以下是代码的详细分析: --- ### 1. **条件判断与循环** ```html <#if (paginationSupport.items)?has_content> ``` 判断 `paginationSupport.items` 是否存在且非空,只有存在数据时才执行表格渲染。 ```html <#list paginationSupport.items?sort_by('caseNo') as s> ``` 对 `paginationSupport.item
recommend-type

op-drone:监控未平仓头寸的市场利器

标题中提到的“op-drone”很可能是指一个特定的监控系统或服务的名称,它被用来“持续监控市场中的未平仓头寸”。未平仓头寸是指在金融市场上尚未完成交易结算的买卖双方的持仓数量。监控未平仓头寸对于市场参与者来说至关重要,因为它可以提供有关市场流动性和投资者情绪的重要信息。 在深入探讨之前,需要了解几个基础概念: 1. 未平仓头寸:指交易者在期货、期权、外汇或其他衍生品市场上建立的但尚未平仓的头寸。这些头寸在到期前仍然具有价值,而且市场上的价格变动会对它们的总体价值产生影响。 2. 持续监控:这通常是指使用软件工具或服务不断跟踪和分析市场数据的过程。持续监控可帮助交易者或市场分析师及时捕捉市场的动态变化,并根据最新情况做出交易决策。 3. 市场监控系统:这类系统通常具备收集实时数据、分析市场趋势、识别异常交易行为等多种功能。它们对于投资者了解市场状况、进行风险管理以及制定交易策略至关重要。 从描述中可以推断出,op-drone是一个专门用于持续监控未平仓头寸的系统或服务。这种系统需要具备以下功能: 1. 数据收集:系统需要有能力实时收集金融市场中的数据,包括但不限于期货、期权、股票、债券等金融产品的交易信息。 2. 数据分析:通过算法或机器学习技术分析收集到的数据,识别市场趋势、投资者行为模式以及潜在风险。 3. 异常检测:能够识别出市场中的异常交易活动,比如未平仓头寸的急剧变化,这可能是市场重大变动的前兆。 4. 风险预警:系统应能向用户发出风险预警,告知用户潜在的市场风险,帮助他们进行风险管理。 5. 报告与可视化:提供详细的数据报告和可视化图表,帮助用户更直观地理解市场状况和未平仓头寸变化。 此外,虽然文件中未提供标签和具体的文件名称列表,但可以推测“op-drone-main”可能是系统中的一个核心组件或主程序的名称。这个组件可能是整个op-drone系统运行的基础,负责处理大部分的监控和分析功能。 综合以上信息,我们可以得出一个结论:op-drone是一个专门设计用于监控金融市场上未平仓头寸的系统或服务。它可能具备实时数据收集和分析、异常行为识别、风险预警以及报告和可视化展示等多种功能,从而帮助用户在复杂的市场环境中做出更加明智的决策。对于需要精确把握市场动态、进行风险管理的金融分析师、交易员、投资组合经理等专业人士来说,这样的系统是不可或缺的工具。
recommend-type

RustWeb服务部署与环境变量配置全解析

### Rust Web 服务部署与环境变量配置全解析 在 Rust 开发中,完成业务逻辑编写后,将应用部署到生产环境是关键的下一步。本文将深入探讨 Rust 应用部署过程中的重要环节,包括环境变量的配置、二进制文件的优化以及跨平台编译等内容。 #### 1. 认证与授权相关未覆盖内容 在认证和授权方面,有一些内容未详细涉及。例如,设置会话数据库来存储令牌,以便在数据泄露或用户有其他需求时使令牌失效。可以通过设置 Redis 实例,在生成每个令牌时,不仅将结果返回给客户端,还将其存储在 Redis 键值存储中。 另外,重置用户密码和创建刷新令牌也是重要的话题。重置用户密码可以通过创建一个
recommend-type

消灭病毒 源代码

要查找消灭病毒游戏的源代码,可通过以下几种常见途径获取: ### 开源代码平台 - **GitHub**:作为全球最大的开源代码托管平台,有开发者会将自己开发的消灭病毒游戏源代码分享到上面。在GitHub的搜索框输入“消灭病毒游戏”相关关键词,如“Virus Elimination Game” 、“消灭病毒 Unity”等,就能筛选出相关的代码仓库。有些仓库可能是完整的项目,包含游戏开发所需的全部代码和资源;有些则可能是部分功能的实现,需要进一步整合。 - **Gitee**:国内的开源代码托管平台,很多国内开发者会将自己的项目上传至此。同样使用相关关键词搜索,或许能找到符合需求的消灭病毒游
recommend-type

Apache Directory:Java编写的LDAP v3兼容目录解决方案

标题中所提及的“directory”一词在IT领域有多种含义,而描述中提供了具体的上下文信息,即Apache Directory项目。这个项目是Apache软件基金会下的一个子项目,它提供了使用Java语言开发的开源目录服务解决方案。下面详细说明Apache Directory项目中涉及的知识点。 **Apache Directory项目知识点** 1. **目录服务(Directory Service)** - 目录服务是一种特殊类型的数据库,它主要用于存储关于网络中的对象信息,如用户、组、设备等,并使得这些信息可以被集中管理和查询。与传统的关系数据库不同,目录服务通常是为了读操作比写操作更频繁的应用场景优化的,这使得它特别适合用于存储诸如用户身份验证信息、配置数据、策略信息等。 2. **LDAP(轻量级目录访问协议)** - LDAP是目录服务使用的一种协议标准,它定义了客户端与目录服务进行交互的规则和方法。LDAP v3是LDAP协议的第三个版本,它在功能上比前两个版本更为强大和灵活。LDAP服务器通常被称为目录服务器(Directory Server),用于存储目录信息并提供查询服务。 3. **ApacheDS(Apache Directory Server)** - Apache Directory Server是Apache Directory项目的主要组件之一,是一个完全用Java编写的LDAP v3兼容的目录服务器。它符合LDAP标准的所有基本要求,还提供了丰富的可扩展性,如扩展协议操作、自定义属性类型、自定义操作等。它的设计目标是成为一个轻量级、易于使用且功能强大的目录服务器,特别适用于企业环境中的用户身份管理。 4. **认证和授权** - 在一个目录服务环境中,认证是指验证用户身份的过程,而授权是指授予已认证用户访问资源的权限。Apache Directory Server在设计上提供了对这些安全特性的支持,包括但不限于:密码策略、访问控制列表(ACLs)等。 5. **Eclipse和Apache Directory Studio** - Apache Directory Studio是一个基于Eclipse的开源集成开发环境(IDE),它专门为目录服务的开发和管理提供工具。它包含一个LDAP浏览器、一个LDIF编辑器、一个Schema编辑器等工具。开发者和管理员可以利用Apache Directory Studio来浏览和管理LDAP服务器,以及创建和修改LDAP条目和Schema。 6. **LDIF(LDAP数据交换格式)** - LDIF是LDAP数据交换的文件格式,用于在文本文件中表示LDAP目录的信息。它通常用于备份和恢复LDAP数据,以及将数据导入到LDAP目录中。Apache Directory API允许用户操作LDIF文件,为这些操作提供了丰富的接口。 **网络服务器与网络客户端** 网络服务器是位于服务器端的软件,负责处理来自客户端的请求,并将信息回传给客户端。网络客户端则是发起请求的软件,它连接到服务器并获取服务或数据。Apache Directory Server作为网络服务器的一个例子,为客户端提供目录服务的访问能力。这可能包括身份验证服务、数据检索服务等。网络客户端则需要使用适当的协议和API与目录服务器通信,例如使用LDAP协议。 **压缩包子文件的文件名称列表** 提供的文件名称“apache-ldap-api-1.0.3-bin”表明这是一个可执行的二进制包,其中包含了Apache Directory API的版本1.0.3。API通常包含了一系列用于与目录服务进行交互的类和方法。开发者可以使用这些API来编写代码,实现对LDAP服务器的管理操作,如查询、更新、删除和添加目录信息。 总结上述内容,Apache Directory项目是针对提供目录服务解决方案的开源项目,包括了Apache Directory Server作为服务器组件,和Apache Directory Studio作为客户端工具。项目遵守LDAP v3协议标准,并提供易于使用的API接口,使得开发者能够构建和管理一个高效、安全的目录服务环境。在使用过程中,了解LDAP协议、目录服务的安全机制以及相关的API使用是基础知识点。同时,由于Apache Directory项目采用Java语言编写,了解Java编程语言和其生态系统也对开发和部署相关服务有极大的帮助。
recommend-type

Rust项目中用户认证与登录功能的实现与优化

### Rust 项目中用户认证与登录功能的实现与优化 在开发 Web 应用时,用户认证是一个至关重要的环节。它涉及到用户密码的安全存储、账户注册时的重复错误处理以及登录逻辑的实现等多个方面。下面将详细介绍如何在 Rust 项目中实现这些功能。 #### 1. 密码哈希与加盐 为了确保用户密码的安全,我们不能直接存储明文密码。常见的做法是使用哈希算法对密码进行处理。不过,单纯的哈希还不够,因为攻击者可能通过比对已知破解的哈希列表来获取明文密码。因此,我们还需要对密码进行加盐处理,即在哈希之前添加一个随机生成的序列。 我们引入了两个新的 crate 来实现这个功能: - `rand`:用于
recommend-type

如何使用使用QZipReader解压文件

`QZipReader` 是一个方便的工具,用于在 Qt 应用程序中解压 ZIP 压缩包,它提供了读取 ZIP 文件的接口,并能提取其中的内容。以下是使用 `QZipReader` 解压文件的示例代码: ```cpp #include <QZipReader> #include <QFile> #include <QDir> void zip_decompress(const QString &fileName, const QString &path) { if (fileName.isEmpty()) { return; } QFileInfo f
recommend-type

Rust频谱分析库:利用FFT快速获得音频频谱

数字信号处理(DSP)是在数字形式处理信号的技术,广泛应用于音频、视频、通信等领域。频谱分析是DSP的重要组成部分,它涉及将信号分解为不同的频率成分,以识别和测量信号中所包含的不同频率分量的幅度和相位。快速傅里叶变换(FFT)是一种高效计算信号离散傅里叶变换(DFT)及其逆变换的算法,它在频谱分析中发挥着核心作用。 标题中提到的“spectrum-analyzer”是一个Rust语言编写的库,专注于利用FFT技术获取数字信号(尤其是音频信号)的频谱信息。Rust是一种注重安全、性能和并发的系统编程语言,它在内存管理上采用所有权(ownership)和借用(borrowing)的概念,以避免空悬指针和数据竞争等问题,使得编写高质量、高可靠性的系统级代码成为可能。 “no_std”是Rust的一个属性,允许开发者编写不依赖于标准库的程序。这对于需要最小化系统资源占用或运行在受限环境下的应用非常有用,例如嵌入式系统和某些操作系统内核。由于去除了标准库的开销,使用“no_std”编写的程序可以更加轻量级和高性能。 “KISS”(Keep It Simple, Stupid)原则是软件工程中的一个设计理念,鼓励开发者创建简单、直接、无过度设计的代码。在“spectrum-analyzer”库中遵循这一原则意味着库的结构和接口设计得尽可能简单和直观,便于使用和理解。 库中提及的`samples_fft_to_spectrum`很可能是库提供的一个函数,用于将一组样本数据通过FFT转换为频谱数据。`FrequencyLimit`则可能是一个类型,用来定义频谱分析中频率的上下限,从而控制输出的频率范围。 `spectrum_analyzer::windows::hann_window`可能是库中实现的汉宁窗(Hann window)函数。汉宁窗是一种用于减少频谱泄露的窗函数,当处理有限长的信号时,将其应用于信号可以使得信号两端平滑过渡,从而减少由于信号截断产生的频谱泄露。 “no_std”环境意味着该库不依赖Rust标准库,而是使用核心库(core)或其他第三方库来尽可能减少内存占用和提高执行效率。对于嵌入式开发者而言,这样的库特别有价值,因为它允许开发者在有限的硬件资源上执行复杂的频谱分析任务。 最后,由于库代码主要被设计为遵循Rust的KISS原则,并且由简单的构建块组成,它可能提供了易于使用的API,允许用户通过简单的函数调用来获取数字信号的频谱信息。此外,库的开放性意味着它欢迎来自社区的贡献,包括但不限于改进文档、修复错误、增加新功能或优化现有代码。 标签“Rust”强调了该库的编程语言环境。由于Rust的内存安全保证,库可以在保证高性能的同时避免常见的内存错误,例如缓冲区溢出和空指针解引用。 至于“spectrum-analyzer-main”,根据压缩包子文件的文件名称列表,这应该是与该库相关的主文件或者主程序文件。在这里,用户可以找到如何使用该库的示例,以及如何将其集成到项目中。 综上所述,该库是一个针对Rust语言编写的、支持在“no_std”环境下工作的、用于频谱分析的简单而快速的工具。它使用FFT算法来解析数字信号,以获取信号的频谱表示,并通过简单的接口和构建块使其易于集成和使用。同时,该库的开放性质意味着它具有良好的社区支持和未来发展潜力。