Collecting mavproxy Using cached https://www.piwheels.org/simple/mavproxy/MAVProxy-1.8.71-py3-none-any.whl (7.2 MB。这个意思是在下载了吗

时间: 2025-07-10 18:45:39 AIGC 浏览: 44
<think>好的,我现在需要帮助用户理解他们在安装MAVProxy时看到的信息:“Collecting mavproxy Using cached https://www.piwheels.org/simple/mavproxy/MAVProxy-1.8.71-py3-none-any.whl (7.2 MB”。用户的问题是,这个提示是否意味着正在下载。 首先,我要确认用户的问题核心。用户可能对pip安装过程中的信息不太熟悉,想知道这个提示是否代表正在下载,还是有其他含义。他们之前遇到了网络超时的问题,现在可能对安装过程中的每个步骤都更加关注。 接下来,我需要回顾pip的工作流程。当执行pip install时,通常会经历几个步骤:解析依赖、查找包、下载包、安装包。用户提到的信息出现在“Collecting mavproxy”这一步,这通常是pip开始处理依赖和获取包的时候。 然后,注意到信息中的“Using cached”关键词。这表示pip没有从远程服务器重新下载包,而是使用了本地缓存中的版本。缓存的存在是为了加快安装速度,避免重复下载相同的包。因此,这里的提示意味着pip找到了缓存的MAVProxy wheel文件,因此跳过了下载步骤,直接使用缓存。 用户可能混淆了“Collecting”和实际下载的过程。需要解释清楚,“Collecting”是pip在解析和准备安装包的过程,而“Using cached”说明没有进行网络下载,直接使用本地文件。这有助于用户理解安装进度,减少对网络问题的担忧。 另外,用户之前遇到了连接超时的问题,现在看到缓存的使用,可能担心是否因为网络问题导致pip无法下载最新版本。需要指出,如果缓存存在且版本符合要求,pip会优先使用缓存,这并不一定是错误,但用户如果想确保安装最新版,可以强制pip忽略缓存,使用--no-cache-dir选项。 还需要考虑用户可能的环境,比如是否在Raspberry Pi或其他使用piwheels镜像的设备上。piwheels是为树莓派优化的包仓库,使用缓存可能意味着之前已经下载过这个包,或者系统配置了piwheels作为镜像源,从而加速安装。 总结用户的问题,他们需要明确当前步骤是否在下载,以及缓存的使用是否正常。回答时要分点说明,确保结构清晰,解释“Using cached”的含义,对安装的影响,以及用户可采取的措施,如是否忽略缓存。同时,结合用户之前的网络问题,给出相关建议,比如使用镜像源或调整超时时间,但在此问题中因为使用了缓存,可能不需要这些步骤,但提供选项有助于用户未来参考。 最后,确保语言简洁,避免技术术语过多,用用户容易理解的方式解释,并确认他们的安装是否成功,是否需要进一步操作。同时,提醒用户如果遇到安装失败或版本问题,可以采取哪些措施,比如清除缓存或强制重新下载。</think>--- ### **关键解答** 你看到的 `Using cached...` 提示表示 **pip 没有从网络下载新文件,而是直接使用了本地缓存中已有的包**。具体分析如下: --- #### **1. 提示信息的含义** - **`Collecting mavproxy`**:pip 正在处理 `mavproxy` 包的安装流程(包括依赖解析和包获取)。 - **`Using cached...`**:pip 发现本地缓存中已存在该包的 wheel 文件(路径为 `https://www.piwheels.org/simple/mavproxy/...`),因此**跳过下载步骤,直接使用缓存**。 - **`(7.2 MB)`**:缓存的包大小为 7.2 MB。 --- #### **2. 是否在下载?** - **未发生下载**:由于使用了缓存,此时网络流量为 0。你可以通过以下特征判断: - 进度条显示 `100%` 或直接完成。 - 日志中没有 `Downloading...` 字样。 - **缓存来源**:该缓存可能是你或其他程序之前通过 `pip` 安装 `mavproxy` 时下载的。 --- #### **3. 为什么会出现缓存?** - **默认行为**:`pip` 会将下载过的包存储在本地缓存目录(例如 `~/.cache/pip` 或 `C:\Users\<user>\AppData\Local\pip\cache`),以加速重复安装。 - **镜像源影响**:你使用的 `piwheels.org` 是专为树莓派优化的 PyPI 镜像源,某些包会优先从该镜像缓存。 --- #### **4. 是否需要干预?** - **无需操作**:如果安装成功(最后显示 `Successfully installed mavproxy-x.x.x`),则完全正常。 - **需干预的情况**(仅限以下场景): - **安装版本过旧**:若需要最新版,可清除缓存强制重新下载: ```bash pip3 install --no-cache-dir mavproxy ``` - **缓存文件损坏**:如果安装失败并提示文件校验错误,需清理缓存: ```bash pip3 cache purge # 清除所有缓存 ``` --- ### **操作建议** 1. **观察最终结果**: - 如果输出 `Successfully installed mavproxy-x.x.x`,说明安装成功,无需处理。 - 如果卡住或报错,可能是缓存文件损坏,按上述方法清理缓存后重试。 2. **验证安装**: ```bash mavproxy.py --version # 检查是否可执行 ``` 3. **调整镜像源(可选)**: 如果未来下载其他包较慢,可改用国内镜像源(如清华源): ```bash pip3 install mavproxy -i https://pypi.tuna.tsinghua.edu.cn/simple ``` --- ### **总结** - **当前状态**:pip 正在使用缓存安装 `mavproxy`,未触发网络下载。 - **是否正常**:完全正常,只要最终安装成功即可。 - **重点关注**:安装结果而非中间缓存提示。
阅读全文

相关推荐

(tensorflow) C:\Users\lky>pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 Looking in indexes: https://download.pytorch.org/whl/cu118 Collecting torch Using cached https://download.pytorch.org/whl/cu118/torch-2.6.0%2Bcu118-cp39-cp39-win_amd64.whl.metadata (28 kB) Collecting torchvision Using cached https://download.pytorch.org/whl/cu118/torchvision-0.21.0%2Bcu118-cp39-cp39-win_amd64.whl.metadata (6.3 kB) Collecting torchaudio Using cached https://download.pytorch.org/whl/cu118/torchaudio-2.6.0%2Bcu118-cp39-cp39-win_amd64.whl.metadata (6.8 kB) Collecting filelock (from torch) Using cached https://download.pytorch.org/whl/filelock-3.13.1-py3-none-any.whl.metadata (2.8 kB) Requirement already satisfied: typing-extensions>=4.10.0 in c:\users\lky\.conda\envs\tensorflow\lib\site-packages (from torch) (4.12.2) Collecting networkx (from torch) Using cached https://download.pytorch.org/whl/networkx-3.3-py3-none-any.whl.metadata (5.1 kB) Requirement already satisfied: jinja2 in c:\users\lky\.conda\envs\tensorflow\lib\site-packages (from torch) (3.1.6) Collecting fsspec (from torch) Using cached https://download.pytorch.org/whl/fsspec-2024.6.1-py3-none-any.whl.metadata (11 kB) Collecting sympy==1.13.1 (from torch) Using cached https://download.pytorch.org/whl/sympy-1.13.1-py3-none-any.whl (6.2 MB) Collecting mpmath<1.4,>=1.1.0 (from sympy==1.13.1->torch) Using cached https://download.pytorch.org/whl/mpmath-1.3.0-py3-none-any.whl (536 kB) Requirement already satisfied: numpy in c:\users\lky\.conda\envs\tensorflow\lib\site-packages (from torchvision) (1.20.0) Collecting pillow!=8.3.*,>=5.3.0 (from torchvision) Using cached https://download.pytorch.org/whl/pillow-11.0.0-cp39-cp39-win_amd64.whl.metadata (9.3 kB) Requirement already satisfied: MarkupSafe>=2.0 in c:\users\lky\.conda\envs\tensorflow\lib\site-packages (from jinja2->torch) (3.0.2) INFO: pip is looking at multiple versions of networkx to determine which versi

python版本是3.7为啥在这里卡住了 (autolabel) abot@abot:~/AutoLabelImg-master$ pip install -r requirements.txt Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting natsort Using cached https://pypi.tuna.tsinghua.edu.cn/packages/ef/82/7a9d0550484a62c6da82858ee9419f3dd1ccc9aa1c26a1e43da3ecd20b0d/natsort-8.4.0-py3-none-any.whl (38 kB) Collecting strsimpy Using cached https://pypi.tuna.tsinghua.edu.cn/packages/fc/90/bd55a4b18f4b75a76e32f444975d2c869d692eb23897d116d47122f88d1a/strsimpy-0.2.1-py3-none-any.whl (45 kB) Collecting easygui Using cached https://pypi.tuna.tsinghua.edu.cn/packages/8e/a7/b276ff776533b423710a285c8168b52551cb2ab0855443131fdc7fd8c16f/easygui-0.98.3-py2.py3-none-any.whl (92 kB) Collecting pyautogui Using cached https://pypi.tuna.tsinghua.edu.cn/packages/65/ff/cdae0a8c2118a0de74b6cf4cbcdcaf8fd25857e6c3f205ce4b1794b27814/PyAutoGUI-0.9.54.tar.gz (61 kB) Installing build dependencies ... done Getting requirements to build wheel ... done Preparing metadata (pyproject.toml) ... done Collecting pyqt5>=5.14.1 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/4d/5d/b8b6e26956ec113ad3f566e02abd12ac3a56b103fcc7e0735e27ee4a1df3/PyQt5-5.15.10.tar.gz (3.2 MB) Installing build dependencies ... done Getting requirements to build wheel ... done Preparing metadata (pyproject.toml) ... -

Looking in indexes: https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple Collecting paddlespeech Using cached https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/93/0d/d4a84fd48b79ee6eae33ef3dce027ec24953d2f6ee31f9cb890ea0fb6c32/paddlespeech-1.4.2-py3-none-any.whl (1.6 MB) Collecting braceexpand (from paddlespeech) Using cached https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/fa/93/e8c04e80e82391a6e51f218ca49720f64236bc824e92152a2633b74cf7ab/braceexpand-0.1.7-py2.py3-none-any.whl (5.9 kB) Collecting editdistance (from paddlespeech) Using cached https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/ea/2a/6b823e71cef694d6f070a1d82be2842706fa193541aab8856a8f42044cd0/editdistance-0.8.1-cp312-cp312-macosx_11_0_arm64.whl (79 kB) Collecting g2p-en (from paddlespeech) Using cached https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/d7/d9/b77dc634a7a0c0c97716ba97dd0a28cbfa6267c96f359c4f27ed71cbd284/g2p_en-2.1.0-py3-none-any.whl (3.1 MB) Collecting g2pM (from paddlespeech) Using cached https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/af/21/dc5b497f09a94a9605e0b8a94ad0e01ae73a2b65109bf5bd325b0814b6a8/g2pM-0.1.2.5-py3-none-any.whl (1.7 MB) Collecting h5py (from paddlespeech) Using cached https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/10/13/cc1cb7231399617d9951233eb12fddd396ff5d4f7f057ee5d2b1ca0ee7e7/h5py-3.13.0-cp312-cp312-macosx_11_0_arm64.whl (2.9 MB) Collecting hyperpyyaml (from paddlespeech) Using cached https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/33/c9/751b6401887f4b50f9307cc1e53d287b3dc77c375c126aeb6335aff73ccb/HyperPyYAML-1.2.2-py3-none-any.whl (16 kB) Collecting inflect (from paddlespeech) Using cached https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/8a/eb/427ed2b20a38a4ee29f24dbe4ae2dafab198674fe9a85e3d6adf9e5f5f41/inflect-7.5.0-py3-none-any.whl (35 kB) Collecting jsonlines (from paddlespeech) Using cached https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/f8/62/d9ba6323b9202dd2fe166beab8a86d29465c41a028

Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting tensorflow-gpu==2.5.0 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/56/23/76efd2d809706ade990c4481b608dc3ebd47df83f5069af86da97a10f93e/tensorflow_gpu-2.5.0-cp38-cp38-manylinux2010_x86_64.whl (454.4 MB)  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 454.4/454.4 MB 1.2 MB/s eta 0:00:0000:0100:09 [?25hCollecting imageio Using cached https://pypi.tuna.tsinghua.edu.cn/packages/1e/b7/02adac4e42a691008b5cfb31db98c190e1fc348d1521b9be4429f9454ed1/imageio-2.35.1-py3-none-any.whl (315 kB) Collecting numpy~=1.19.2 (from tensorflow-gpu==2.5.0) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/66/d7/3b133b17e185f14137bc8afe7a41daf1f31556900f10238312a5ae9c7345/numpy-1.19.5-cp38-cp38-manylinux2010_x86_64.whl (14.9 MB) Collecting absl-py~=0.10 (from tensorflow-gpu==2.5.0) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/97/75/f5e61fb67ecbe45c31035b17562464e11b91a2b8a351bae5ca0db2969e3b/absl_py-0.15.0-py3-none-any.whl (132 kB) Collecting astunparse~=1.6.3 (from tensorflow-gpu==2.5.0) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/2b/03/13dde6512ad7b4557eb792fbcf0c653af6076b81e5941d36ec61f7ce6028/astunparse-1.6.3-py2.py3-none-any.whl (12 kB) Collecting flatbuffers~=1.12.0 (from tensorflow-gpu==2.5.0) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/eb/26/712e578c5f14e26ae3314c39a1bdc4eb2ec2f4ddc89b708cf8e0a0d20423/flatbuffers-1.12-py2.py3-none-any.whl (15 kB) Collecting google-pasta~=0.2 (from tensorflow-gpu==2.5.0) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a3/de/c648ef6835192e6e2cc03f40b19eeda4382c49b5bafb43d88b931c4c74ac/google_pasta-0.2.0-py3-none-any.whl (57 kB) Collecting h5py~=3.1.0 (from tensorflow-gpu==2.5.0) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/67/b2/c20d2f11ca86132f70799da2fc213772676025f556e1f4404754d000600a/h5py-3.1.0-cp38-cp38-manylinux1_x86_64.whl (4.4 MB) Collecting keras-preprocessing~=1.1.2 (from tensorflow-gpu==2.5.0) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/79/4c/7c3275a01e12ef9368a892926ab932b33bb13d55794881e3573482b378a7/Keras_Preprocessing-1.1.2-py2.py3-none-any.whl (42 kB) Collecting opt-einsum~=3.3.0 (from tensorflow-gpu==2.5.0) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/bc/19/404708a7e54ad2798907210462fd950c3442ea51acc8790f3da48d2bee8b/opt_einsum-3.3.0-py3-none-any.whl (65 kB) Collecting protobuf>=3.9.2 (from tensorflow-gpu==2.5.0) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/85/e4/07c80521879c2d15f321465ac24c70efe2381378c00bf5e56a0f4fbac8cd/protobuf-5.29.5-cp38-abi3-manylinux2014_x86_64.whl (319 kB) Collecting six~=1.15.0 (from tensorflow-gpu==2.5.0) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/ee/ff/48bde5c0f013094d729fe4b0316ba2a24774b3ff1c52d924a8a4cb04078a/six-1.15.0-py2.py3-none-any.whl (10 kB) Collecting termcolor~=1.1.0 (from tensorflow-gpu==2.5.0) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/8a/48/a76be51647d0eb9f10e2a4511bf3ffb8cc1e6b14e9e4fab46173aa79f981/termcolor-1.1.0.tar.gz (3.9 kB) Preparing metadata (setup.py) ... [?25ldone [?25hCollecting typing-extensions~=3.7.4 (from tensorflow-gpu==2.5.0) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/60/7a/e881b5abb54db0e6e671ab088d079c57ce54e8a01a3ca443f561ccadb37e/typing_extensions-3.7.4.3-py3-none-any.whl (22 kB) Requirement already satisfied: wheel~=0.35 in /data2/shizhongxi/.conda/envs/mmlab/lib/python3.8/site-packages (from tensorflow-gpu==2.5.0) (0.44.0) Collecting wrapt~=1.12.1 (from tensorflow-gpu==2.5.0) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/82/f7/e43cefbe88c5fd371f4cf0cf5eb3feccd07515af9fd6cf7dbf1d1793a797/wrapt-1.12.1.tar.gz (27 kB) Preparing metadata (setup.py) ... [?25ldone [?25hCollecting gast==0.4.0 (from tensorflow-gpu==2.5.0) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b6/48/583c032b79ae5b3daa02225a675aeb673e58d2cb698e78510feceb11958c/gast-0.4.0-py3-none-any.whl (9.8 kB) Collecting tensorboard~=2.5 (from tensorflow-gpu==2.5.0) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/bc/a2/ff5f4c299eb37c95299a76015da3f30211468e29d8d6f1d011683279baee/tensorboard-2.14.0-py3-none-any.whl (5.5 MB) Collecting tensorflow-estimator<2.6.0,>=2.5.0rc0 (from tensorflow-gpu==2.5.0) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/ec/78/b27f73e923becc6e79e18fe112cf75e3200d1ee35b0dba8fa46181bce56c/tensorflow_estimator-2.5.0-py2.py3-none-any.whl (462 kB) INFO: pip is looking at multiple versions of tensorflow-gpu to determine which version is compatible with other requirements. This could take a while. 31mERROR: Could not find a version that satisfies the requirement keras-nightly~=2.5.0.dev (from tensorflow-gpu) (from versions: none) 31mERROR: No matching distribution found for keras-nightly~=2.5.0.dev

Installing build dependencies ... error error: subprocess-exited-with-error × pip subprocess to install build dependencies did not run successfully. │ exit code: 1 ╰─> [78 lines of output] Looking in indexes: https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple Ignoring numpy: markers 'python_version == "3.5"' don't match your environment Ignoring numpy: markers 'python_version == "3.6"' don't match your environment Ignoring numpy: markers 'python_version == "3.7"' don't match your environment Collecting setuptools Using cached https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a9/38/7d7362e031bd6dc121e5081d8cb6aa6f6fedf2b67bf889962134c6da4705/setuptools-75.8.2-py3-none-any.whl (1.2 MB) Collecting wheel Using cached https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/0b/2c/87f3254fd8ffd29e4c02732eee68a83a1d3c346ae39bc6822dcbcb697f2b/wheel-0.45.1-py3-none-any.whl (72 kB) Collecting scikit-build Using cached https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/c3/a3/21b519f58de90d684056c52ec4e45f744cfda7483f082dcc4dd18cc74a93/scikit_build-0.18.1-py3-none-any.whl (85 kB) Collecting cmake Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/18/58/909d6d99acb4e0886d0f660cf4e0fb26f586590e370b2e4ce7a10d06b145/cmake-3.31.6-py3-none-win_amd64.whl (36.4 MB) -------------------------------------- 36.4/36.4 MB 177.3 kB/s eta 0:00:00 Collecting pip Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/c9/bc/b7db44f5f39f9d0494071bddae6880eb645970366d0a200022a1a93d57f5/pip-25.0.1-py3-none-any.whl (1.8 MB) ---------------------------------------- 1.8/1.8 MB 308.2 kB/s eta 0:00:00 Collecting numpy==1.17.3 Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b6/d6/be8f975f5322336f62371c9abeb936d592c98c047ad63035f1b38ae08efe/numpy-1.17.3.zip (6.4 MB) --------------------------------------

transformers在pycharm中安装报错:PS D:\Python\PythonProject3> conda activate pytorch-gpu PS D:\Python\PythonProject3> pip show transformers WARNING: Package(s) not found: transformers PS D:\Python\PythonProject3> pip install transformers Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting transformers Using cached https://pypi.tuna.tsinghua.edu.cn/packages/5b/0b/e45d26ccd28568013523e04f325432ea88a442b4e3020b757cf4361f0120/transformers-4.30.2-py3-none-any.whl (7.2 MB) Requirement already satisfied: filelock in d:\anaconda3\lib\site-packages (from transformers) (3.0.8) Collecting huggingface-hub<1.0,>=0.14.1 (from transformers) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/7f/c4/adcbe9a696c135578cabcbdd7331332daad4d49b7c43688bc2d36b3a47d2/huggingface_hub-0.16.4-py3-none-any.whl (268 kB) Requirement already satisfied: numpy>=1.17 in d:\anaconda3\lib\site-packages (from transformers) (1.21.6) Collecting packaging>=20.0 (from transformers) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/49/df/1fceb2f8900f8639e278b056416d49134fb8d84c5942ffaa01ad34782422/packaging-24.0-py3-none-any.whl (53 kB) Collecting pyyaml>=5.1 (from transformers) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/1e/ae/964ccb88a938f20ece5754878f182cfbd846924930d02d29d06af8d4c69e/PyYAML-6.0.1-cp37-cp37m-win_amd64.whl (153 kB) Collecting regex!=2019.12.17 (from transformers) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/9c/a9/e482ecfb6b229cc0b55c5360674280adddea26327a4ecdc258bc09d1fbd3/regex-2024.4.16-cp37-cp37m-win_amd64.whl (269 kB) Requirement already satisfied: requests in d:\anaconda3\lib\site-packages (from transformers) (2.19.1) Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/90/06/1f3a3a6fb57bf3e72f63cbf0ae0991540065dd6a13393b89761b38634cb0/tokenizers-0.13.3-cp37-cp37m-win_amd64.whl (3.5 MB) Collecting safetensors>=0.3.1 (from transformers) Using cached https://py

D:\Program Files\QGIS 3.40.9\bin>"D:\Program Files\QGIS 3.40.9\bin\python-qgis-ltr.bat" -m pip install chromadb Looking in indexes: https://mirrors.ustc.edu.cn/pypi/web/simple Collecting chromadb Using cached https://mirrors.ustc.edu.cn/pypi/packages/6f/81/6decbd21c67572d67707f7e168851f10404e2857897456c6ba220e9b09be/chromadb-1.0.20-cp39-abi3-win_amd64.whl (19.8 MB) Collecting build>=1.0.3 (from chromadb) Using cached https://mirrors.ustc.edu.cn/pypi/packages/cb/8c/2b30c12155ad8de0cf641d76a8b396a16d2c36bc6d50b621a62b7c4567c1/build-1.3.0-py3-none-any.whl (23 kB) Requirement already satisfied: pydantic>=1.9 in d:\program files\qgis 3.40.9\apps\python312\lib\site-packages (from chromadb) (2.11.7) Collecting pybase64>=1.4.1 (from chromadb) Using cached https://mirrors.ustc.edu.cn/pypi/packages/4f/bc/d5c277496063a09707486180f17abbdbdebbf2f5c4441b20b11d3cb7dc7c/pybase64-1.4.2-cp312-cp312-win_amd64.whl (35 kB) Collecting uvicorn>=0.18.3 (from uvicorn[standard]>=0.18.3->chromadb) Using cached https://mirrors.ustc.edu.cn/pypi/packages/d2/e2/dc81b1bd1dcfe91735810265e9d26bc8ec5da45b4c0f6237e286819194c3/uvicorn-0.35.0-py3-none-any.whl (66 kB) Requirement already satisfied: numpy>=1.22.5 in d:\program files\qgis 3.40.9\apps\python312\lib\site-packages (from chromadb) (1.26.4) Collecting posthog<6.0.0,>=2.4.0 (from chromadb) Using cached https://mirrors.ustc.edu.cn/pypi/packages/4f/98/e480cab9a08d1c09b1c59a93dade92c1bb7544826684ff2acbfd10fcfbd4/posthog-5.4.0-py3-none-any.whl (105 kB) Requirement already satisfied: typing-extensions>=4.5.0 in d:\program files\qgis 3.40.9\apps\python312\lib\site-packages (from chromadb) (4.14.1) Collecting onnxruntime>=1.14.1 (from chromadb) Using cached https://mirrors.ustc.edu.cn/pypi/packages/5d/54/7139d463bb0a312890c9a5db87d7815d4a8cce9e6f5f28d04f0b55fcb160/onnxruntime-1.22.1-cp312-cp312-win_amd64.whl (12.7 MB) Collecting opentelemetry-api>=1.2.0 (from chromadb) Using cached https://mirrors.ustc.edu.cn/pypi/packages/bb/ee/6b08dde0a022c463b88f55ae81149584b125a42183407dc1045c486cc870/opentelemetry_api-1.36.0-py3-none-any.whl (65 kB) Collecting opentelemetry-exporter-otlp-proto-grpc>=1.2.0 (from chromadb) Using cached https://mirrors.ustc.edu.cn/pypi/packages/0c/67/5f6bd188d66d0fd8e81e681bbf5822e53eb150034e2611dd2b935d3ab61a/opentelemetry_exporter_otlp_proto_grpc-1.36.0-py3-none-any.whl (18 kB) Collecting opentelemetry-sdk>=1.2.0 (from chromadb) Using cached https://mirrors.ustc.edu.cn/pypi/packages/0b/59/7bed362ad1137ba5886dac8439e84cd2df6d087be7c09574ece47ae9b22c/opentelemetry_sdk-1.36.0-py3-none-any.whl (119 kB) Requirement already satisfied: tokenizers>=0.13.2 in d:\program files\qgis 3.40.9\apps\python312\lib\site-packages (from chromadb) (0.21.4) Collecting pypika>=0.48.9 (from chromadb) Using cached pypika-0.48.9-py2.py3-none-any.whl ERROR: Could not install packages due to an OSError: [Errno 13] Permission denied: 'C:\\users\\zsr\\appdata\\local\\pip\\cache\\wheels\\02\\86\\04\\ab67b25febf5f99460a3f6c37d4ae72fef0ced6ef547c10d1b\\pypika-0.48.9-py2.py3-none-any.whl' Consider using the --user option or check the permissions. [notice] A new release of pip is available: 25.0 -> 25.2 [notice] To update, run: python.exe -m pip install --upgrade pip 请告诉我上述安装错误出现在哪里?

Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting macro-correct Using cached https://pypi.tuna.tsinghua.edu.cn/packages/5f/e4/613e3cd973a83e48cf8ef71fc2c2c7195fdbf7d2b4d12f0a1ee439a10c6b/macro_correct-0.0.5-py2.py3-none-any.whl (520 kB) INFO: pip is looking at multiple versions of macro-correct to determine which version is compatible with other requirements. This could take a while. Using cached https://pypi.tuna.tsinghua.edu.cn/packages/16/4e/f6e57ad205b1f95bcb56ea01bfa6fbc4755f3287f12a1a7c4f46b02b07de/macro_correct-0.0.4-py2.py3-none-any.whl (524 kB) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/65/48/bfa53fca6ef42ca6465bad720682230f469d6a26173b0a15ba1023145804/macro_correct-0.0.3-py2.py3-none-any.whl (559 kB) ERROR: Cannot install macro-correct==0.0.3, macro-correct==0.0.4 and macro-correct==0.0.5 because these package versions have conflicting dependencies. The conflict is caused by: macro-correct 0.0.5 depends on huggingface-hub>=0.25.1 macro-correct 0.0.4 depends on huggingface-hub>=0.25.1 macro-correct 0.0.3 depends on huggingface-hub>=0.25.1 To fix this you could try to: 1. loosen the range of package versions you've specified 2. remove package versions to allow pip attempt to solve the dependency conflict ERROR: ResolutionImpossible: for help visit https://pip.pypa.io/en/latest/topics/dependency-resolution/#dealing-with-dependency-conflicts

Looking in indexes: https://mirrors.aliyun.com/pypi/simple/ Collecting certifi==2019.3.9 (from -r requirements.txt (line 1)) Using cached https://mirrors.aliyun.com/pypi/packages/60/75/f692a584e85b7eaba0e03827b3d51f45f571c2e793dd731e598828d380aa/certifi-2019.3.9-py2.py3-none-any.whl (158 kB) Collecting chardet==3.0.4 (from -r requirements.txt (line 2)) Using cached https://mirrors.aliyun.com/pypi/packages/bc/a9/01ffebfb562e4274b6487b4bb1ddec7ca55ec7510b22e4c51f14098443b8/chardet-3.0.4-py2.py3-none-any.whl (133 kB) Collecting click==6.7 (from -r requirements.txt (line 3)) Using cached https://mirrors.aliyun.com/pypi/packages/34/c1/8806f99713ddb993c5366c362b2f908f18269f8d792aff1abfd700775a77/click-6.7-py2.py3-none-any.whl (71 kB) Collecting Flask==1.0.2 (from -r requirements.txt (line 4)) Using cached https://mirrors.aliyun.com/pypi/packages/7f/e7/08578774ed4536d3242b14dacb4696386634607af824ea997202cd0edb4b/Flask-1.0.2-py2.py3-none-any.whl (91 kB) Collecting Flask-WTF==0.14.2 (from -r requirements.txt (line 5)) Using cached https://mirrors.aliyun.com/pypi/packages/60/3a/58c629472d10539ae5167dc7c1fecfa95dd7d0b7864623931e3776438a24/Flask_WTF-0.14.2-py2.py3-none-any.whl (14 kB) Collecting idna==2.8 (from -r requirements.txt (line 6)) Using cached https://mirrors.aliyun.com/pypi/packages/14/2c/cd551d81dbe15200be1cf41cd03869a46fe7226e7450af7a6545bfc474c9/idna-2.8-py2.py3-none-any.whl (58 kB) Collecting itsdangerous==0.24 (from -r requirements.txt (line 7)) Using cached https://mirrors.aliyun.com/pypi/packages/dc/b4/a60bcdba945c00f6d608d8975131ab3f25b22f2bcfe1dab221165194b2d4/itsdangerous-0.24.tar.gz (46 kB) Preparing metadata (setup.py) ... done Collecting Jinja2==2.10 (from -r requirements.txt (line 8)) Using cached https://mirrors.aliyun.com/pypi/packages/7f/ff/ae64bacdfc95f27a016a7bed8e8686763ba4d277a78ca76f32659220a731/Jinja2-2.10-py2.py3-none-any.whl (126 kB) Requirement already satisfied: setuptools in c:\programdata\anaconda3\envs\3112\lib\site-packages (from -r requirements.txt (line 9)) (78.1.1) Collecting MarkupSafe (from -r requirements.txt (line 10)) Using cached https://mirrors.aliyun.com/pypi/packages/da/b8/3a3bd761922d416f3dc5d00bfbed11f66b1ab89a0c2b6e887240a30b0f6b/MarkupSafe-3.0.2-cp311-cp311-win_amd64.whl (15 kB) Collecting numpy==1.15.4 (from -r requirements.txt (line 11)) Using cached https://mirrors.aliyun.com/pypi/packages/2d/80/1809de155bad674b494248bcfca0e49eb4c5d8bee58f26fe7a0dd45029e2/numpy-1.15.4.zip (4.5 MB) Preparing metadata (setup.py) ... done Collecting pandas==0.23.4 (from -r requirements.txt (line 12)) Using cached https://mirrors.aliyun.com/pypi/packages/e9/ad/5e92ba493eff96055a23b0a1323a9a803af71ec859ae3243ced86fcbd0a4/pandas-0.23.4.tar.gz (10.5 MB) Preparing metadata (setup.py) ... error error: subprocess-exited-with-error × python setup.py egg_info did not run successfully. │ exit code: 1 ╰─> [15 lines of output] C:\Users\Administrator\AppData\Local\Temp\pip-install-mwx2ea8w\pandas_33f6702689674a99929697720e4cfb12\setup.py:12: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html import pkg_resources C:\ProgramData\anaconda3\envs\3112\Lib\site-packages\setuptools\__init__.py:94: _DeprecatedInstaller: setuptools.installer and fetch_build_eggs are deprecated. !! ******************************************************************************** Requirements should be satisfied by a PEP 517 installer. If you are using pip, you can try pip install --use-pep517. ******************************************************************************** !! dist.fetch_build_eggs(dist.setup_requires) error in pandas setup command: 'install_requires' must be a string or iterable of strings containing valid project/version requirement specifiers; Expected end or semicolon (after version specifier) pytz >= 2011k ~~~~~~~^ [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed × Encountered error while generating package metadata. ╰─> See above for output. note: This is an issue with the package mentioned above, not pip. hint: See above for details.

Collecting sympy==1.13.1 (from torch==2.5.1->vllm==0.6.4.post1->-r requirements.txt (line 31)) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b2/fe/81695a1aa331a842b582453b605175f419fe8540355886031328089d840a/sympy-1.13.1-py3-none-any.whl (6.2 MB) Collecting nvidia-nvtx-cu12==12.4.127 (from torch==2.5.1->vllm==0.6.4.post1->-r requirements.txt (line 31)) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/87/20/199b8713428322a2f22b722c62b8cc278cc53dffa9705d744484b5035ee9/nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (99 kB) Collecting nvidia-nvjitlink-cu12==12.4.127 (from torch==2.5.1->vllm==0.6.4.post1->-r requirements.txt (line 31)) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/ff/ff/847841bacfbefc97a00036e0fce5a0f086b640756dc38caea5e1bb002655/nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (21.1 MB) Collecting nvidia-nccl-cu12==2.21.5 (from torch==2.5.1->vllm==0.6.4.post1->-r requirements.txt (line 31)) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/df/99/12cd266d6233f47d00daf3a72739872bdc10267d0383508b0b9c84a18bb6/nvidia_nccl_cu12-2.21.5-py3-none-manylinux2014_x86_64.whl (188.7 MB) Collecting nvidia-cusparse-cu12==12.3.1.170 (from torch==2.5.1->vllm==0.6.4.post1->-r requirements.txt (line 31)) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/db/f7/97a9ea26ed4bbbfc2d470994b8b4f338ef663be97b8f677519ac195e113d/nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl (207.5 MB) Collecting nvidia-cusolver-cu12==11.6.1.9 (from torch==2.5.1->vllm==0.6.4.post1->-r requirements.txt (line 31)) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/3a/e1/5b9089a4b2a4790dfdea8b3a006052cfecff58139d5a4e34cb1a51df8d6f/nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl (127.9 MB) Collecting nvidia-curand-cu12==10.3.5.147 (from torch==2.5.1->vllm==0.6.4.post1->-r requirements.txt (line 31)) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/8a/6d/44ad094874c6f1b9c654f8e

(rtx5070_env) PS E:\PyTorch_Build\pytorch> # 1. 诊断环境问题 (rtx5070_env) PS E:\PyTorch_Build\pytorch> python diagnose.py ============================================================ PyTorch 构建环境诊断 ============================================================ 操作系统: Windows 10 Python版本: 3.10.10 ============================================================ CUDA 验证 ============================================================ [检查] CUDA_HOME环境变量... ✓ 成功: E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1 [检查] NVCC编译器... Exception in thread Thread-4 (_readerthread): Traceback (most recent call last): File "E:\Python310\lib\threading.py", line 1016, in _bootstrap_inner self.run() File "E:\Python310\lib\threading.py", line 953, in run self._target(*self._args, **self._kwargs) File "E:\Python310\lib\subprocess.py", line 1499, in _readerthread buffer.append(fh.read()) File "E:\Python310\lib\codecs.py", line 322, in decode (result, consumed) = self._buffer_decode(data, self.errors, final) UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb2 in position 13: invalid start byte ❌ 失败 (代码 1): Traceback (most recent call last): File "E:\PyTorch_Build\pytorch\diagnose.py", line 16, in run_check result = subprocess.run( File "E:\Python310\lib\subprocess.py", line 526, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '%CUDA_HOME%\bin\nvcc --version' returned non-zero exit status 1. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "E:\PyTorch_Build\pytorch\diagnose.py", line 78, in <module> main() File "E:\PyTorch_Build\pytorch\diagnose.py", line 45, in main run_check("NVCC编译器", "%CUDA_HOME%\\bin\\nvcc --version", critical=True) File "E:\PyTorch_Build\pytorch\diagnose.py", line 28, in run_check print(e.stderr.strip()) AttributeError: 'NoneType' object has no attribute 'strip' (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 2. 修复环境问题(根据诊断结果) (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 3. 清除虚拟环境(重新开始) (rtx5070_env) PS E:\PyTorch_Build\pytorch> Remove-Item -Recurse -Force rtx5070_env -ErrorAction Ignore (rtx5070_env) PS E:\PyTorch_Build\pytorch> python -m venv rtx5070_env (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 4. 激活环境并安装依赖 (rtx5070_env) PS E:\PyTorch_Build\pytorch> .\rtx5070_env\Scripts\Activate.ps1 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install -r requirements.txt Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting setuptools<80.0,>=70.1.0 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/0d/6d/b4752b044bf94cb802d88a888dc7d288baaf77d7910b7dedda74b5ceea0c/setuptools-79.0.1-py3-none-any.whl (1.3 MB) Collecting cmake>=3.27 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/7c/d0/73cae88d8c25973f2465d5a4457264f95617c16ad321824ed4c243734511/cmake-4.1.0-py3-none-win_amd64.whl (37.6 MB) Collecting ninja Using cached https://pypi.tuna.tsinghua.edu.cn/packages/29/45/c0adfbfb0b5895aa18cec400c535b4f7ff3e52536e0403602fc1a23f7de9/ninja-1.13.0-py3-none-win_amd64.whl (309 kB) Collecting numpy Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a3/dd/4b822569d6b96c39d1215dbae0582fd99954dcbcf0c1a13c61783feaca3f/numpy-2.2.6-cp310-cp310-win_amd64.whl (12.9 MB) Collecting packaging Using cached https://pypi.tuna.tsinghua.edu.cn/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl (66 kB) Collecting pyyaml Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b5/84/0fa4b06f6d6c958d207620fc60005e241ecedceee58931bb20138e1e5776/PyYAML-6.0.2-cp310-cp310-win_amd64.whl (161 kB) Collecting requests Using cached https://pypi.tuna.tsinghua.edu.cn/packages/1e/db/4254e3eabe8020b458f1a747140d32277ec7a271daf1d235b70dc0b4e6e3/requests-2.32.5-py3-none-any.whl (64 kB) Collecting six Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl (11 kB) Collecting typing-extensions>=4.10.0 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl (44 kB) Collecting build[uv] Downloading https://pypi.tuna.tsinghua.edu.cn/packages/cb/8c/2b30c12155ad8de0cf641d76a8b396a16d2c36bc6d50b621a62b7c4567c1/build-1.3.0-py3-none-any.whl (23 kB) Collecting expecttest>=0.3.0 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/27/fb/deeefea1ea549273817ca7bed3db2f39cc238a75a745a20e3651619f7335/expecttest-0.3.0-py3-none-any.whl (8.2 kB) Collecting filelock Using cached https://pypi.tuna.tsinghua.edu.cn/packages/42/14/42b2651a2f46b022ccd948bca9f2d5af0fd8929c4eec235b8d6d844fbe67/filelock-3.19.1-py3-none-any.whl (15 kB) Collecting fsspec>=0.8.5 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/2f/e0/014d5d9d7a4564cf1c40b5039bc882db69fd881111e03ab3657ac0b218e2/fsspec-2025.7.0-py3-none-any.whl (199 kB) Collecting hypothesis Downloading https://pypi.tuna.tsinghua.edu.cn/packages/cc/82/823c202c8b349ff31a0718e46ff98074bebfb3aa20813091cea07821c25f/hypothesis-6.138.13-py3-none-any.whl (533 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 533.6/533.6 kB ? eta 0:00:00 Collecting jinja2 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl (134 kB) Collecting lintrunner Downloading https://pypi.tuna.tsinghua.edu.cn/packages/40/c1/eb0184a324dd25e19b84e52fc44c6262710677737c8acca5d545b3d25ffb/lintrunner-0.12.7-py3-none-win_amd64.whl (1.7 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.7/1.7 MB 27.3 MB/s eta 0:00:00 Collecting networkx>=2.5.1 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b9/54/dd730b32ea14ea797530a4479b2ed46a6fb250f682a9cfb997e968bf0261/networkx-3.4.2-py3-none-any.whl (1.7 MB) Collecting optree>=0.13.0 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/74/fa/83d4cd387043483ee23617b048829a1289bf54afe2f6cb98ec7b27133369/optree-0.17.0-cp310-cp310-win_amd64.whl (304 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 304.4/304.4 kB 18.4 MB/s eta 0:00:00 Collecting psutil Downloading https://pypi.tuna.tsinghua.edu.cn/packages/50/1b/6921afe68c74868b4c9fa424dad3be35b095e16687989ebbb50ce4fceb7c/psutil-7.0.0-cp37-abi3-win_amd64.whl (244 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 244.9/244.9 kB 15.6 MB/s eta 0:00:00 Collecting sympy>=1.13.3 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl (6.3 MB) Collecting wheel Using cached https://pypi.tuna.tsinghua.edu.cn/packages/0b/2c/87f3254fd8ffd29e4c02732eee68a83a1d3c346ae39bc6822dcbcb697f2b/wheel-0.45.1-py3-none-any.whl (72 kB) Collecting charset_normalizer<4,>=2 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/e2/c6/f05db471f81af1fa01839d44ae2a8bfeec8d2a8b4590f16c4e7393afd323/charset_normalizer-3.4.3-cp310-cp310-win_amd64.whl (107 kB) Collecting certifi>=2017.4.17 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/e5/48/1549795ba7742c948d2ad169c1c8cdbae65bc450d6cd753d124b17c8cd32/certifi-2025.8.3-py3-none-any.whl (161 kB) Collecting idna<4,>=2.5 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl (70 kB) Collecting urllib3<3,>=1.21.1 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a7/c2/fe1e52489ae3122415c51f387e221dd0773709bad6c6cdaa599e8a2c5185/urllib3-2.5.0-py3-none-any.whl (129 kB) Collecting pyproject_hooks Downloading https://pypi.tuna.tsinghua.edu.cn/packages/bd/24/12818598c362d7f300f18e74db45963dbcb85150324092410c8b49405e42/pyproject_hooks-1.2.0-py3-none-any.whl (10 kB) Collecting colorama Using cached https://pypi.tuna.tsinghua.edu.cn/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl (25 kB) Collecting tomli>=1.1.0 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/6e/c2/61d3e0f47e2b74ef40a68b9e6ad5984f6241a942f7cd3bbfbdbd03861ea9/tomli-2.2.1-py3-none-any.whl (14 kB) Collecting uv>=0.1.18 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/45/5e/9bf7004bd53e9279265d73a131fe2a6c7d74c1125c53e805b5e9f4047f37/uv-0.8.14-py3-none-win_amd64.whl (20.7 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 20.7/20.7 MB 50.4 MB/s eta 0:00:00 Collecting attrs>=22.2.0 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/77/06/bb80f5f86020c4551da315d78b3ab75e8228f89f0162f2c3a819e407941a/attrs-25.3.0-py3-none-any.whl (63 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 63.8/63.8 kB ? eta 0:00:00 Collecting sortedcontainers<3.0.0,>=2.1.0 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/32/46/9cb0e58b2deb7f82b84065f37f3bffeb12413f947f9388e4cac22c4621ce/sortedcontainers-2.4.0-py2.py3-none-any.whl (29 kB) Collecting exceptiongroup>=1.0.0 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/36/f4/c6e662dade71f56cd2f3735141b265c3c79293c109549c1e6933b0651ffc/exceptiongroup-1.3.0-py3-none-any.whl (16 kB) Collecting MarkupSafe>=2.0 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/44/06/e7175d06dd6e9172d4a69a72592cb3f7a996a9c396eee29082826449bbc3/MarkupSafe-3.0.2-cp310-cp310-win_amd64.whl (15 kB) Collecting mpmath<1.4,>=1.1.0 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl (536 kB) Installing collected packages: sortedcontainers, mpmath, wheel, uv, urllib3, typing-extensions, tomli, sympy, six, setuptools, pyyaml, pyproject_hooks, psutil, packaging, numpy, ninja, networkx, MarkupSafe, lintrunner, idna, fsspec, filelock, expecttest, colorama, cmake, charset_normalizer, certifi, attrs, requests, optree, jinja2, exceptiongroup, build, hypothesis Attempting uninstall: setuptools Found existing installation: setuptools 65.5.0 Uninstalling setuptools-65.5.0: Successfully uninstalled setuptools-65.5.0 Successfully installed MarkupSafe-3.0.2 attrs-25.3.0 build-1.3.0 certifi-2025.8.3 charset_normalizer-3.4.3 cmake-4.1.0 colorama-0.4.6 exceptiongroup-1.3.0 expecttest-0.3.0 filelock-3.19.1 fsspec-2025.7.0 hypothesis-6.138.13 idna-3.10 jinja2-3.1.6 lintrunner-0.12.7 mpmath-1.3.0 networkx-3.4.2 ninja-1.13.0 numpy-2.2.6 optree-0.17.0 packaging-25.0 psutil-7.0.0 pyproject_hooks-1.2.0 pyyaml-6.0.2 requests-2.32.5 setuptools-79.0.1 six-1.17.0 sortedcontainers-2.4.0 sympy-1.14.0 tomli-2.2.1 typing-extensions-4.15.0 urllib3-2.5.0 uv-0.8.14 wheel-0.45.1 [notice] A new release of pip available: 22.3.1 -> 25.2 [notice] To update, run: python.exe -m pip install --upgrade pip (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 5. 运行修复后的构建脚本 (rtx5070_env) PS E:\PyTorch_Build\pytorch> .\build_fixed.ps1 -Verbose # 使用-Verbose获取详细输出 ParserError: E:\PyTorch_Build\pytorch\build_fixed.ps1:19 Line | 19 | & $Command 2>&1 | Tee-Object -FilePath $LogFil … | ~ | Unexpected token '2' in expression or statement. (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 6. 验证安装 (rtx5070_env) PS E:\PyTorch_Build\pytorch> python verify_pytorch.py ================================================== PyTorch 安装验证 ================================================== 操作系统: Windows 10 Traceback (most recent call last): File "E:\PyTorch_Build\pytorch\verify_pytorch.py", line 8, in <module> print(f"PyTorch版本: {torch.__version__}") AttributeError: module 'torch' has no attribute '__version__' (rtx5070_env) PS E:\PyTorch_Build\pytorch> python verify_pytorch_fixed.py Traceback (most recent call last): File "E:\PyTorch_Build\pytorch\verify_pytorch_fixed.py", line 2, in <module> import torch.nn as nn ModuleNotFoundError: No module named 'torch.nn' (rtx5070_env) PS E:\PyTorch_Build\pytorch>

这是怎么了?“PowerShell 7 环境已加载 (版本: 7.5.2) PS C:\Users\Administrator\Desktop> cd E:\AI_System PS E:\AI_System> PS E:\AI_System> python test_base_import.py Get-Process: A positional parameter cannot be found that accepts argument 'python'. PS E:\AI_System> cd E:\AI_System PS E:\AI_System> python diagnose_modules.py ============================================================ 模块文件诊断报告 ============================================================ 🔍 检查 CognitiveSystem 模块: 预期路径: E:\AI_System\agent\cognitive_architecture.py ✅ 文件存在 ⚠️ 文件中包含相对导入,可能导致导入错误 ✅ 找到类定义: class CognitiveSystem ✅ 类继承CognitiveModule ✅ 找到__init__方法 📋 初始化方法: def __init__(self, name): 🔍 检查 EnvironmentInterface 模块: 预期路径: E:\AI_System\agent\environment_interface.py ✅ 文件存在 ✅ 找到类定义: class EnvironmentInterface ✅ 类继承CognitiveModule ✅ 找到__init__方法 📋 初始化方法: def __init__(self, coordinator=None, config=None): 🔍 检查 AffectiveSystem 模块: 预期路径: E:\AI_System\agent\affective_system.py ✅ 文件存在 ✅ 找到类定义: class AffectiveSystem ✅ 类继承CognitiveModule ✅ 找到__init__方法 📋 初始化方法: def __init__(self, coordinator=None, config=None): ============================================================ 建议解决方案: ============================================================ 1. 检查每个模块文件中的相对导入语句 2. 确保每个模块类都正确继承CognitiveModule 3. 检查初始化方法的参数是否正确 4. 确保模块内部的导入使用绝对路径或正确处理相对导入 5. 考虑使用try-catch包装模块内部的导入语句 PS E:\AI_System> python diagnose_architecture.py Traceback (most recent call last): File "E:\AI_System\diagnose_architecture.py", line 8, in <module> from core.module_registry import validate_module_structure File "E:\AI_System\core\__init__.py", line 15, in <module> from .base_module import CognitiveModule, LifecycleModule ImportError: cannot import name 'CognitiveModule' from 'core.base_module' (E:\AI_System\core\base_module.py) PS E:\AI_System>” “”PowerShell 7 环境已加载 (版本: 7.5.2) PowerShell 7 环境已加载 (版本: 7.5.2) PS C:\Users\Administrator\Desktop> # 在 E:\AI_System 目录下执行 PS C:\Users\Administrator\Desktop> python -m venv .venv PS C:\Users\Administrator\Desktop> .\.venv\Scripts\activate (.venv) PS C:\Users\Administrator\Desktop> pip install --upgrade torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting torch==2.1.0 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/fa/47/1a7daf04f40715fc1cdc6f1cc3200228a556d06c843e6ceb58883b745e1b/torch-2.1.0-cp310-cp310-win_amd64.whl (192.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 192.3/192.3 MB 29.7 MB/s eta 0:00:00 Collecting torchvision==0.16.0 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/59/af/426c2b90f5c4f8aba778746465af9e662680570e950e02379e91c6138285/torchvision-0.16.0-cp310-cp310-win_amd64.whl (1.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 78.3 MB/s eta 0:00:00 Collecting torchaudio==2.1.0 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/6b/ba/0e26883fd90f280452bed7edc7906ef9253255f395702751f65fa02afb5c/torchaudio-2.1.0-cp310-cp310-win_amd64.whl (2.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.3/2.3 MB 74.4 MB/s eta 0:00:00 Collecting sympy Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl (6.3 MB) Collecting jinja2 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl (134 kB) Collecting typing-extensions Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b5/00/d631e67a838026495268c2f6884f3711a15a9a2a96cd244fdaea53b823fb/typing_extensions-4.14.1-py3-none-any.whl (43 kB) Collecting networkx Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b9/54/dd730b32ea14ea797530a4479b2ed46a6fb250f682a9cfb997e968bf0261/networkx-3.4.2-py3-none-any.whl (1.7 MB) Collecting fsspec Using cached https://pypi.tuna.tsinghua.edu.cn/packages/2f/e0/014d5d9d7a4564cf1c40b5039bc882db69fd881111e03ab3657ac0b218e2/fsspec-2025.7.0-py3-none-any.whl (199 kB) Collecting filelock Using cached https://pypi.tuna.tsinghua.edu.cn/packages/42/14/42b2651a2f46b022ccd948bca9f2d5af0fd8929c4eec235b8d6d844fbe67/filelock-3.19.1-py3-none-any.whl (15 kB) Collecting numpy Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a3/dd/4b822569d6b96c39d1215dbae0582fd99954dcbcf0c1a13c61783feaca3f/numpy-2.2.6-cp310-cp310-win_amd64.whl (12.9 MB) Collecting pillow!=8.3.*,>=5.3.0 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a9/d3/60c781c83a785d6afbd6a326ed4d759d141de43aa7365725cbcd65ce5e54/pillow-11.3.0-cp310-cp310-win_amd64.whl (7.0 MB) Collecting requests Using cached https://pypi.tuna.tsinghua.edu.cn/packages/1e/db/4254e3eabe8020b458f1a747140d32277ec7a271daf1d235b70dc0b4e6e3/requests-2.32.5-py3-none-any.whl (64 kB) Collecting MarkupSafe>=2.0 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/44/06/e7175d06dd6e9172d4a69a72592cb3f7a996a9c396eee29082826449bbc3/MarkupSafe-3.0.2-cp310-cp310-win_amd64.whl (15 kB) Collecting idna<4,>=2.5 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl (70 kB) Collecting certifi>=2017.4.17 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/e5/48/1549795ba7742c948d2ad169c1c8cdbae65bc450d6cd753d124b17c8cd32/certifi-2025.8.3-py3-none-any.whl (161 kB) Collecting urllib3<3,>=1.21.1 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a7/c2/fe1e52489ae3122415c51f387e221dd0773709bad6c6cdaa599e8a2c5185/urllib3-2.5.0-py3-none-any.whl (129 kB) Collecting charset_normalizer<4,>=2 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/e2/c6/f05db471f81af1fa01839d44ae2a8bfeec8d2a8b4590f16c4e7393afd323/charset_normalizer-3.4.3-cp310-cp310-win_amd64.whl (107 kB) Collecting mpmath<1.4,>=1.1.0 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl (536 kB) Installing collected packages: mpmath, urllib3, typing-extensions, sympy, pillow, numpy, networkx, MarkupSafe, idna, fsspec, filelock, charset_normalizer, certifi, requests, jinja2, torch, torchvision, torchaudio Successfully installed MarkupSafe-3.0.2 certifi-2025.8.3 charset_normalizer-3.4.3 filelock-3.19.1 fsspec-2025.7.0 idna-3.10 jinja2-3.1.6 mpmath-1.3.0 networkx-3.4.2 numpy-2.2.6 pillow-11.3.0 requests-2.32.5 sympy-1.14.0 torch-2.1.0 torchaudio-2.1.0 torchvision-0.16.0 typing-extensions-4.14.1 urllib3-2.5.0 [notice] A new release of pip available: 22.3.1 -> 25.2 [notice] To update, run: python.exe -m pip install --upgrade pip (.venv) PS C:\Users\Administrator\Desktop>

PowerShell 7 环境已加载 (版本: 7.5.2) PowerShell 7 环境已加载 (版本: 7.5.2) PS C:\Users\Administrator\Desktop> cd E:\PyTorch_Build\pytorch PS E:\PyTorch_Build\pytorch> .\pytorch_env\Scripts\activate (pytorch_env) PS E:\PyTorch_Build\pytorch> # 退出虚拟环境 (pytorch_env) PS E:\PyTorch_Build\pytorch> deactivate PS E:\PyTorch_Build\pytorch> PS E:\PyTorch_Build\pytorch> # 删除旧环境 PS E:\PyTorch_Build\pytorch> Remove-Item -Recurse -Force .\pytorch_env PS E:\PyTorch_Build\pytorch> Remove-Item -Recurse -Force .\cuda_env PS E:\PyTorch_Build\pytorch> PS E:\PyTorch_Build\pytorch> # 创建新虚拟环境 PS E:\PyTorch_Build\pytorch> python -m venv rtx5070_env PS E:\PyTorch_Build\pytorch> .\rtx5070_env\Scripts\activate (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装基础编译工具 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install -U pip setuptools wheel ninja cmake Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: pip in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (22.3.1) Collecting pip Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b7/3f/945ef7ab14dc4f9d7f40288d2df998d1837ee0888ec3659c813487572faa/pip-25.2-py3-none-any.whl (1.8 MB) Requirement already satisfied: setuptools in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (65.5.0) Collecting setuptools Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl (1.2 MB) Collecting wheel Using cached https://pypi.tuna.tsinghua.edu.cn/packages/0b/2c/87f3254fd8ffd29e4c02732eee68a83a1d3c346ae39bc6822dcbcb697f2b/wheel-0.45.1-py3-none-any.whl (72 kB) Collecting ninja Using cached https://pypi.tuna.tsinghua.edu.cn/packages/29/45/c0adfbfb0b5895aa18cec400c535b4f7ff3e52536e0403602fc1a23f7de9/ninja-1.13.0-py3-none-win_amd64.whl (309 kB) Collecting cmake Using cached https://pypi.tuna.tsinghua.edu.cn/packages/7c/d0/73cae88d8c25973f2465d5a4457264f95617c16ad321824ed4c243734511/cmake-4.1.0-py3-none-win_amd64.whl (37.6 MB) ERROR: To modify pip, please run the following command: E:\PyTorch_Build\pytorch\rtx5070_env\Scripts\python.exe -m pip install -U pip setuptools wheel ninja cmake [notice] A new release of pip available: 22.3.1 -> 25.2 [notice] To update, run: python.exe -m pip install --upgrade pip (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 验证 CUDA 安装 (rtx5070_env) PS E:\PyTorch_Build\pytorch> nvcc --version # 应显示 CUDA 12.x nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2025 NVIDIA Corporation Built on Wed_Jul_16_20:06:48_Pacific_Daylight_Time_2025 Cuda compilation tools, release 13.0, V13.0.48 Build cuda_13.0.r13.0/compiler.36260728_0 (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 正确更新 pip 和工具链 (rtx5070_env) PS E:\PyTorch_Build\pytorch> python -m pip install -U pip setuptools wheel ninja cmake Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: pip in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (22.3.1) Collecting pip Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b7/3f/945ef7ab14dc4f9d7f40288d2df998d1837ee0888ec3659c813487572faa/pip-25.2-py3-none-any.whl (1.8 MB) Requirement already satisfied: setuptools in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (65.5.0) Collecting setuptools Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl (1.2 MB) Collecting wheel Using cached https://pypi.tuna.tsinghua.edu.cn/packages/0b/2c/87f3254fd8ffd29e4c02732eee68a83a1d3c346ae39bc6822dcbcb697f2b/wheel-0.45.1-py3-none-any.whl (72 kB) Collecting ninja Using cached https://pypi.tuna.tsinghua.edu.cn/packages/29/45/c0adfbfb0b5895aa18cec400c535b4f7ff3e52536e0403602fc1a23f7de9/ninja-1.13.0-py3-none-win_amd64.whl (309 kB) Collecting cmake Using cached https://pypi.tuna.tsinghua.edu.cn/packages/7c/d0/73cae88d8c25973f2465d5a4457264f95617c16ad321824ed4c243734511/cmake-4.1.0-py3-none-win_amd64.whl (37.6 MB) Installing collected packages: wheel, setuptools, pip, ninja, cmake Attempting uninstall: setuptools Found existing installation: setuptools 65.5.0 Uninstalling setuptools-65.5.0: Successfully uninstalled setuptools-65.5.0 Attempting uninstall: pip Found existing installation: pip 22.3.1 Uninstalling pip-22.3.1: Successfully uninstalled pip-22.3.1 Successfully installed cmake-4.1.0 ninja-1.13.0 pip-25.2 setuptools-80.9.0 wheel-0.45.1 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 验证版本 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip --version # 应显示 25.2+ pip 25.2 from E:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\pip (python 3.10) (rtx5070_env) PS E:\PyTorch_Build\pytorch> cmake --version # 应显示 4.1.0+ cmake version 4.1.0 CMake suite maintained and supported by Kitware (kitware.com/cmake). (rtx5070_env) PS E:\PyTorch_Build\pytorch> ninja --version # 应显示 1.13.0+ 1.13.0.git.kitware.jobserver-pipe-1 (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置 CUDA 12.1 环境变量 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:CUDA_PATH = "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:PATH = "$env:CUDA_PATH\bin;" + $env:PATH (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 验证 CUDA 版本 (rtx5070_env) PS E:\PyTorch_Build\pytorch> nvcc --version # 应显示 release 12.1 nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2025 NVIDIA Corporation Built on Wed_Jul_16_20:06:48_Pacific_Daylight_Time_2025 Cuda compilation tools, release 13.0, V13.0.48 Build cuda_13.0.r13.0/compiler.36260728_0 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置 cuDNN 路径(根据实际安装位置) (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:CUDNN_INCLUDE_DIR = "$env:CUDA_PATH\include" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:CUDNN_LIBRARY = "$env:CUDA_PATH\lib\x64\cudnn.lib" (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装必要依赖 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install pyyaml numpy typing_extensions Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting pyyaml Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b5/84/0fa4b06f6d6c958d207620fc60005e241ecedceee58931bb20138e1e5776/PyYAML-6.0.2-cp310-cp310-win_amd64.whl (161 kB) Collecting numpy Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a3/dd/4b822569d6b96c39d1215dbae0582fd99954dcbcf0c1a13c61783feaca3f/numpy-2.2.6-cp310-cp310-win_amd64.whl (12.9 MB) Collecting typing_extensions Using cached https://pypi.tuna.tsinghua.edu.cn/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl (44 kB) Installing collected packages: typing_extensions, pyyaml, numpy Successfully installed numpy-2.2.6 pyyaml-6.0.2 typing_extensions-4.15.0 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装 GPU 相关依赖 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install mkl mkl-include intel-openmp Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting mkl Using cached https://pypi.tuna.tsinghua.edu.cn/packages/91/ae/025174ee141432b974f97ecd2aea529a3bdb547392bde3dd55ce48fe7827/mkl-2025.2.0-py2.py3-none-win_amd64.whl (153.6 MB) Collecting mkl-include Using cached https://pypi.tuna.tsinghua.edu.cn/packages/06/87/3eee37bf95c6b820b6394ad98e50132798514ecda1b2584c71c2c96b973c/mkl_include-2025.2.0-py2.py3-none-win_amd64.whl (1.3 MB) Collecting intel-openmp Using cached https://pypi.tuna.tsinghua.edu.cn/packages/89/ed/13fed53fcc7ea17ff84095e89e63418df91d4eeefdc74454243d529bf5a3/intel_openmp-2025.2.1-py2.py3-none-win_amd64.whl (34.0 MB) Collecting tbb==2022.* (from mkl) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/4e/d2/01e2a93f9c644585088188840bf453f23ed1a2838ec51d5ba1ada1ebca71/tbb-2022.2.0-py3-none-win_amd64.whl (420 kB) Collecting intel-cmplr-lib-ur==2025.2.1 (from intel-openmp) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a8/70/938e81f58886fd4e114d5a5480d98c1396e73e40b7650f566ad0c4395311/intel_cmplr_lib_ur-2025.2.1-py2.py3-none-win_amd64.whl (1.2 MB) Collecting umf==0.11.* (from intel-cmplr-lib-ur==2025.2.1->intel-openmp) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/33/a0/c8d755f08f50ddd99cb4a29a7e950ced7a0903cb72253e57059063609103/umf-0.11.0-py2.py3-none-win_amd64.whl (231 kB) Collecting tcmlib==1.* (from tbb==2022.*->mkl) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/91/7b/e30c461a27b97e0090e4db822eeb1d37b310863241f8c3ee56f68df3e76e/tcmlib-1.4.0-py2.py3-none-win_amd64.whl (370 kB) Installing collected packages: tcmlib, mkl-include, umf, tbb, intel-cmplr-lib-ur, intel-openmp, mkl Successfully installed intel-cmplr-lib-ur-2025.2.1 intel-openmp-2025.2.1 mkl-2025.2.0 mkl-include-2025.2.0 tbb-2022.2.0 tcmlib-1.4.0 umf-0.11.0 (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装必要依赖 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install pyyaml numpy typing_extensions Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: pyyaml in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (6.0.2) Requirement already satisfied: numpy in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2.2.6) Requirement already satisfied: typing_extensions in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (4.15.0) (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装 GPU 相关依赖 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install mkl mkl-include intel-openmp Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: mkl in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2025.2.0) Requirement already satisfied: mkl-include in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2025.2.0) Requirement already satisfied: intel-openmp in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2025.2.1) Requirement already satisfied: tbb==2022.* in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from mkl) (2022.2.0) Requirement already satisfied: intel-cmplr-lib-ur==2025.2.1 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from intel-openmp) (2025.2.1) Requirement already satisfied: umf==0.11.* in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from intel-cmplr-lib-ur==2025.2.1->intel-openmp) (0.11.0) Requirement already satisfied: tcmlib==1.* in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from tbb==2022.*->mkl) (1.4.0) (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置编译参数 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:USE_CUDA=1 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:USE_CUDNN=1 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:CMAKE_GENERATOR="Ninja" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:MAX_JOBS=8 # 根据 CPU 核心数设置 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 运行编译 (rtx5070_env) PS E:\PyTorch_Build\pytorch> python setup.py install >> --cmake >> --cmake-only >> --cmake-generator="Ninja" >> --verbose >> -DCMAKE_CUDA_COMPILER="${env:CUDA_PATH}\bin\nvcc.exe" >> -DCUDNN_INCLUDE_DIR="${env:CUDNN_INCLUDE_DIR}" >> -DCUDNN_LIBRARY="${env:CUDNN_LIBRARY}" >> -DTORCH_CUDA_ARCH_LIST="8.9;9.0;12.0" Building wheel torch-2.9.0a0+git2d31c3d option --cmake-generator not recognized (rtx5070_env) PS E:\PyTorch_Build\pytorch> python rtx5070_test.py ============================================================ Traceback (most recent call last): File "E:\PyTorch_Build\pytorch\rtx5070_test.py", line 39, in <module> verify_gpu_support() File "E:\PyTorch_Build\pytorch\rtx5070_test.py", line 6, in verify_gpu_support if not torch.cuda.is_available(): AttributeError: module 'torch' has no attribute 'cuda' (rtx5070_env) PS E:\PyTorch_Build\pytorch>

大家在看

recommend-type

Onvif查找IPcamera和获取Profile,StreamUri

最近在做ONVIF的开发,但是发现网络上面用C#写的代码太少,有些项目,比如ISPY Connect,Onvif Device Manager,要么就是C++的代码,要么就没有源代码。本人对C++不熟悉,而且ONVIF的C++库的代码量很多。对于我的开发来说,我只需要满足搜索到摄像头,并查找到它的Uri即可,所以决定自己写代码。 程序中主要有两个类:Discovery.cs用来搜索局域网内的IPCamera.OnvifIPCameraOperator.cs 用来获取相应摄像头的信息。
recommend-type

WindFarmer+4.2.21.0.zip

WindFarmer4.2.21.0风资源计算软件,亲测可用,建议采用Windows7兼容模式安装。
recommend-type

USB设备过滤驱动[Src+Bin]

U盘过滤驱动完全实现,包括应用程序和驱动程序
recommend-type

AUTOSAR acceptance test官方标准文档

AUTOSAR acceptance test官方标准文档,最新版本12.2016: R1.2 从官方网站获取 https://www.autosar.org/nc/document-search
recommend-type

Down For Everyone Or Just Me?-crx插件

语言:English (United States) 检查当前站点是否对所有人或仅您而言都是关闭的 想知道网站是否关闭或仅仅是您吗? 安装此扩展程序以查找。 如果您在加载网站时遇到错误,则地址栏中的书签图标旁边会出现一个向下箭头。 单击向下箭头以查看网站是否关闭或仅仅是您自己。 这是http://downforeveryoneorjustme.com的非官方扩展名。

最新推荐

recommend-type

perl-Test-Compile-2.2.2-2.el8.tar.gz

# 适用操作系统:Centos8 #Step1、解压 tar -zxvf xxx.el8.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm
recommend-type

swagger-models-jakarta-2.2.30.jar中文-英文对照文档.zip

1、压缩文件中包含: 中文-英文对照文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文-英文对照文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

分时顶底(2).tn6

分时顶底(2).tn6
recommend-type

深入理解计算机系统学习笔记与习题解析-计算机系统原理-汇编语言-处理器架构-程序优化-存储器层次-链接机制-异常控制流-虚拟内存-系统IO-网络编程-并发编程-学习资源-知识整理-.zip

tdr深入理解计算机系统学习笔记与习题解析_计算机系统原理_汇编语言_处理器架构_程序优化_存储器层次_链接机制_异常控制流_虚拟内存_系统IO_网络编程_并发编程_学习资源_知识整理_.zip
recommend-type

perl-Text-CSV-2.00-2.el8.tar.gz

# 适用操作系统:Centos8 #Step1、解压 tar -zxvf xxx.el8.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm
recommend-type

HTML时间格式化工具及测试页面介绍

标题 "BoolStudio.github.io" 暗示这是一个与GitHub相关的在线资源,具体来说是与BoolStudio相关的网页地址。GitHub是一个著名的代码托管平台,它支持Git版本控制系统,允许用户在云端存储和共享代码。BoolStudio可能是GitHub上的一个用户或组织账户名称,而该页面可能是他们托管的项目或个人页面的入口。 描述中的信息包含了HTML元素和JavaScript代码片段。这段描述展示了一个测试页文件的部分代码,涉及到HTML的标题(title)和内嵌框架(iframe)的使用,以及JavaScript中Date对象的扩展功能。 从描述中我们可以分析出以下知识点: 1. HTML标题(Title): 在HTML中,`<title>`标签用于定义网页的标题,它会显示在浏览器的标题栏或页面的标签上。在描述中出现了`<title>现在时间</title>`,这表明网页的标题被设置为了“现在时间”。 2. 微软时间: 这可能指的是在网页中嵌入微软产品的日期和时间显示。尽管这部分内容在描述中被删除了,但微软时间通常与Windows操作系统的日期和时间显示相关联。 3. iframe元素: `<iframe>`标签定义了一个内嵌框架,可以在网页中嵌入另一个文档。在描述中出现的是`<iframe src"></iframe>`,这表示创建了一个空的iframe元素,其src属性为空,实际上没有嵌入任何内容。通常src属性会被设置为另一个HTML文档的URL,用来在当前页面中显示外部页面的内容。 4. JavaScript日期格式化: 描述中包含了一段JavaScript代码,这段代码扩展了Date对象的功能,允许它根据提供的格式字符串(fmt)返回格式化的日期和时间。例如,如果fmt是'y年M月d日 h时m分s秒',则该函数会按照这个格式返回当前日期和时间。 具体到代码实现,以下步骤展示了如何在JavaScript中扩展Date对象并格式化日期: - 首先创建了一个对象o,该对象包含日期和时间的不同部分,例如年(y)、月(M)、日(d)、时(h)、分(m)、秒(s)。 - 使用正则表达式检查格式字符串fmt中是否包含年份的占位符(y+),如果存在则将其替换为四位数的年份,不足部分用0补齐。 - 使用for...in循环遍历对象o中的每一个键值对,并使用正则表达式测试这些键(如年、月、日等)是否在格式字符串中存在。如果存在,则替换为相应的日期时间值。 这个知识点展示了在JavaScript中如何自定义对象的方法,以及如何使用正则表达式进行字符串的搜索和替换。 标签 "HTML" 表明这个文件主要涉及到超文本标记语言(HTML),这是构建网页内容的标准标记语言,它允许开发者使用标签来定义网页的结构和内容。HTML文件通常包含各种元素,如段落、链接、图片、表格和表单等。 压缩包子文件的文件名称列表中的 "BoolStudio.github.io-main" 可能指的是一个包含 "BoolStudio.github.io" 网站主要文件的压缩包。通常,网站项目会包含多个文件和资源,为了便于管理和分发,开发者会将这些文件打包成一个压缩文件。在本例中,"main" 可能表示该压缩包包含了网站的主要文件和代码。 通过对给定文件信息的分析,我们可以了解到网页设计和开发的相关知识点,特别是HTML文档结构、JavaScript对象和函数扩展以及如何在网站项目中组织文件。这些知识对于前端开发者来说是非常重要的,能够帮助他们创建更加动态和功能丰富的网页应用。
recommend-type

Elixir测试:从用例执行到覆盖率分析

### Elixir 测试:从用例执行到覆盖率分析 #### 1. 测试用例执行 在测试中,以 `Test` 结尾且包含 `use ExUnit` 的模块被视为测试用例。测试用例本质上是设置回调和测试的集合。测试用例的执行方式有两种:并发执行或顺序执行。使用 `async: true` 选项的测试用例将并发执行,其余的则按定义顺序(默认随机)顺序执行。 测试用例的执行流程如下: 1. 执行所有 `setup_all` 回调。 2. 执行所有测试及其特定的设置和拆卸回调。 `setup_all` 回调按定义顺序在同一进程中执行。在运行任何测试之前,测试用例将生成一个进程,在该进程中运行所有
recommend-type

Android Studio 时间延时

<think> 我们参考多个引用,总结在Android Studio中实现时间延时的方法。根据引用[1]和[2],我们知道有几种常见的延时方法,包括使用Handler的postDelayed方法、使用Timer和TimerTask以及使用Thread.sleep。引用[3]和[5]则展示了具体代码示例。 具体方法如下: 1. **使用Handler的postDelayed方法**(推荐在主线程中使用,避免直接操作UI线程的问题): ```java new Handler().postDelayed(new Runnable() { @Override
recommend-type

IMS Open Corpus Workbench:打造高效大型文本语料库管理工具

IMS Open Corpus Workbench(以下简称CWB)是一个强大的开源工具集,它专门用于管理和查询大型的、带有语言注释的文本语料库。这项工具有着广泛的应用领域,包括语言学研究、自然语言处理、人文科学研究等。 ### 标题知识点: #### 大型文本语料库的索引和查询工具 大型文本语料库指的是含有大量文本数据的数据库,其中包含的文本量通常以百万计。这些数据可能是书面文本、口语录音文字转写等形式。对于如此庞大的数据集,索引是必要的,它可以帮助研究者快速定位到感兴趣的片段,而查询工具则提供了从这些大量数据中提取特定信息的能力。 #### 开源 CWB作为一个开源工具,意味着其源代码对所有人开放,并且可以免费使用和修改。开源项目通常是由社区驱动,有着活跃的开发者和用户群体,不断对工具进行改进和拓展。这种模式促进了创新,并且有利于长期维护和升级。 ### 描述知识点: #### 管理和查询带有语言注释的文本 在语料库中,文本数据经常会被加上各种形式的语言注释,比如句法结构、词性标注、语义角色等。CWB支持管理这类富含语言信息的语料库,使其不仅仅保存原始文本信息,还整合了深层的语言知识。此外,CWB提供了多种查询语言注释数据的方式,使得用户可以针对特定的注释信息进行精确查询。 #### 核心组件:CQP(Corpus Query Processor) CQP是CWB中的核心组件,是一个高度灵活和高效的查询处理器。它支持在终端会话中交互式地使用,这为熟悉命令行界面的用户提供了一个强大的工具。同时,CQP也可以嵌入到其他程序中,比如Perl脚本,从而提供编程式的语料库访问方式。这为高级用户提供了一个强大的平台,可以编写复杂的查询,并将查询结果集成到其他程序中。 #### 基于Web的GUI CQPweb 除了命令行界面外,CWB还提供了一个基于Web的图形用户界面CQPweb,使得不熟悉命令行的用户也能够方便地使用CWB的强大功能。CQPweb通常允许用户通过网页直接构建查询,并展示查询结果,极大地降低了使用门槛。 ### 标签知识点: #### 开源软件 CWB作为开源软件,其主要特点和优势包括: - **社区支持**:开放源代码鼓励了全球开发者共同参与,提供错误修正、功能增强、新特性开发等。 - **定制化**:用户可以根据自己的需求对源代码进行修改,从而实现定制化的功能。 - **透明性**:源代码的开放确保了软件工作的透明性,用户可以清楚了解软件的工作原理和数据处理方式。 - **可靠性**:由于代码的公开性,很多用户和开发者可以共同审查代码,提高了软件的可靠性和安全性。 - **成本效益**:开源软件通常不需要支付昂贵的许可费用,对预算有限的个人和机构特别友好。 ### 压缩包子文件的文件名称列表知识点: #### cwb-3.0.0-osx-10.5-universal 这个文件名提供了关于该软件包的重要信息: - **cwb**:表示这是IMS Open Corpus Workbench的软件包。 - **3.0.0**:表示这个包的版本号,了解版本信息对于获取支持、查看更新日志、了解新特性等方面很重要。 - **osx**:表示这个软件包是为Mac OS X操作系统设计的。 - **10.5**:这个数字指明了这个软件包支持的操作系统版本至少是Mac OS X 10.5。 - **universal**:表明这个软件包是为不同架构的处理器(比如32位和64位)设计的通用二进制文件,提高了软件包的兼容性和可移植性。 综上所述,IMS Open Corpus Workbench是一个为处理带有语言注释的大型文本语料库而设计的开源工具集,它以高效且灵活的查询处理器CQP为核心,提供了命令行和基于Web的两种交互方式,极大地促进了语言学和语言技术领域的研究与应用。由于其开源特性,CWB得到了广泛的使用和不断的改进。
recommend-type

基于属性测试的深入解析与策略探讨

### 基于属性测试的深入解析与策略探讨 #### 1. 基于属性测试中的收缩机制 在基于属性的测试中,当测试失败时,像 `stream_data` 这样的框架会执行收缩(Shrinking)操作。收缩的目的是简化导致测试失败的输入,同时确保简化后的输入仍然会使测试失败,这样能更方便地定位问题。 为了说明这一点,我们来看一个简单的排序函数测试示例。我们实现了一个糟糕的排序函数,实际上就是恒等函数,它只是原封不动地返回输入列表: ```elixir defmodule BadSortTest do use ExUnit.Case use ExUnitProperties pro