利用flume,采集任务1 mysql数据库管理系统中school数据库的所有表数据并将其上传到hadoop的hdfs文件系统中。完成该任务,写出任务完成的详细过程,包括第三方jar包的配置与使用,flume工具中agent的配置与启动,数据库的创建等操作

时间: 2025-02-23 19:31:39 AIGC 浏览: 67
利用Flume进行MySQL到HDFS的数据迁移需要分为几个步骤: 1. **数据库连接设置**: 首先,确保你已经安装了JDBC驱动,因为Flume需要通过JDBC连接MySQL。在Flume的conf目录下,新建一个`my-sql-source.conf`配置文件,添加如下内容,替换`jdbc:mysql://localhost/school?useSSL=false`为实际数据库地址和名称: ```properties connector.name=jdbc driverClassName=com.mysql.jdbc.Driver url=jdbc:mysql://<your_mysql_host>/<your_database_name> username=<your_username> password=<your_password> ``` 2. **数据源Agent配置**: 创建一个名为`source`的代理节点,它将从MySQL获取数据。在`conf/flume-conf.xml`中添加以下内容: ```xml <source> <exec name="mysqlSource" command="java -cp /path/to/mysql-jdbc-driver.jar com.example.MySqlSource"> <arg>school</arg> <!-- 数据库名 --> <property> <name>dbtable</name> <value>*</value> <!-- 指定读取所有表 --> </property> </exec> </source> ``` 这里假设你已经有一个自定义的`MySqlSource`类,它负责连接数据库并抽取数据。 3. **数据通道配置**: 添加一个`channel`,用于存储接收到的数据,比如使用Memory Channel: ```xml <channels> <channel id="memory" type="memory" capacity="1000" /> </channels> ``` 4. **Sink配置**: 将数据发送到HDFS,创建一个`sink`节点,例如使用`TextFileSink`: ```xml <sink> <ostream name="textFileSink" type="textfile"> <url>hdfs://namenode:port/path/in/hdfs</url> <!-- HDFS路径 --> <filename_prefix>school_data_</filename_prefix> </ostream> </sink> ``` 5. **链接代理节点和通道、sink**: 在`flume-conf.xml`中,将source连接到channel,再将channel连接到sink: ```xml <connectors> <connector id="sourceToChannel" agent="source" src="mysqlSource" dest="memory" /> <connector id="channelToSink" agent="source" src="memory" dest="textFileSink" /> </connectors> ``` 6. **启动Flume Agent**: 打开命令行,进入Flume bin目录运行`./bin/flume-ng start -n source`,启动名为`source`的代理节点。 7. **第三方Jar包的配置**: 确保你的系统环境变量中有指向JDBC驱动jar文件的路径,如`-cp /path/to/mysql-jdbc-driver.jar`。如果jar文件不在Flume的classpath中,你需要显式指定其位置。 8. **数据库创建**: 如果学校数据库不存在,需要先在MySQL服务器上创建它。使用MySQL客户端或者相应的管理工具创建`school`数据库,并创建所需的表。 9. **监控与调试**: 完成以上步骤后,你可以通过Flume的WebUI或者其他日志查看工具检查数据是否按预期从MySQL导入到HDFS。
阅读全文

相关推荐

一、实验目的与要求 了解并熟悉flume的功能 掌握flume的使用方法,按要求编写相关配置文件 二、实验软、硬件环境 实验室设备\个人计算机,操作系统:Windows7及以上,Python版本:3.8.7,Flume版本 1.9.0,Kafka版本 2.12,Mysql版本 8.0.23,Hadoop版本 3.1.3。 三、实验主要技术基础 MySQL 数据库操作,Flume 核心概念与配置,Kafka 与Flume 集成,HDFS 存储配置,Kafka 生产者与消费者 四、实验任务 1、MySQL数据输出 在MySQL中建立数据库school,在数据库中建立表student。SQL语句如下: create database school; use school; create table student( id int not null, name varchar(40), age int, grade int, primary key(id) ); 编写配置文件,将student表中的内容输出到控制台。启动Flume,在student表中使用下列命令插入数据,在Kafka消费者中查看相应数据。 insert into student(id,name,age,grade)value(1,'Xiaoming',23,98); insert into student(id,name,age,grade)value(2,'Zhangsan',24,96); insert into student(id,name,age,grade)value(3,'Lisi',24,93); insert into student(id,name,age,grade)value(4,'Wangwu',21,91); insert into student(id,name,age,grade)value(5,'Weiliu',21,91); 2、Kafka链接Flume 编写配置文件,将kafka作为输入,在生产者中输入“HelloFlume”或其他信息,通过Flume将Kafka生产者输入的信息存入hdfs中,存储格式hdfs://localhost:9000/fromkafka/%Y%m%d/,要求存储时文件名为kafka_log。(注:配置好Flume后生产者输入的信息

1. 使用Flume采集MySQL数据 在MySQL中建立数据库school,在数据库中建立表student。SQL语句如下: create database school; use school; create table student( id int not null, name varchar(40) , age int, grade int, primary key id ); 使用Flume实时捕捉MySQL数据库中的记录更新,一旦有新的记录生成,就捕获该记录并显示到控制台。可以使用如下SQL语句模拟MySQL数据库中的记录生成操作: insert into student(id , name , age , grade) values(1, 'Xiaoming' , 23 ,98); insert into student(id , name, age , grade) values(2, 'Zhangsan' , 24 ,96); insert into student(id , name, age , grade) values(3, 'Lisi' , 24 ,93); insert into student(id , name, age , grade) values(4, 'Wangwu' , 21 ,91); insert into student(id , name, age , grade) values(5, 'Weiliu' , 21 ,91); 2.Flume和Kafka的组合使用 编写Flume配置文件,将Kafka作为输入源,由生产者输入"HelloFlume"或其他信息;通过Flume将Kafka生产者输入的信息存入HDFS,存储格式为hdfs://localhost:9000/fromkafka/%Y%m%d/,要求存储时文件名为kafka_log(注:配置好Flume后生产者输入的信息不会实时写入HDFS,而是一段时间后批量写入)。 3.使用Flume写入当前文件系统 假设有一个目录"~/mylog/",现在新建两个文本文件l.txt与2.txt,在l.txt中输入"Hello Flume",在2.txt中输入"hello flume"。使用Flume对目录"~/mylog/"进行监控,当把l.txt与2.txt放入该目录时,Flume就会把文件内容写入"~/backup"目录下的文件中(注:配置文件中Source的类型为spooldir, Sink的类型为具体用法可以参考Apache官网文档。写一份实验思路

最新推荐

recommend-type

kafka+flume 实时采集oracle数据到hive中.docx

Flume是一个分布式、可靠、高吞吐量的日志收集系统,能够实时地从Kafka中提取数据,并将其写入到HDFS中。为了实现这一点,需要先安装Flume,版本号为flume-1.9.0-bin.tar.gz。然后,需要配置Flume的配置文件flume....
recommend-type

Kafka接收Flume数据并存储至HDFS.docx

本文为读者提供了一个完整的大数据处理方案,从Flume数据采集到Kafka队列存储再到HDFS文件系统存储,帮助读者快速熟悉Flume、Kafka和HDFS的操作使用,以及相互的操作接口。 知识点: 1、Kafka的安装和配置,包括...
recommend-type

MySql准实时同步数据到HDFS(单机版).docx

3. **Kafka到Flume**: Flume是Apache的一个高可用的、分布式的日志聚合工具,它可以从Kafka消费数据并将其写入HDFS。 4. **Flume到HDFS**: Flume配置为HDFS sink,将接收到的Kafka消息持久化到HDFS,实现数据的存储...
recommend-type

OGG实现ORACLE数据到大数据平台KFAKF的实时同步到KUDU数据库

在这个特定的场景中,OGG被用来实现实时地从Oracle RAC(Real Application Clusters)环境中的源数据同步到大数据平台Kafka,最终目的地是Kafka集群中的Kudu数据库。Oracle RAC环境通常用于高可用性和负载均衡,而...
recommend-type

根据虹软实现的 人脸检测、追踪、识别、年龄检测、性别检测 的JAVA解决方案

打开下面链接,直接免费下载资源: https://renmaiwang.cn/s/vxfyv (最新版、最全版本)根据虹软实现的 人脸检测、追踪、识别、年龄检测、性别检测 的JAVA解决方案
recommend-type

Hyperledger Fabric v2与Accord Project Cicero智能合约开发指南

标题和描述中提到的“hlf-cicero-contract:Accord Project Cicero与Hyperledger Fabric v2签约”以及“半西约合同”暗示了与智能合约和区块链技术相关的知识点。下面详细说明这些知识点: ### 智能合约与区块链技术 智能合约是一套运行在区块链上的程序,当合约条款被触发时,合约会自动执行相应的操作。这种自动执行的特点使得智能合约特别适合于执行多方之间的可信交易,它能减少或消除中介服务的需要,从而降低交易成本并提高效率。 区块链技术是一种分布式账本技术,通过加密算法和共识机制保证了交易数据的不可篡改性和透明性。区块链上的每一笔交易都会被网络中的多个节点验证并记录,确保了交易记录的安全性。 ### Hyperledger Fabric v2 Hyperledger Fabric 是由Linux基金会托管的一个开源项目,它是企业级区块链框架,旨在为商业应用提供安全、模块化、可扩展的区块链平台。Hyperledger Fabric v2.2是该框架的一个版本。 Hyperledger Fabric v2支持链码(Chaincode)概念,链码是部署在Hyperledger Fabric网络上的应用程序,它可以被用来实现各种智能合约逻辑。链码在运行时与网络中的背书节点和排序服务交互,负责验证、执行交易以及维护账本状态。 ### Accord Project Cicero Accord Project Cicero 是一个开源的智能合同模板和执行引擎,它允许开发者使用自然语言来定义合同条款,并将这些合同转换为可以在区块链上执行的智能合约。CiceroMark是基于Markdown格式的一种扩展,它允许在文档中嵌入智能合约逻辑。 通过Accord Project Cicero,可以创建出易于理解、可执行的智能合约。这些合同可以与Hyperledger Fabric集成,利用其提供的安全、透明的区块链网络环境,从而使得合同条款的执行更加可靠。 ### 智能合约的安装与部署 描述中提到了“安装”和“启动”的步骤,这意味着为了使用HLF v2.2和Accord Project Cicero,需要先进行一系列的配置和安装工作。这通常包括设置环境变量(例如HLF_INSTALL_DIR)、安装区块链网络(Test-Net)以及安装其他必需的软件工具(如jq)。 jq是一个轻量级且灵活的命令行JSON处理器,常用于处理JSON数据。在区块链项目中,jq可以帮助开发者处理链码或智能合约的数据,特别是在与网络节点交互时。 ### JavaScript 标签 标签“JavaScript”表明本项目或相关文档中会涉及到JavaScript编程语言。Hyperledger Fabric v2支持多种智能合约语言,其中JavaScript是一个广泛使用的选项。JavaScript在编写链码时提供了灵活的语法和强大的库支持,是进行区块链开发的一个流行选择。 ### 文件结构 文件名称列表“hlf-cicero-contract-master”暗示这是一个包含所有相关文件和资源的项目源代码目录。这个名称通常表明开发者可以从该目录开始探索、安装和配置项目的所有组件。 ### 综合知识点 1. 智能合约与区块链技术可以自动化执行多方面可信交易,降低交易成本并提高效率。 2. Hyperledger Fabric v2为企业提供一个安全、模块化、可扩展的区块链平台。 3. Accord Project Cicero结合Markdown格式的CiceroMark,将自然语言定义的合同条款转换为可执行的智能合约。 4. 智能合约的安装和部署涉及到一系列配置步骤,包括设置环境变量、安装必要的软件工具等。 5. JavaScript是编写智能合约的流行语言之一,为区块链开发提供灵活性和强大的库支持。 6. 项目文件结构表明从一个主目录可以探索和配置所有项目相关文件和资源。 以上是根据文件标题、描述、标签以及文件名称列表所提取的相关知识点。这些知识点对于理解Hyperledger Fabric v2和Accord Project Cicero在智能合约中的应用尤为重要。
recommend-type

深度神经网络优化技巧全解析

# 深度神经网络优化技巧全解析 ## 1 超越 Sigmoid 函数 在神经网络中,Sigmoid 函数曾被广泛使用,但它存在一些问题,如梯度消失。研究人员一直在寻找更好的激活函数,且不同的激活函数在不同场景下表现各异。 ### 1.1 ReLU 函数登场 如今,修正线性单元(ReLU)成为了 Sigmoid 的常用替代函数。与 Sigmoid 相比,ReLU 非常简单,以下是其 Python 实现: ```python def relu(z): if z <= 0: return 0 else: return z ``` ReLU 由两段直
recommend-type

什么是噪声功率密度

<think> 嗯,用户这次问的是噪声功率密度的定义,结合之前的系统指令和站内引用,需要给出清晰准确的中文解释。用户可能是电子工程或通信专业的学生,正在学习噪声相关的理论基础,也可能是工程师需要实际应用概念。从引用来[^1]看,用户对相位噪声的定义有基础认知,但需要系统梳理核心概念。 噪声功率密度最本质的定义应该是单位带宽内的噪声功率。引用[^2]提到电阻热噪声的例子很典型,50Ω电阻在300K环境下功率谱密度是定值(0.9nV/√Hz)²,这说明: 1. 它描述的是噪声功率随频率分布的密度 2. 与带宽强相关(带宽加倍则总功率加倍) 3. 单位通常用W/Hz或V²/Hz 维纳-辛钦定理(
recommend-type

Libshare: Salesforce的高效可重用模块集合

Salesforce是一个云基础的CRM平台,它允许用户构建定制应用程序来满足特定的业务需求。Apex是Salesforce平台上的一个强类型编程语言,用于开发复杂的业务逻辑,通过触发器、类和组件等实现。这些组件使得开发者可以更高效地构建应用程序和扩展Salesforce的功能。 在提到的"libshare:经过测试的Salesforce可重用模块"文件中,首先介绍了一个名为Libshare的工具包。这个工具包包含了一系列已经过测试的可重用模块,旨在简化和加速Salesforce应用程序的开发。 Libshare的各个组成部分的知识点如下: 1. 设置模块:在Salesforce应用程序中,应用程序设置的管理是必不可少的一部分。设置模块提供了一种简便的方式存储应用程序的设置,并提供了一个易用的API来与之交互。这样,开发者可以轻松地为不同的环境配置相同的设置,并且可以快速地访问和修改这些配置。 2. Fluent断言模块:断言是单元测试中的关键组成部分,它们用于验证代码在特定条件下是否表现预期。Fluent断言模块受到Java世界中Assertj的启发,提供了一种更流畅的方式来编写断言。通过这种断言方式,可以编写更易于阅读和维护的测试代码,提高开发效率和测试质量。 3. 秒表模块:在性能调优和效率测试中,记录方法的执行时间是常见的需求。秒表模块为开发者提供了一种方便的方式来记录总时间,并跟踪每种方法所花费的时间。这使得开发者能够识别瓶颈并优化代码性能。 4. JsonMapper模块:随着Web API的广泛应用,JSON数据格式在应用程序开发中扮演了重要角色。JsonMapper模块为开发者提供了一个更高级别的抽象,用于读取和创建JSON内容。这能够大幅简化与JSON数据交互的代码,并提高开发效率。 5. utils模块:在软件开发过程中,经常会遇到需要重复实现一些功能的情况,这些功能可能是通用的,例如日期处理、字符串操作等。utils模块提供了一系列已经编写好的实用工具函数,可以用于节省时间,避免重复劳动,提高开发效率。 6. 记录器模块:记录器通常用于记录应用程序的运行日志,以便于问题诊断和性能监控。系统提供的System.debug功能虽然强大,但在大型应用中,统一的记录器包装器可以使得日志管理更加高效。记录器模块支持记录器名称,并且可以对日志进行适当的封装。 7. App Logger模块:App Logger模块扩展了记录器模块的功能,它允许开发者将日志语句保存到一个精心设计的App Log对象中。此外,App Logger模块支持存储长达56k字符的日志内容,这对于复杂应用的监控和调试非常有用。 8. 应用程序任务模块:在处理异步作业时,例如批量数据处理或定时任务,需要有一个框架来管理和跟踪这些任务。应用程序任务模块提供了一个框架,用于处理可排队的作业,并能够跟踪这些任务的执行情况。 通过Libshare提供的这些模块,Salesforce的开发者能够减少开发工作量,加快开发速度,并提高代码质量。这些模块能够帮助开发者避免重复的“造轮子”工作,专注于核心业务逻辑的实现。同时,由于Libshare作为托管程序包发布,开发者无需担心代码的维护和管理,只需将其添加到自己的Salesforce组织中即可使用。 Libshare的发布也强调了可重用性的重要性,这是软件工程领域中长期提倡的一个原则。通过使用可重用的组件,开发者能够遵循DRY(Don't Repeat Yourself)原则,从而减少代码的冗余,提高生产效率,同时降低因重复编写相同代码而导致错误的风险。 总之,Libshare是一个有价值的资源,对于那些希望在Salesforce平台上快速构建高效、可靠应用程序的开发者来说,这些预置的、经过测试的模块无疑是一个强大的助手。
recommend-type

机器学习技术要点与应用解析

# 机器学习技术要点与应用解析 ## 1. 机器学习基础概念 ### 1.1 数据类型与表示 在编程中,数据类型起着关键作用。Python 具有动态类型特性,允许变量在运行时改变类型。常见的数据类型转换函数包括 `bool()`、`int()`、`str()` 等。例如,`bool()` 函数可将值转换为布尔类型,`int()` 用于将值转换为整数类型。数据类型还包括列表(`lists`)、字典(`dictionaries`)、元组(`tuples`)等集合类型,其中列表使用方括号 `[]` 表示,字典使用花括号 `{}` 表示,元组使用圆括号 `()` 表示。 ### 1.2 变量与命名