活动介绍

Traceback (most recent call last): File "train.py", line 190, in <module> main(config) File "train.py", line 133, in main train_one_epoch( File "/root/autodl-tmp/H-vmunet-main/engine.py", line 40, in train_one_epoch loss.backward() File "/root/miniconda3/envs/hvmunet/lib/python3.8/site-packages/torch/_tensor.py", line 487, in backward torch.autograd.backward( File "/root/miniconda3/envs/hvmunet/lib/python3.8/site-packages/torch/autograd/__init__.py", line 197, in backward Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass RuntimeError: cuDNN error: CUDNN_STATUS_MAPPING_ERROR

时间: 2025-08-11 22:23:35 浏览: 20
<think>嗯,用户遇到了RuntimeError: cuDNN error: CUDNN_STATUS_MAPPING_ERROR,这个问题在训练神经网络时出现,特别是在调用loss.backward()的时候。我需要先理解这个错误的原因,然后给出解决方案。 首先,查阅资料,cuDNN的错误通常和GPU的内存或资源分配有关。CUDNN_STATUS_MAPPING_ERROR可能是指cuDNN在尝试访问内存时遇到了问题,比如内存不足或者内存映射错误。这时候需要考虑几个方面:显存不足、驱动问题、cuDNN版本兼容性,或者代码中的问题。 用户提供的引用中,引用[1]提到了页面文件太小,可能和虚拟内存有关。虽然这里是Windows系统的错误,但显存不足也可能导致类似问题。引用[2]中的DistributedSampler涉及数据加载,可能在多GPU训练时数据分布导致内存问题。引用[3]提到数据集较大,处理时间长,可能显存占用高。 解决方案方面,首先检查显存使用情况。用户可以使用nvidia-smi查看显存占用,确认是否有其他进程占用显存。如果是,关闭它们。接着,尝试减少批量大小,这能直接降低显存需求。如果问题依旧,可能需要检查CUDA和cuDNN的版本是否兼容,升级或降级驱动和库版本。 另外,用户可能在多GPU训练时遇到问题,比如DistributedSampler的设置是否正确。如果代码中有自定义的数据加载或并行处理部分,可能存在内存分配错误。需要检查数据加载部分,特别是分布式训练时的设置。此外,确保所有张量都在同一设备上,比如没有混合CPU和GPU的张量。 还有,释放缓存也是一个方法,使用torch.cuda.empty_cache()可以释放未使用的显存。设置环境变量CUDA_LAUNCH_BLOCKING=1可以帮助定位错误的具体位置,虽然会影响性能,但调试时有用。 最后,如果以上方法都不奏效,可能需要检查硬件问题,比如GPU本身的问题或驱动安装是否正确。用户还可以尝试在PyTorch论坛或GitHub上搜索类似问题,看看是否有已知的解决方案。 生成相关问题的时候,需要考虑用户可能的后续疑问,比如显存不足的其他解决方法,如何监控显存使用,多GPU训练中的常见错误,以及cuDNN错误的进一步处理步骤。这些问题能帮助用户更全面地理解和解决类似问题。</think>针对RuntimeError: cuDNN error: CUDNN_STATUS_MAPPING_ERROR问题,以下是系统性解决方案: ### 一、错误原因分析 该错误通常与GPU内存资源分配或数据访问冲突有关,常见于以下场景: 1. **显存不足**:反向传播时显存耗尽导致内存映射失败(与引用[1]的页面文件错误类似) 2. **驱动/CUDA版本冲突**:CUDA驱动与cuDNN库版本不兼容 3. **多进程资源竞争**:分布式训练时进程间显存分配冲突(如引用[2]的分布式采样器场景) 4. **数据访问越界**:张量操作超出显存地址映射范围 ### 二、具体解决方案 #### 1. 显存优化方案 ```python # 在训练循环开始前设置 torch.cuda.empty_cache() # 清空缓存 torch.backends.cudnn.enabled = True # 确保启用cuDNN加速 ``` **参数调整建议**: - 减小`batch_size`(例如从32降为16) - 使用梯度累积: ```python accumulation_steps = 4 for i, (inputs, labels) in enumerate(dataloader): outputs = model(inputs) loss = criterion(outputs, labels) loss = loss / accumulation_steps # 梯度缩放 loss.backward() if (i+1) % accumulation_steps == 0: optimizer.step() optimizer.zero_grad() ``` #### 2. 环境配置检查 ```bash # 验证环境配置 nvidia-smi # 查看驱动版本和显存占用 python -c "import torch; print(torch.__version__)" # 检查PyTorch版本 python -c "import torch; print(torch.backends.cudnn.version())" # 检查cuDNN版本 ``` **版本兼容性建议**: - CUDA 11.x建议搭配cuDNN 8.x - PyTorch 1.9+建议使用CUDA 11.1+ #### 3. 分布式训练优化(针对引用[2]场景) ```python # 在初始化分布式环境时添加配置 torch.distributed.init_process_group( backend='nccl', init_method='env://', timeout=datetime.timedelta(seconds=30) # 延长超时时间 ) ``` ### 三、调试技巧 1. **错误定位**: ```python CUDA_LAUNCH_BLOCKING=1 python train.py # 同步执行CUDA操作 ``` 2. **显存监控**: ```python # 在代码中插入监控点 print(torch.cuda.memory_allocated()/1024**3, "GB used") ``` ### 四、典型错误排查流程 ``` 检查显存占用 → 验证CUDA/cuDNN版本 → 测试单卡运行 → 检查数据加载器 → 验证张量设备一致性 ```
阅读全文

相关推荐

root@autodl-container-46894b864e-f6b4fda5:~/EGE-UNet-main# python train.py #----------Creating logger----------# #----------GPU init----------# #----------Preparing dataset----------# Traceback (most recent call last): File "train.py", line 185, in <module> main(config) File "train.py", line 60, in main val_dataset = NPY_datasets(config.data_path, config, train=False) File "/root/EGE-UNet-main/datasets/dataset.py", line 29, in __init__ mask_path = path_Data+'val/masks/' + masks_list[i] IndexError: list index out of rangeroot@autodl-container-46894b864e-f6b4fda5:~/EGE-UNet-main# python train.py #----------Creating logger----------# #----------GPU init----------# #----------Preparing dataset----------# Traceback (most recent call last): File "train.py", line 185, in <module> main(config) File "train.py", line 60, in main val_dataset = NPY_datasets(config.data_path, config, train=False) File "/root/EGE-UNet-main/datasets/dataset.py", line 29, in __init__ mask_path = path_Data+'val/masks/' + masks_list[i] IndexError: list index out of rangeroot@autodl-container-46894b864e-f6b4fda5:~/EGE-UNet-main# python train.py #----------Creating logger----------# #----------GPU init----------# #----------Preparing dataset----------# Traceback (most recent call last): File "train.py", line 185, in <module> main(config) File "train.py", line 60, in main val_dataset = NPY_datasets(config.data_path, config, train=False) File "/root/EGE-UNet-main/datasets/dataset.py", line 29, in __init__ mask_path = path_Data+'val/masks/' + masks_list[i] IndexError: list index out of rangeroot@autodl-container-46894b864e-f6b4fda5:~/EGE-UNet-main# python train.py #----------Creating logger----------# #----------GPU init----------# #----------Preparing dataset----------# Traceback (most recent call last): File "train.py", line 185, in <module> main(config) File "train.py", line 60, in main val_dataset = NPY_datasets(config.data_path, config, train=False) File "/root/EGE-UNet-main/datasets/dataset.py", line 29, in __init__ mask_path = path_Data+'val/masks/' + masks_list[i] IndexError: list index out of range

Traceback (most recent call last): File "G:/unet_improve/train.py", line 12, in <module> import wandb File "C:\Users\BD407\.conda\envs\unet\lib\site-packages\wandb\__init__.py", line 20, in <module> from wandb import sdk as wandb_sdk File "C:\Users\BD407\.conda\envs\unet\lib\site-packages\wandb\sdk\__init__.py", line 24, in <module> from . import wandb_helper as helper File "C:\Users\BD407\.conda\envs\unet\lib\site-packages\wandb\sdk\wandb_helper.py", line 6, in <module> from .lib import config_util File "C:\Users\BD407\.conda\envs\unet\lib\site-packages\wandb\sdk\lib\config_util.py", line 10, in <module> from wandb.util import load_yaml File "C:\Users\BD407\.conda\envs\unet\lib\site-packages\wandb\util.py", line 54, in <module> import requests File "C:\Users\BD407\.conda\envs\unet\lib\site-packages\requests\__init__.py", line 48, in <module> from charset_normalizer import __version__ as charset_normalizer_version File "C:\Users\BD407\.conda\envs\unet\lib\site-packages\charset_normalizer\__init__.py", line 24, in <module> from .api import from_bytes, from_fp, from_path, is_binary File "C:\Users\BD407\.conda\envs\unet\lib\site-packages\charset_normalizer\api.py", line 5, in <module> from .cd import ( File "C:\Users\BD407\.conda\envs\unet\lib\site-packages\charset_normalizer\cd.py", line 14, in <module> from .md import is_suspiciously_successive_range AttributeError: partially initialized module 'charset_normalizer' has no attribute 'md__mypyc' (most likely due to a circular import) 进程已结束,退出代码1

root@b82c95bfc43f:/workspace/data-zj/test_code_v1# . train.sh /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( W0529 02:52:35.084000 938 torch/distributed/run.py:792] W0529 02:52:35.084000 938 torch/distributed/run.py:792] ***************************************** W0529 02:52:35.084000 938 torch/distributed/run.py:792] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0529 02:52:35.084000 938 torch/distributed/run.py:792] ***************************************** [W529 02:52:39.311003207 socket.cpp:204] [c10d] The hostname of the client socket cannot be retrieved. err=-3 [W529 02:52:43.313869930 socket.cpp:204] [c10d] The hostname of the client socket cannot be retrieved. err=-3 /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( /usr/local/lib/python3.10/dist-packages/torch/utils/_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using python3 -m pip install --upgrade 'optree>=0.13.0'. warnings.warn( Traceback (most recent call last): File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/train.py", line 17, in <module> from axolotl.cli.config import load_cfg File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/config.py", line 19, in <module> from axolotl.utils.config import ( File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/config/__init__.py", line 16, in <module> from axolotl.utils.models import MULTIMODAL_AUTO_MODEL_MAPPING, load_model_config File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/models.py", line 17, in <module> import transformers.modeling_utils File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py", line 62, in <module> from .integrations.flash_attention import flash_attention_forward File "/usr/local/lib/python3.10/dist-packages/transformers/integrations/flash_attention.py", line 5, in <module> from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py", line 36, in <module> from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa File "/usr/local/lib/python3.10/dist-packages/flash_attn/__init__.py", line 3, in <module> from flash_attn.flash_attn_interface import ( File "/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py", line 10, in <module> import flash_attn_2_cuda as flash_attn_cuda ImportError: /usr/local/lib/python3.10/dist-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE Traceback (most recent call last): File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/train.py", line 17, in <module> from axolotl.cli.config import load_cfg File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/config.py", line 19, in <module> from axolotl.utils.config import ( File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/config/__init__.py", line 16, in <module> from axolotl.utils.models import MULTIMODAL_AUTO_MODEL_MAPPING, load_model_config File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/models.py", line 17, in <module> import transformers.modeling_utils File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py", line 62, in <module> from .integrations.flash_attention import flash_attention_forward File "/usr/local/lib/python3.10/dist-packages/transformers/integrations/flash_attention.py", line 5, in <module> from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py", line 36, in <module> from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa File "/usr/local/lib/python3.10/dist-packages/flash_attn/__init__.py", line 3, in <module> from flash_attn.flash_attn_interface import ( File "/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py", line 10, in <module> import flash_attn_2_cuda as flash_attn_cuda ImportError: /usr/local/lib/python3.10/dist-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE Traceback (most recent call last): File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/train.py", line 17, in <module> from axolotl.cli.config import load_cfg File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/config.py", line 19, in <module> from axolotl.utils.config import ( File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/config/__init__.py", line 16, in <module> from axolotl.utils.models import MULTIMODAL_AUTO_MODEL_MAPPING, load_model_config File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/models.py", line 17, in <module> import transformers.modeling_utils File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py", line 62, in <module> from .integrations.flash_attention import flash_attention_forward File "/usr/local/lib/python3.10/dist-packages/transformers/integrations/flash_attention.py", line 5, in <module> from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py", line 36, in <module> from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa File "/usr/local/lib/python3.10/dist-packages/flash_attn/__init__.py", line 3, in <module> from flash_attn.flash_attn_interface import ( File "/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py", line 10, in <module> import flash_attn_2_cuda as flash_attn_cuda ImportError: /usr/local/lib/python3.10/dist-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE Traceback (most recent call last): File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/train.py", line 17, in <module> from axolotl.cli.config import load_cfg File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/config.py", line 19, in <module> from axolotl.utils.config import ( File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/config/__init__.py", line 16, in <module> from axolotl.utils.models import MULTIMODAL_AUTO_MODEL_MAPPING, load_model_config File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/models.py", line 17, in <module> import transformers.modeling_utils File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py", line 62, in <module> from .integrations.flash_attention import flash_attention_forward File "/usr/local/lib/python3.10/dist-packages/transformers/integrations/flash_attention.py", line 5, in <module> from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py", line 36, in <module> from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa File "/usr/local/lib/python3.10/dist-packages/flash_attn/__init__.py", line 3, in <module> from flash_attn.flash_attn_interface import ( File "/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py", line 10, in <module> import flash_attn_2_cuda as flash_attn_cuda ImportError: /usr/local/lib/python3.10/dist-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE Traceback (most recent call last): File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/train.py", line 17, in <module> from axolotl.cli.config import load_cfg File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/config.py", line 19, in <module> from axolotl.utils.config import ( File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/config/__init__.py", line 16, in <module> from axolotl.utils.models import MULTIMODAL_AUTO_MODEL_MAPPING, load_model_config File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/models.py", line 17, in <module> import transformers.modeling_utils File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py", line 62, in <module> from .integrations.flash_attention import flash_attention_forward File "/usr/local/lib/python3.10/dist-packages/transformers/integrations/flash_attention.py", line 5, in <module> from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py", line 36, in <module> from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa File "/usr/local/lib/python3.10/dist-packages/flash_attn/__init__.py", line 3, in <module> from flash_attn.flash_attn_interface import ( File "/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py", line 10, in <module> import flash_attn_2_cuda as flash_attn_cuda ImportError: /usr/local/lib/python3.10/dist-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE Traceback (most recent call last): File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/train.py", line 17, in <module> from axolotl.cli.config import load_cfg File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/config.py", line 19, in <module> from axolotl.utils.config import ( File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/config/__init__.py", line 16, in <module> from axolotl.utils.models import MULTIMODAL_AUTO_MODEL_MAPPING, load_model_config File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/models.py", line 17, in <module> import transformers.modeling_utils File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py", line 62, in <module> from .integrations.flash_attention import flash_attention_forward File "/usr/local/lib/python3.10/dist-packages/transformers/integrations/flash_attention.py", line 5, in <module> from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py", line 36, in <module> from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa File "/usr/local/lib/python3.10/dist-packages/flash_attn/__init__.py", line 3, in <module> from flash_attn.flash_attn_interface import ( File "/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py", line 10, in <module> import flash_attn_2_cuda as flash_attn_cuda ImportError: /usr/local/lib/python3.10/dist-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE Traceback (most recent call last): File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/train.py", line 17, in <module> from axolotl.cli.config import load_cfg File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/config.py", line 19, in <module> from axolotl.utils.config import ( File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/config/__init__.py", line 16, in <module> from axolotl.utils.models import MULTIMODAL_AUTO_MODEL_MAPPING, load_model_config File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/models.py", line 17, in <module> import transformers.modeling_utils File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py", line 62, in <module> from .integrations.flash_attention import flash_attention_forward File "/usr/local/lib/python3.10/dist-packages/transformers/integrations/flash_attention.py", line 5, in <module> from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py", line 36, in <module> from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa File "/usr/local/lib/python3.10/dist-packages/flash_attn/__init__.py", line 3, in <module> from flash_attn.flash_attn_interface import ( File "/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py", line 10, in <module> import flash_attn_2_cuda as flash_attn_cuda ImportError: /usr/local/lib/python3.10/dist-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE Traceback (most recent call last): File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/train.py", line 17, in <module> from axolotl.cli.config import load_cfg File "/usr/local/lib/python3.10/dist-packages/axolotl/cli/config.py", line 19, in <module> from axolotl.utils.config import ( File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/config/__init__.py", line 16, in <module> from axolotl.utils.models import MULTIMODAL_AUTO_MODEL_MAPPING, load_model_config File "/usr/local/lib/python3.10/dist-packages/axolotl/utils/models.py", line 17, in <module> import transformers.modeling_utils File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py", line 62, in <module> from .integrations.flash_attention import flash_attention_forward File "/usr/local/lib/python3.10/dist-packages/transformers/integrations/flash_attention.py", line 5, in <module> from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask File "/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py", line 36, in <module> from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa File "/usr/local/lib/python3.10/dist-packages/flash_attn/__init__.py", line 3, in <module> from flash_attn.flash_attn_interface import ( File "/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py", line 10, in <module> import flash_attn_2_cuda as flash_attn_cuda ImportError: /usr/local/lib/python3.10/dist-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE W0529 02:52:48.206000 938 torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1003 closing signal SIGTERM W0529 02:52:48.207000 938 torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1004 closing signal SIGTERM W0529 02:52:48.207000 938 torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1005 closing signal SIGTERM W0529 02:52:48.207000 938 torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1006 closing signal SIGTERM W0529 02:52:48.207000 938 torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1007 closing signal SIGTERM W0529 02:52:48.207000 938 torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1009 closing signal SIGTERM W0529 02:52:48.208000 938 torch/distributed/elastic/multiprocessing/api.py:897] Sending process 1010 closing signal SIGTERM E0529 02:52:48.385000 938 torch/distributed/elastic/multiprocessing/api.py:869] failed (exitcode: 1) local_rank: 5 (pid: 1008) of binary: /usr/bin/python Traceback (most recent call last): File "/usr/local/bin/torchrun", line 8, in <module> sys.exit(main()) File "/usr/local/lib/python3.10/dist-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/usr/local/lib/python3.10/dist-packages/torch/distributed/run.py", line 918, in main run(args) File "/usr/local/lib/python3.10/dist-packages/torch/distributed/run.py", line 909, in run elastic_launch( File "/usr/local/lib/python3.10/dist-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/usr/local/lib/python3.10/dist-packages/torch/distributed/launcher/api.py", line 269, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ axolotl.cli.train FAILED ------------------------------------------------------------ Failures: <NO_OTHER_FAILURES> ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-05-29_02:52:48 host : b82c95bfc43f rank : 5 (local_rank: 5) exitcode : 1 (pid: 1008) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================

最新推荐

recommend-type

基于llm的围棋训练应用.zip

基于llm的围棋训练应用.zip
recommend-type

一个基于大型语言模型(LLM)的智能做菜推荐系统,利用 HowToCook 开源菜谱库,为用户提供个性化的菜单推荐、购物

一个基于大型语言模型(LLM)的智能做菜推荐系统,利用 HowToCook 开源菜谱库,为用户提供个性化的菜单推荐、购物清单生成和做菜流程规划、做菜步骤,达到小白都知道“吃什么、怎么做”的目标。.zip
recommend-type

破解dex2jar: Android应用反编译与分析指南

标题中的“dex2jar”指的是一个用于将Android应用程序中的DEX文件(Dalvik可执行文件)转换成Java JAR文件的工具。这个过程被称为“DEX转JAR”,是一个逆向工程的过程,它允许开发者查看和分析Android应用程序的原始Java代码,这通常用于学习、测试和安全分析目的。破解一词在此上下文中可能用于描述不正当手段获取程序的源代码以进行修改或绕过安全机制等行为,但请注意,任何未经授权的修改和使用都可能违反法律和版权。 描述部分提供了使用dex2jar工具的基本步骤。dex2jar通常是一个批处理文件(dex2jar.bat),用于在Windows环境下执行操作。它将DEX文件(classes.dex)作为输入,并生成对应的JAR文件。这个过程需要用户已经下载并解压了dex2jar的压缩包,并将其中的dex2jar.bat文件放在一个可以访问的目录中。然后,用户需要将目标Android应用程序中的classes.dex文件复制到该目录下,并在命令行界面中运行以下命令: dex2jar.bat classes.dex 执行完毕后,会在同一目录下生成名为classes.dex.dex2jar.jar的文件。这个JAR文件实质上是将DEX文件中的类转换成了Java的.class文件,并打包成了JAR格式,供后续的分析或修改使用。 【标签】中的“Android 破解”可能被误解为破解Android应用程序的安全机制,实际上,这个标签更准确的意义是分析和理解Android应用程序的工作原理。而“jar dex”则是指JAR文件与DEX文件之间的转换关系。 【压缩包子文件的文件名称列表】中列举了几个文件名,其中“使用说明.txt”很可能是该工具的官方使用指南,提供更详细的使用说明、安装步骤和常见问题的解答。“dex2jar最新版下载dex2jar下载 2.0官方版_ - pc6下载站.url”则是一个指向PC6下载站上dex2jar工具下载页面的网页链接。“dex2jar-2.0”可能是指特定版本号的dex2jar工具压缩包。 总结以上信息,dex2jar是一个专门用于Android应用安全分析和逆向工程的工具,它将DEX文件转换成Java的JAR文件以便进行代码的查看和分析。尽管这个过程在安全研究和教育目的下是合法且有价值的,但任何使用这一工具的非法破解、侵犯版权或进行恶意行为都是不可接受的。
recommend-type

共享内存与共识算法详解

### 共享内存与共识算法详解 在分布式系统中,共享内存和共识算法是两个核心的概念。共享内存涉及到多个进程对同一数据的读写操作,而共识算法则帮助多个进程在可能存在故障的情况下达成一致的决策。下面将详细介绍这两个方面的相关知识。 #### 共享内存 共享内存的寄存器规范由Lamport在多篇论文中引入,同时定义了安全、规则和原子三种语义。 - **安全寄存器**:在三种寄存器语义中,安全寄存器提供的保证最弱。当读操作与写操作并发时,安全寄存器可能返回任意值,甚至可能是从未被写入或尝试写入的值。在多处理器机器中,进程可能并发访问实现寄存器抽象的底层硬件位置,从而导致返回任意值。在任意故障模型中
recommend-type

计算机专业本科生和研究生就业薪资待遇

<think>好的,我需要回答用户关于计算机专业本科和研究生就业薪资对比的问题。首先,我得先看看用户提供的引用资料,看看里面有没有相关的数据。 引用[4]提到,2019届计算机类本科毕业生的平均月收入是6858元,而高职是4883元。这应该可以作为本科生的参考数据。至于研究生,引用[1]指出重庆大学的计算机和软件硕士就业情况良好,薪资高于行业平均水平,但没有具体数字。不过引用[3]提到,前20名的高校多为985/211,尤其是理工类院校的毕业生薪资更高。这里可能需要结合其他信息来推断研究生的薪资水平。 另外,引用[2]提到计算机专业毕业生薪资一般在万元以上,但不确定这是否特指研究生还是包括
recommend-type

eWebEditor 10.3最新版特性与安全升级指南

从提供的信息来看,我们需要深入了解和探讨的内容主要集中在“eWebEditor最新版”这一主题上。eWebEditor是一款流行的在线HTML编辑器,它支持ASP和ASP.NET环境,并广泛用于Web内容管理。通过给出的标题和描述,以及标签和文件名称列表,我们可以推导出一系列相关的知识点。 ### 标题知识点解析 #### eWebEditor的定义与功能 “eWebEditor最新版”中提到的“eWebEditor”指的是在线HTML编辑器产品,它被广泛应用于需要在线编辑和发布网页内容的场合。编辑器通常包含许多功能,比如文本格式化、图像插入、链接管理等,提供用户友好和接近桌面程序的编辑体验。eWebEditor产品以ASP和ASP.NET作为其主要的技术平台。 #### “最新版”更新内容 “最新版”表明我们正在讨论的是eWebEditor的最新版本更新,该版本很可能是为了增加新功能、提升性能、修复已知问题或改善安全性能。一般来说,软件的更新也可能会引入对新操作系统或浏览器的兼容性,以及对现有API或开发环境的新支持。 ### 描述知识点解析 #### “亲测可用”的含义 从“亲测 可用”的描述中我们可以推断出,发布者可能已经对“eWebEditor最新版”进行了测试,并验证了其在实际使用中的性能和稳定性。该短语传递出一个积极的信号,即该版本值得信赖,用户可以期待它将正常工作,无需担心兼容性或功能缺失的问题。 ### 标签知识点解析 #### eWebEditor的版本标识 “eWebEditor ASPX 10.3 最新版”中的标签指出我们讨论的版本号为10.3,这是一个具体的产品版本,意味着它可能包含了一些特定的更新或新增特性。通过版本号,我们可以推断产品已经经过了多次迭代和改进。 #### ASPX技术框架 在标签中提到的“ASPX”,这表明eWebEditor最新版支持ASP.NET Web Forms技术,ASPX是ASP.NET网页的标准文件扩展名。这一信息指出编辑器适合使用.NET框架的网站开发环境。 ### 文件名称列表知识点解析 #### “升级说明.txt”文件 “升级说明.txt”是一个文本文件,它可能包含了eWebEditor从上一版本升级到最新版本时的变化说明,例如新增功能、改进的地方以及需要注意的变更。开发者或维护人员在升级时应该仔细阅读这些说明,以便于平滑过渡到新版本,并最大化地利用新功能。 #### “安全说明.txt”文件 “安全说明.txt”文件通常提供了关于软件安全性的相关信息,这可能包括了针对最新版的安全补丁、修复的安全漏洞列表以及安全最佳实践的建议。特别是对于在线编辑器这类直接参与网页内容生成的工具,安全尤为重要,因此,安全说明文件对于确保编辑器和整个网站的安全运行至关重要。 #### “ewebeditor”文件夹或组件 “ewebeditor”可能是实际包含eWebEditor编辑器文件的文件夹名称。通常,这类文件夹内会包含用于前端的JavaScript文件、用于后端处理的服务器端代码(ASP.NET或ASP代码),以及相关的样式文件和资源文件。对于开发者来说,了解这些文件和组件的组织结构对于集成和配置编辑器至关重要。 综合以上信息,我们可以了解到eWebEditor的最新版本更新了很多内容,可能包含性能和安全性的提升,并可能对特定的技术平台如ASP.NET提供了更好的支持。用户应该参考升级和安全说明文件,以便正确理解和应用这些更新。对于开发者而言,掌握如何在项目中部署和配置eWebEditor编辑器也是一个重要的技能点。
recommend-type

分布式系统中的时间抽象与故障处理

### 分布式系统中的时间抽象与故障处理 #### 1. 故障检测概述 在分布式系统中,存在三种不同的系统假设:异步系统假设、同步系统假设和部分同步系统假设。异步系统不包含任何时间假设,我们的进程和链路抽象直接体现了这一点。然而,这些抽象不足以定义同步和部分同步系统。 为了添加时间假设,一种方法是用时间保证来扩展进程和链路抽象,但这会导致规范过于复杂。因此,我们引入了故障检测器的抽象概念,它能提供关于哪些进程崩溃、哪些进程正常的信息,不过这些信息不一定准确。 故障检测器抽象相较于直接对进程和链路做时间假设具有以下两个优势: - 减轻了用时间假设扩展进程和链路抽象的需求,保留了这些抽象的简
recommend-type

我发一份参考课程设计目录

<think>好的,用户之前问过关于高校实验室安排系统的数据库课程设计,现在他需要一份参考的课程设计目录。首先,我需要回顾之前的对话,确保目录结构和他之前的问题相关,并且覆盖他提到的核心需求、ER模型、表结构、业务逻辑等内容。 用户现在要目录,可能是在进行课程设计的结构规划,需要明确的章节安排。我需要考虑课程设计通常包含的部分,比如需求分析、系统设计、数据库设计、实现、测试等。同时,结合之前给出的内容,比如ER图、表结构、冲突检测算法等,确保这些部分在目录中有体现。 还要注意用户可能希望目录足够详细,包含各个关键部分,比如摘要、需求分析、数据库设计(包括概念结构、逻辑结构、物理结构)、系统
recommend-type

惠普AMTBrand深度解析与技术特点

标题和描述中提到的“惠普AMTBrand”,可能是指惠普(Hewlett-Packard,简称HP)公司旗下的AMTBrand相关产品或技术。然而,由于给出的信息非常有限,我们可以先从惠普公司以及AMT(Active Management Technology,主动管理技术)两个方面进行展开。惠普是全球知名的IT企业,提供多种计算机硬件、软件、云服务和解决方案,而AMT是英特尔(Intel)研发的一种硬件级别的远程管理技术。 首先,我们来了解惠普公司: 惠普(Hewlett-Packard Enterprise,简称HPE),是全球领先的信息技术解决方案提供商。成立于1939年,由Bill Hewlett和David Packard在一间车库里创立,如今已经成为全球范围内提供广泛IT产品与服务的企业。惠普的产品和服务包括但不限于个人计算机(PC)、打印设备、工作站、服务器、网络设备、存储解决方案以及软件和服务。 惠普在IT服务管理、云计算、大数据和分析等领域均有涉猎,并为各种规模的企业提供从基础架构到应用管理的全方位解决方案。随着数字化转型的不断深入,惠普也在不断地通过研发新技术和收购相关企业来拓展其产品和服务的范围。 接着,我们探索AMT技术: AMT是英特尔推出的一种基于硬件的管理解决方案,它允许IT部门远程管理企业中的个人计算机和其他设备。AMT是一种集成在商用英特尔处理器中的技术,能够在个人电脑关机或者操作系统失效的情况下,提供网络访问以及硬件级别的远程管理功能。这项技术最初由英特尔在2006年发布,历经数代更新,为IT运维人员提供了众多功能,如远程开机、远程维护、软件部署、系统监控等。 AMT的优势主要体现在以下几个方面: 1. 远程访问:即使目标设备没有开机或操作系统出现故障,AMT也可以实现远程访问和管理。 2. 安全性:它提供比传统软件解决方案更为深入的硬件级别安全机制,确保数据传输的安全。 3. 节约成本:通过减少现场支持的需要,AMT能够帮助公司节约维护成本。 4. 提高效率:快速远程解决问题,从而提高IT部门的工作效率和响应速度。 然而,由于AMT技术基于特定的硬件和软件,这意味着用户需要购买带有AMT功能的英特尔处理器和相应的支持软件,同时可能需要来自惠普或其他OEM厂商的相应硬件。 最后,提到“压缩包子文件的文件名称列表”中的“AMTBrand”,这可能意味着提供或关联惠普AMTBrand技术的文件压缩包。考虑到文件名称的单一性和没有其他文件描述提供进一步信息,不能确定这个压缩包内具体包含哪些内容。不过,可以推测该压缩包内可能包含了介绍惠普AMTBrand技术的文档、演示、驱动程序、更新或管理工具等。 综合来看,文件中提到的“惠普AMTBrand”可能是指惠普公司与英特尔AMT技术结合后形成的产品或服务品牌,旨在为用户提供更为高效和安全的远程管理解决方案。考虑到惠普公司自身在IT领域的深厚积累和AMT技术的先进性,惠普AMTBrand很可能为企业级客户提供了重要价值。
recommend-type

分布式编程抽象:概念、应用与挑战

# 分布式编程抽象:概念、应用与挑战 ## 1. 引言 分布式编程抽象旨在解决分布式系统中多进程合作的难题,为分布式程序开发提供模块化策略。通过特定的应用程序编程接口(API),可以利用这些抽象来简化开发过程。 ## 2. 分布式计算的动机 ### 2.1 分布式系统的特点 分布式计算涉及一组寻求合作的进程。部分进程可能会因崩溃或断开连接而停止运行,这就是分布式系统的部分故障特性。正如Leslie Lamport所说:“分布式系统中,一台你甚至不知道存在的计算机故障,可能会使你自己的计算机无法使用。” ### 2.2 合作的挑战 当部分进程失败或断开连接时,仍在运行的进程需要以一致的方式