File "/home/orin/lcz/dockerfile/qwen/Qwen2.5-VL-main/signal_api.py", line 25, in <module> model.load_state_dict(torch.load('resnet18.pth', map_location='cpu')) File "/home/orin/anaconda3/envs/minicpmo/lib/python3.10/site-packages/torch/nn/modules/module.py", line 2593, in load_state_dict raise RuntimeError( RuntimeError: Error(s) in loading state_dict for ResNetForModulation: Missing key(s) in state_dict: "resnet.conv1.weight", "resnet.bn1.weight", "resnet.bn1.bias", "resnet.bn1.running_mean", "resnet.bn1.running_var", "resnet.layer1.0.conv1.weight", "resnet.layer1.0.bn1.weight", "resnet.layer1.0.bn1.bias", "resnet.layer1.0.bn1.running_mean", "resnet.layer1.0.bn1.running_var", "resnet.layer1.0.conv2.weight", "resnet.layer1.0.bn2.weight", "resnet.layer1.0.bn2.bias", "resnet.layer1.0.bn2.running_mean", "resnet.layer1.0.bn2.running_var", "resnet.layer1.1.conv1.weight", "resnet.layer1.1.bn1.weight", "resnet.layer1.1.bn1.bias", "resnet.layer1.1.bn1.running_mean", "resnet.layer1.1.bn1.running_var", "resnet.layer1.1.conv2.weight", "resnet.layer1.1.bn2.weight", "resnet.layer1.1.bn2.bias", "resnet.layer1.1.bn2.running_mean", "resnet.layer1.1.bn2.running_var", "resnet.layer2.0.conv1.weight", "resnet.layer2.0.bn1.weight", "resnet.layer2.0.bn1.bias", "resnet.layer2.0.bn1.running_mean", "resnet.layer2.0.bn1.running_var", "resnet.layer2.0.conv2.weight", "resnet.layer2.0.bn2.weight", "resnet.layer2.0.bn2.bias", "resnet.layer2.0.bn2.running_mean", "resnet.layer2.0.bn2.running_var", "resnet.layer2.0.downsample.0.weight", "resnet.layer2.0.downsample.1.weight", "resnet.layer2.0.downsample.1.bias", "resnet.layer2.0.downsample.1.running_mean", "resnet.layer2.0.downsample.1.running_var", "resnet.layer2.1.conv1.weight", "resnet.layer2.1.bn1.weight", "resnet.layer2.1.bn1.bias", "resnet.layer2.1.bn1.running_mean", "resnet.layer2.1.bn1.running_var", "resnet.layer2.1.conv2.weight", "resnet.layer2.1.bn2.weight", "resnet.layer2.1.bn2.bias", "resnet.layer2.1.bn2.running_mean", "resnet.layer2.1.bn2.running_var", "resnet.layer3.0.conv1.weight", "resnet.layer3.0.bn1.weight", "resnet.layer3.0.bn1.bias", "resnet.layer3.0.bn1.running_mean", "resnet.layer3.0.bn1.running_var", "resnet.layer3.0.conv2.weight", "resnet.layer3.0.bn2.weight", "resnet.layer3.0.bn2.bias", "resnet.layer3.0.bn2.running_mean", "resnet.layer3.0.bn2.running_var", "resnet.layer3.0.downsample.0.weight", "resnet.layer3.0.downsample.1.weight", "resnet.layer3.0.downsample.1.bias", "resnet.layer3.0.downsample.1.running_mean", "resnet.layer3.0.downsample.1.running_var", "resnet.layer3.1.conv1.weight", "resnet.layer3.1.bn1.weight", "resnet.layer3.1.bn1.bias", "resnet.layer3.1.bn1.running_mean", "resnet.layer3.1.bn1.running_var", "resnet.layer3.1.conv2.weight", "resnet.layer3.1.bn2.weight", "resnet.layer3.1.bn2.bias", "resnet.layer3.1.bn2.running_mean", "resnet.layer3.1.bn2.running_var", "resnet.layer4.0.conv1.weight", "resnet.layer4.0.bn1.weight", "resnet.layer4.0.bn1.bias", "resnet.layer4.0.bn1.running_mean", "resnet.layer4.0.bn1.running_var", "resnet.layer4.0.conv2.weight", "resnet.layer4.0.bn2.weight", "resnet.layer4.0.bn2.bias", "resnet.layer4.0.bn2.running_mean", "resnet.layer4.0.bn2.running_var", "resnet.layer4.0.downsample.0.weight", "resnet.layer4.0.downsample.1.weight", "resnet.layer4.0.downsample.1.bias", "resnet.layer4.0.downsample.1.running_mean", "resnet.layer4.0.downsample.1.running_var", "resnet.layer4.1.conv1.weight", "resnet.layer4.1.bn1.weight", "resnet.layer4.1.bn1.bias", "resnet.layer4.1.bn1.running_mean", "resnet.layer4.1.bn1.running_var", "resnet.layer4.1.conv2.weight", "resnet.layer4.1.bn2.weight", "resnet.layer4.1.bn2.bias", "resnet.layer4.1.bn2.running_mean", "resnet.layer4.1.bn2.running_var", "resnet.fc.weight", "resnet.fc.bias". Unexpected key(s) in state_dict: "conv1.weight", "bn1.running_mean", "bn1.running_var", "bn1.weight", "bn1.bias", "layer1.0.conv1.weight", "layer1.0.bn1.running_mean", "layer1.0.bn1.running_var", "layer1.0.bn1.weight", "layer1.0.bn1.bias", "layer1.0.conv2.weight", "layer1.0.bn2.running_mean", "layer1.0.bn2.running_var", "layer1.0.bn2.weight", "layer1.0.bn2.bias", "layer1.1.conv1.weight", "layer1.1.bn1.running_mean", "layer1.1.bn1.running_var", "layer1.1.bn1.weight", "layer1.1.bn1.bias", "layer1.1.conv2.weight", "layer1.1.bn2.running_mean", "layer1.1.bn2.running_var", "layer1.1.bn2.weight", "layer1.1.bn2.bias", "layer2.0.conv1.weight", "layer2.0.bn1.running_mean", "layer2.0.bn1.running_var", "layer2.0.bn1.weight", "layer2.0.bn1.bias", "layer2.0.conv2.weight", "layer2.0.bn2.running_mean", "layer2.0.bn2.running_var", "layer2.0.bn2.weight", "layer2.0.bn2.bias", "layer2.0.downsample.0.weight", "layer2.0.downsample.1.running_mean", "layer2.0.downsample.1.running_var", "layer2.0.downsample.1.weight", "layer2.0.downsample.1.bias", "layer2.1.conv1.weight", "layer2.1.bn1.running_mean", "layer2.1.bn1.running_var", "layer2.1.bn1.weight", "layer2.1.bn1.bias", "layer2.1.conv2.weight", "layer2.1.bn2.running_mean", "layer2.1.bn2.running_var", "layer2.1.bn2.weight", "layer2.1.bn2.bias", "layer3.0.conv1.weight", "layer3.0.bn1.running_mean", "layer3.0.bn1.running_var", "layer3.0.bn1.weight", "layer3.0.bn1.bias", "layer3.0.conv2.weight", "layer3.0.bn2.running_mean", "layer3.0.bn2.running_var", "layer3.0.bn2.weight", "layer3.0.bn2.bias", "layer3.0.downsample.0.weight", "layer3.0.downsample.1.running_mean", "layer3.0.downsample.1.running_var", "layer3.0.downsample.1.weight", "layer3.0.downsample.1.bias", "layer3.1.conv1.weight", "layer3.1.bn1.running_mean", "layer3.1.bn1.running_var", "layer3.1.bn1.weight", "layer3.1.bn1.bias", "layer3.1.conv2.weight", "layer3.1.bn2.running_mean", "layer3.1.bn2.running_var", "layer3.1.bn2.weight", "layer3.1.bn2.bias", "layer4.0.conv1.weight", "layer4.0.bn1.running_mean", "layer4.0.bn1.running_var", "layer4.0.bn1.weight", "layer4.0.bn1.bias", "layer4.0.conv2.weight", "layer4.0.bn2.running_mean", "layer4.0.bn2.running_var", "layer4.0.bn2.weight", "layer4.0.bn2.bias", "layer4.0.downsample.0.weight", "layer4.0.downsample.1.running_mean", "layer4.0.downsample.1.running_var", "layer4.0.downsample.1.weight", "layer4.0.downsample.1.bias", "layer4.1.conv1.weight", "layer4.1.bn1.running_mean", "layer4.1.bn1.running_var", "layer4.1.bn1.weight", "layer4.1.bn1.bias", "layer4.1.conv2.weight", "layer4.1.bn2.running_mean", "layer4.1.bn2.running_var", "layer4.1.bn2.weight", "layer4.1.bn2.bias", "fc.weight", "fc.bias".出现这种问题
时间: 2025-07-23 09:05:00 AIGC 浏览: 24
<think>问题分析:用户提供的错误信息表明,在加载预训练权重时出现了键不匹配的问题。具体来说,模型期望的键名(如"resnet.conv1.weight")与权重文件中的键名(如"conv1.weight")不一致。这是因为用户自定义的模型结构(ResNetForModulation)将resnet作为子模块,因此所有层前面都多了一个"resnet."前缀。
解决方案:
1. 修改权重字典的键名:在加载权重文件后,手动在每个键名前加上"resnet."(除了fc层,因为用户自定义模型中fc层也在resnet子模块内,但注意权重文件中fc层键名已经是"fc.weight"和"fc.bias",而模型中对应的键是"resnet.fc.weight"和"resnet.fc.bias",所以fc层也需要修改)。
2. 或者修改模型定义:去掉自定义模型中的resnet子模块,直接使用修改后的层。但这样会破坏模型的结构封装,不推荐。
这里选择第一种方法:修改权重字典的键名。
具体步骤:
- 加载原始的state_dict
- 创建一个新的state_dict,将每个键名前面加上"resnet."(注意:fc层也需要加,因为原始权重中fc层的键名是"fc.weight"和"fc.bias",而模型中对应的是"resnet.fc.weight"和"resnet.fc.bias")
- 例外情况:如果遇到不需要修改的键(比如用户自定义添加的层,但这里没有),则跳过。但根据错误信息,所有键都需要修改。
注意:原始权重中的键名(如"conv1.weight")需要改为"resnet.conv1.weight",以此类推。
修改后的加载代码:
```python
# 加载原始权重
original_state_dict = torch.load('resnet18.pth', map_location='cpu')
# 创建新的state_dict,为每个键添加"resnet."前缀
new_state_dict = {}
for key, value in original_state_dict.items():
# 注意:原始权重中的所有键都需要添加前缀
new_key = 'resnet.' + key
new_state_dict[new_key] = value
# 加载到模型
model.load_state_dict(new_state_dict)
```
但是,注意:原始权重中已经包含了fc层的权重("fc.weight"和"fc.bias"),我们将其改为"resnet.fc.weight"和"resnet.fc.bias",这正好与模型中的键名一致。
另外,检查模型定义中的fc层:在自定义模型中,我们修改了resnet的fc层,所以模型中的fc层对应的键名是"resnet.fc.weight"和"resnet.fc.bias",而原始权重中的fc层键名是"fc.weight"和"fc.bias",经过上述修改后,它们变成了"resnet.fc.weight"和"resnet.fc.bias",所以匹配。
因此,使用上述代码修改权重字典后,再加载到模型中即可。
修改后的API代码(只修改模型加载部分):
```python
# 加载模型
model = ResNetForModulation()
# 加载原始权重
original_state_dict = torch.load('resnet18.pth', map_location='cpu')
# 创建新的state_dict,为每个键添加"resnet."前缀
new_state_dict = {}
for key, value in original_state_dict.items():
new_key = 'resnet.' + key
new_state_dict[new_key] = value
model.load_state_dict(new_state_dict)
model.eval()
```
这样应该能解决键不匹配的问题。
但是,注意:原始权重中可能包含一些不需要加前缀的键吗?根据用户提供的错误信息,原始权重中的所有键都没有"resnet."前缀,而模型中的键都有"resnet."前缀(因为模型将resnet作为一个子模块)。所以,我们需要为所有权重键添加前缀。
另外,用户提供的权重键列表中没有包括像"resnet."开头的键,所以上述修改是必要的。
现在,修改后的API代码应该可以正确加载权重。
如果还有问题,比如还有键缺失或多余,可以打印出模型的状态字典键和权重文件的键进行比较。但根据错误信息,我们已经明确知道问题所在,所以上述修改应该能解决问题。
最后,重新运行API,测试权重加载是否成功。</think>### 解决模型权重加载错误
您的错误是由于自定义模型结构(`ResNetForModulation`)与权重文件中的键名不匹配导致的。原始权重使用**扁平命名**(如 `conv1.weight`),而您的模型使用**嵌套命名**(如 `resnet.conv1.weight`)。以下是解决方案:
#### 修复代码(修改模型加载部分)
```python
# 修改后的模型加载代码
model = ResNetForModulation()
# 加载原始权重
original_state_dict = torch.load('resnet18.pth', map_location='cpu')
# 创建新的状态字典(添加resnet前缀)
new_state_dict = {}
for key, value in original_state_dict.items():
# 处理特殊层(fc层)
if key.startswith('fc'):
new_key = f'resnet.{key}'
# 处理其他所有层
else:
new_key = f'resnet.{key}' if not key.startswith('resnet') else key
new_state_dict[new_key] = value
# 加载修改后的权重
model.load_state_dict(new_state_dict)
model.eval()
```
#### 错误原因分析
1. **键名不匹配**:
- 权重文件键名:`conv1.weight`(扁平结构)
- 模型期望键名:`resnet.conv1.weight`(嵌套结构)
2. **特殊层处理**:
- `fc` 层在权重文件中是顶级键,但在模型中属于 `resnet` 子模块
- 需要手动添加 `resnet.` 前缀
3. **BN层差异**:
- 原始权重包含所有BN层参数(`running_mean`, `running_var`等)
- 自定义模型结构需要匹配这些参数
#### 验证修复
修改后运行API,检查是否出现以下成功加载提示:
```
Successfully loaded state_dict for ResNetForModulation
```
#### 备选方案
如果上述方法仍不生效,可使用更通用的重映射方法:
```python
# 通用键名重映射
from collections import OrderedDict
new_state_dict = OrderedDict()
for key, value in original_state_dict.items():
# 跳过已包含resnet前缀的键
if not key.startswith('resnet'):
# 为所有层添加resnet前缀
new_key = 'resnet.' + key
new_state_dict[new_key] = value
else:
new_state_dict[key] = value
model.load_state_dict(new_state_dict)
```
阅读全文
相关推荐
















