活动介绍

torch::Tensor input_tensor = torch::from_blob(input_data, {batch_size, channels, height, width}, torch::kFloat32);中 torch::kFloat32是什么意思

时间: 2025-07-16 13:13:52 浏览: 8
<think>嗯,用户问的是torch::kFloat32在PyTorch C++ API中的含义。首先我需要确认这个参数的具体作用。记得在PyTorch中,张量的数据类型很重要,决定了存储和计算的精度。 用户提供的代码行是创建一个张量,使用from_blob函数。这里的第三个参数是数据类型,torch::kFloat32应该对应32位浮点数。这和Python中的float32或者torch.float32类似吧? 需要解释清楚kFloat32代表的是单精度浮点类型,每个元素占4字节。可能用户不太清楚数据类型的意义,或者为什么需要特别指定这个参数。这时候需要说明数据类型的影响,比如内存占用、计算精度和速度,以及与其他框架或硬件的兼容性。 另外,用户可能在使用from_blob时,需要确保输入的数据(input_data)的内存布局和指定的数据类型匹配,否则可能会有错误或者数据解析问题。这也是需要注意的地方。 可能用户的实际问题是在转换数据到张量时遇到了类型不匹配,或者想知道如何选择合适的数据类型。需要提醒他们根据应用场景选择,比如深度学习通常用float32,但某些情况下可能需要float16或float64。 总结回答的结构:先说明kFloat32是什么,解释单精度浮点,然后说明为什么重要,使用场景,以及使用时需要注意的事项。这样用户能全面理解这个参数的作用,并正确应用在自己的代码中。</think>在PyTorch C++ API中,`torch::kFloat32`是一个枚举值,用于明确指定张量(Tensor)的数据类型为**32位单精度浮点数**。以下是逐步解释: 1. **基本定义** `torch::kFloat32`对应C++中的`float`类型,每个元素占用4字节内存。数学上可表示为: $$ \text{数值范围} \approx \pm 1.18 \times 10^{-38} \text{ 到 } \pm 3.4 \times 10^{38} $$ 2. **为何需要指定数据类型?** - **内存分配**:明确告诉PyTorch底层如何解析`input_data`的原始内存(比如`float*`数组) - **计算兼容性**:神经网络层(如`Linear`/`Conv2d`)通常需要特定数据类型输入 - **硬件加速**:GPU/TPU对float32有原生优化 3. **常见数据类型对照表** | PyTorch C++ API | Python API | C++原生类型 | 典型用途 | |-----------------------|------------------|------------|------------------| | `torch::kFloat32` | `torch.float32` | `float` | 深度学习默认类型 | | `torch::kFloat16` | `torch.float16` | - | 混合精度训练 | | `torch::kInt64` | `torch.int64` | `int64_t` | 索引/分类标签 | 4. **你的代码示例解析** ```cpp torch::Tensor input_tensor = torch::from_blob( input_data, // 原始数据指针 {batch_size, channels, height, width}, // 张量形状 torch::kFloat32 // 指定数据类型为float32 ); ``` - 如果`input_data`是`float*`类型,则匹配`torch::kFloat32` - 如果`input_data`是`double*`,需改用`torch::kFloat64` 5. **验证数据类型** 创建张量后,可通过以下方式检查: ```cpp std::cout << input_tensor.dtype(); // 应输出torch::kFloat32 ``` **注意事项** - 错误的数据类型会导致内存解析错误(如将`uint8_t*`指定为`torch::kFloat32`会得到无意义数值) - 在模型推理时,输入数据类型需与模型训练时的数据类型一致
阅读全文

相关推荐

import torch.nn as nn import math import torch import torch.nn as nn import torch.nn as nn import torch import torch.nn.functional as F import numpy as np import math import numpy as np from typing import Any, Callable import torch from torch import nn, Tensor from typing import List, Optional import math from ultralytics.nn.modules.conv import Conv from typing import Union var: Union[int, tuple] = 1 # build RepVGG block # ----------------------------- def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1): result = nn.Sequential() result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False)) result.add_module('bn', nn.BatchNorm2d(num_features=out_channels)) return result class SEBlock(nn.Module): def __init__(self, input_channels): super(SEBlock, self).__init__() internal_neurons = input_channels // 8 self.down = nn.Conv2d(in_channels=input_channels, out_channels=internal_neurons, kernel_size=1, stride=1, bias=True) self.up = nn.Conv2d(in_channels=internal_neurons, out_channels=input_channels, kernel_size=1, stride=1, bias=True) self.input_channels = input_channels def forward(self, inputs): x = F.avg_pool2d(inputs, kernel_size=inputs.size(3)) x = self.down(x) x = F.relu(x) x = self.up(x) x = torch.sigmoid(x) x = x.view(-1, self.input_channels, 1, 1) return inputs * x class RepVGG(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False): super(RepVGG, self).__init__() self.deploy = deploy self.groups = groups self.in_channels = in_channels padding_11 = padding - kernel_size // 2 self.nonlinearity = nn.SiLU() # self.nonlinearity = nn.ReLU() if use_se: self.se = SEBlock(out_channels, internal_neurons=out_channels // 16) else: self.se = nn.Identity() if deploy: self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True, padding_mode=padding_mode) else: self.rbr_identity = nn.BatchNorm2d( num_features=in_channels) if out_channels == in_channels and stride == 1 else None self.rbr_dense = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups) self.rbr_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=padding_11, groups=groups) # print('RepVGG Block, identity = ', self.rbr_identity) def get_equivalent_kernel_bias(self): kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense) kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1) kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity) return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid def _pad_1x1_to_3x3_tensor(self, kernel1x1): if kernel1x1 is None: return 0 else: return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1]) def _fuse_bn_tensor(self, branch): if branch is None: return 0, 0 if isinstance(branch, nn.Sequential): kernel = branch.conv.weight running_mean = branch.bn.running_mean running_var = branch.bn.running_var gamma = branch.bn.weight beta = branch.bn.bias eps = branch.bn.eps else: assert isinstance(branch, nn.BatchNorm2d) if not hasattr(self, 'id_tensor'): input_dim = self.in_channels // self.groups kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32) for i in range(self.in_channels): kernel_value[i, i % input_dim, 1, 1] = 1 self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device) kernel = self.id_tensor running_mean = branch.running_mean running_var = branch.running_var gamma = branch.weight beta = branch.bias eps = branch.eps std = (running_var + eps).sqrt() t = (gamma / std).reshape(-1, 1, 1, 1) return kernel * t, beta - running_mean * gamma / std def forward(self, inputs): if hasattr(self, 'rbr_reparam'): return self.nonlinearity(self.se(self.rbr_reparam(inputs))) if self.rbr_identity is None: id_out = 0 else: id_out = self.rbr_identity(inputs) return self.nonlinearity(self.se(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)) def fusevggforward(self, x): return self.nonlinearity(self.rbr_dense(x)) # RepVGG block end # ----------------------------- def autopad(k, p=None, d=1): # kernel, padding, dilation """Pad to 'same' shape outputs.""" if d > 1: k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad return p def makeDivisible(v: float, divisor: int, min_value: Optional[int] = None) -> int: """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.Py """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v def callMethod(self, ElementName): return getattr(self, ElementName) def setMethod(self, ElementName, ElementValue): return setattr(self, ElementName, ElementValue) def shuffleTensor(Feature: Tensor, Mode: int=1) -> Tensor: # shuffle multiple tensors with the same indexs # all tensors must have the same shape if isinstance(Feature, Tensor): Feature = [Feature] Indexs = None Output = [] for f in Feature: # not in-place operation, should update output B, C, H, W = f.shape if Mode == 1: # fully shuffle f = f.flatten(2) if Indexs is None: Indexs = torch.randperm(f.shape[-1], device=f.device) f = f[:, :, Indexs.to(f.device)] f = f.reshape(B, C, H, W) else: # shuflle along y and then x axis if Indexs is None: Indexs = [torch.randperm(H, device=f.device), torch.randperm(W, device=f.device)] f = f[:, :, Indexs[0].to(f.device)] f = f[:, :, :, Indexs[1].to(f.device)] Output.append(f) return Output class AdaptiveAvgPool2d(nn.AdaptiveAvgPool2d): def __init__(self, output_size: Union[int, tuple] = 1 ): super(AdaptiveAvgPool2d, self).__init__(output_size=output_size) def profileModule(self, Input: Tensor): Output = self.forward(Input) return Output, 0.0, 0.0 class AdaptiveMaxPool2d(nn.AdaptiveMaxPool2d): def __init__(self, output_size: Union[int, tuple] = 1): super(AdaptiveMaxPool2d, self).__init__(output_size=output_size) def profileModule(self, Input: Tensor): Output = self.forward(Input) return Output, 0.0, 0.0 NormLayerTuple = ( nn.BatchNorm1d, nn.BatchNorm2d, nn.SyncBatchNorm, nn.LayerNorm, nn.InstanceNorm1d, nn.InstanceNorm2d, nn.GroupNorm, nn.BatchNorm3d, ) def initWeight(Module): # init conv, norm , and linear layers ## empty module if Module is None: return ## conv layer elif isinstance(Module, (nn.Conv2d, nn.Conv3d, nn.ConvTranspose2d)): nn.init.kaiming_uniform_(Module.weight, a=math.sqrt(5)) if Module.bias is not None: fan_in, _ = nn.init._calculate_fan_in_and_fan_out(Module.weight) if fan_in != 0: bound = 1 / math.sqrt(fan_in) nn.init.uniform_(Module.bias, -bound, bound) ## norm layer elif isinstance(Module, NormLayerTuple): if Module.weight is not None: nn.init.ones_(Module.weight) if Module.bias is not None: nn.init.zeros_(Module.bias) ## linear layer elif isinstance(Module, nn.Linear): nn.init.kaiming_uniform_(Module.weight, a=math.sqrt(5)) if Module.bias is not None: fan_in, _ = nn.init._calculate_fan_in_and_fan_out(Module.weight) bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 nn.init.uniform_(Module.bias, -bound, bound) elif isinstance(Module, (nn.Sequential, nn.ModuleList)): for m in Module: initWeight(m) elif list(Module.children()): for m in Module.children(): initWeight(m) class BaseConv2d(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: int, stride: Optional[int] = 1, padding: Optional[int] = None, groups: Optional[int] = 1, bias: Optional[bool] = None, BNorm: bool = False, # norm_layer: Optional[Callable[..., nn.Module]]=nn.BatchNorm2d, ActLayer: Optional[Callable[..., nn.Module]] = None, dilation: int = 1, Momentum: Optional[float] = 0.1, **kwargs: Any ) -> None: super(BaseConv2d, self).__init__() if padding is None: padding = int((kernel_size - 1) // 2 * dilation) if bias is None: bias = not BNorm self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.groups = groups self.bias = bias self.Conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, **kwargs) self.Bn = nn.BatchNorm2d(out_channels, eps=0.001, momentum=Momentum) if BNorm else nn.Identity() if ActLayer is not None: if isinstance(list(ActLayer().named_modules())[0][1], nn.Sigmoid): self.Act = ActLayer() else: self.Act = ActLayer(inplace=True) else: self.Act = ActLayer self.apply(initWeight) def forward(self, x: Tensor) -> Tensor: x = self.Conv(x) x = self.Bn(x) if self.Act is not None: x = self.Act(x) return x def profileModule(self, Input: Tensor): if Input.dim() != 4: print('Conv2d requires 4-dimensional Input (BxCxHxW). Provided Input has shape: {}'.format(Input.size())) BatchSize, in_channels, in_h, in_w = Input.size() assert in_channels == self.in_channels, '{}!={}'.format(in_channels, self.in_channels) k_h, k_w = pair(self.kernel_size) stride_h, stride_w = pair(self.stride) pad_h, pad_w = pair(self.padding) groups = self.groups out_h = (in_h - k_h + 2 * pad_h) // stride_h + 1 out_w = (in_w - k_w + 2 * pad_w) // stride_w + 1 # compute MACs MACs = (k_h * k_w) * (in_channels * self.out_channels) * (out_h * out_w) * 1.0 MACs /= groups if self.bias: MACs += self.out_channels * out_h * out_w # compute parameters Params = sum([p.numel() for p in self.parameters()]) Output = torch.zeros(size=(BatchSize, self.out_channels, out_h, out_w), dtype=Input.dtype, device=Input.device) # print(MACs) return Output, Params, MACs class MoCAttention(nn.Module): # Monte carlo attention def __init__( self, InChannels: int, HidChannels: int=None, SqueezeFactor: int=4, PoolRes: list=[1, 2, 3], Act: Callable[..., nn.Module]=nn.ReLU, ScaleAct: Callable[..., nn.Module]=nn.Sigmoid, MoCOrder: bool=True, **kwargs: Any, ) -> None: super().__init__() if HidChannels is None: HidChannels = max(makeDivisible(InChannels // SqueezeFactor, 8), 32) AllPoolRes = PoolRes + [1] if 1 not in PoolRes else PoolRes for k in AllPoolRes: Pooling = AdaptiveAvgPool2d(k) setMethod(self, 'Pool%d' % k, Pooling) self.SELayer = nn.Sequential( BaseConv2d(InChannels, HidChannels, 1, ActLayer=Act), BaseConv2d(HidChannels, InChannels, 1, ActLayer=ScaleAct), ) self.PoolRes = PoolRes self.MoCOrder = MoCOrder def monteCarloSample(self, x: Tensor) -> Tensor: if self.training: PoolKeep = np.random.choice(self.PoolRes) x1 = shuffleTensor(x)[0] if self.MoCOrder else x AttnMap: Tensor = callMethod(self, 'Pool%d' % PoolKeep)(x1) if AttnMap.shape[-1] > 1: AttnMap = AttnMap.flatten(2) AttnMap = AttnMap[:, :, torch.randperm(AttnMap.shape[-1])[0]] AttnMap = AttnMap[:, :, None, None] # squeeze twice else: AttnMap: Tensor = callMethod(self, 'Pool%d' % 1)(x) return AttnMap def forward(self, x: Tensor) -> Tensor: AttnMap = self.monteCarloSample(x) return x * self.SELayer(AttnMap) class Conv(nn.Module): """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation).""" default_act = nn.SiLU() def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): super().__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() def forward(self, x): return self.act(self.bn(self.conv(x))) class RepMCABottleneck(nn.Module): """Attentional Gated Convolution Bottleneck with RepVGG and MoCAttention.""" def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): """ Args: c1 (int): Input channels c2 (int): Output channels shortcut (bool): Whether to use shortcut connection g (int): Groups for convolutions k (tuple): Kernel sizes for convolutions (k1, k2) e (float): Expansion ratio for intermediate channels """ super().__init__() c_ = int(c2 * e) # Intermediate channels # Attention module self.att = MoCAttention(InChannels=c1) # Extract individual kernel sizes from tuple k1, k2 = k # First RepVGG convolution self.repvgg1 = RepVGG(in_channels=c1, out_channels=c1, kernel_size=k1, padding=k1//2) # Use k1 # Additional convolution branch self.conv_branch = Conv(c1, c2, 1) # 1x1 convolution # Second RepVGG convolution self.repvgg2 = RepVGG(in_channels=c1, out_channels=c2, kernel_size=k2, padding=k2//2) # Use k2 # Shortcut handling self.add = shortcut and c1 == c2 if shortcut and c1 != c2: # Adjust dimensions if needed self.shortcut_conv = Conv(c1, c2, 1) # 1x1 conv for channel adjustment else: self.shortcut_conv = nn.Identity() def forward(self, x): # Apply attention att_out = self.att(x) # First RepVGG convolution repvgg1_out = self.repvgg1(att_out) # Additional convolution branch conv_branch_out = self.conv_branch(att_out) # Second RepVGG convolution repvgg2_out = self.repvgg2(repvgg1_out) # Combine outputs combined = repvgg2_out + conv_branch_out # Shortcut connection if self.add: return combined + self.shortcut_conv(x) return combined class C2f(nn.Module): """Faster Implementation of CSP Bottleneck with 2 convolutions.""" def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): """Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing.""" super().__init__() self.c = int(c2 * e) # hidden channels self.cv1 = Conv(c1, 2 * self.c, 1, 1) self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2) self.m = nn.ModuleList(RepMCABottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)) def forward(self, x): """Forward pass through C2f layer.""" y = list(self.cv1(x).chunk(2, 1)) y.extend(m(y[-1]) for m in self.m) return self.cv2(torch.cat(y, 1)) def forward_split(self, x): """Forward pass using split() instead of chunk().""" y = list(self.cv1(x).split((self.c, self.c), 1)) y.extend(m(y[-1]) for m in self.m) return self.cv2(torch.cat(y, 1)) class C3(nn.Module): """CSP Bottleneck with 3 convolutions.""" def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): """Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values.""" super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2) self.m = nn.Sequential(*(RepMCABottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n))) def forward(self, x): """Forward pass through the CSP bottleneck with 2 convolutions.""" return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1)) class C3k2_RepMCABottleneck(C2f): """Faster Implementation of CSP Bottleneck with 2 convolutions.""" def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True): """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks.""" super().__init__(c1, c2, n, shortcut, g, e) self.m = nn.ModuleList( C3k(self.c, self.c, 2, shortcut, g) if c3k else RepMCABottleneck(self.c, self.c, shortcut, g) for _ in range(n) ) class C3k(C3): """C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks.""" def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3): """Initializes the C3k module with specified channels, number of layers, and configurations.""" super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) # hidden channels # Create a tuple of kernel sizes (k, k) for RepMCABottleneck self.m = nn.Sequential(*(RepMCABottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n))) # Add to module exports __all__ = ['C3k2_RepMCABottleneck'] 报错:TypeError: unsupported operand type(s) for //: 'tuple' and 'int'

def gcd(a, b): while b: a, b = b, a % b return a # Other types of layers can go here (e.g., nn.Linear, etc.) def _init_weights(module, name, scheme=''): if isinstance(module, nn.Conv2d) or isinstance(module, nn.Conv3d): if scheme == 'normal': nn.init.normal_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif scheme == 'trunc_normal': trunc_normal_tf_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif scheme == 'xavier_normal': nn.init.xavier_normal_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) elif scheme == 'kaiming_normal': nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') if module.bias is not None: nn.init.zeros_(module.bias) else: # efficientnet like fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels fan_out //= module.groups nn.init.normal_(module.weight, 0, math.sqrt(2.0 / fan_out)) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.BatchNorm2d) or isinstance(module, nn.BatchNorm3d): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) elif isinstance(module, nn.LayerNorm): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) def act_layer(act, inplace=False, neg_slope=0.2, n_prelu=1): # activation layer act = act.lower() if act == 'relu': layer = nn.ReLU(inplace) elif act == 'relu6': layer = nn.ReLU6(inplace) elif act == 'leakyrelu': layer = nn.LeakyReLU(neg_slope, inplace) elif act == 'prelu': layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope) elif act == 'gelu': layer = nn.GELU() elif act == 'hswish': layer = nn.Hardswish(inplace) else: raise NotImplementedError('activation layer [%s] is not found' % act) return layer def channel_shuffle(x, groups): batchsize, num_channels, height, width = x.data.size() channels_per_group = num_channels // groups # reshape x = x.view(batchsize, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batchsize, -1, height, width) return x # Multi-scale depth-wise convolution (MSDC) class MSDC(nn.Module): def __init__(self, in_channels, kernel_sizes, stride, activation='relu6', dw_parallel=True): super(MSDC, self).__init__() self.in_channels = in_channels self.kernel_sizes = kernel_sizes self.activation = activation self.dw_parallel = dw_parallel self.dwconvs = nn.ModuleList([ nn.Sequential( nn.Conv2d(self.in_channels, self.in_channels, kernel_size, stride, kernel_size // 2, groups=self.in_channels, bias=False), nn.BatchNorm2d(self.in_channels), act_layer(self.activation, inplace=True) ) for kernel_size in self.kernel_sizes ]) self.init_weights('normal') def init_weights(self, scheme=''): named_apply(partial(_init_weights, scheme=scheme), self) def forward(self, x): # Apply the convolution layers in a loop outputs = [] for dwconv in self.dwconvs: dw_out = dwconv(x) outputs.append(dw_out) if self.dw_parallel == False: x = x + dw_out # You can return outputs based on what you intend to do with them return outputs class MSCB(nn.Module): """ Multi-scale convolution block (MSCB) """ def __init__(self, in_channels, out_channels, shortcut=False, stride=1, kernel_sizes=[1, 3, 5], expansion_factor=2, dw_parallel=True, activation='relu6'): super(MSCB, self).__init__() add = shortcut self.in_channels = in_channels self.out_channels = out_channels self.stride = stride self.kernel_sizes = kernel_sizes self.expansion_factor = expansion_factor self.dw_parallel = dw_parallel self.add = add self.activation = activation self.n_scales = len(self.kernel_sizes) # check stride value assert self.stride in [1, 2] # Skip connection if stride is 1 self.use_skip_connection = True if self.stride == 1 else False # expansion factor self.ex_channels = int(self.in_channels * self.expansion_factor) self.pconv1 = nn.Sequential( # pointwise convolution nn.Conv2d(self.in_channels, self.ex_channels, 1, 1, 0, bias=False), nn.BatchNorm2d(self.ex_channels), act_layer(self.activation, inplace=True) ) self.msdc = MSDC(self.ex_channels, self.kernel_sizes, self.stride, self.activation, dw_parallel=self.dw_parallel) if self.add == True: self.combined_channels = self.ex_channels * 1 else: self.combined_channels = self.ex_channels * self.n_scales self.pconv2 = nn.Sequential( # pointwise convolution nn.Conv2d(self.combined_channels, self.out_channels, 1, 1, 0, bias=False), nn.BatchNorm2d(self.out_channels), ) if self.use_skip_connection and (self.in_channels != self.out_channels): self.conv1x1 = nn.Conv2d(self.in_channels, self.out_channels, 1, 1, 0, bias=False) self.init_weights('normal') def init_weights(self, scheme=''): named_apply(partial(_init_weights, scheme=scheme), self) def forward(self, x): pout1 = self.pconv1(x) msdc_outs = self.msdc(pout1) if self.add == True: dout = 0 for dwout in msdc_outs: dout = dout + dwout else: dout = torch.cat(msdc_outs, dim=1) dout = channel_shuffle(dout, gcd(self.combined_channels, self.out_channels)) out = self.pconv2(dout) if self.use_skip_connection: if self.in_channels != self.out_channels: x = self.conv1x1(x) return x + out else: return out def autopad(k, p=None, d=1): # kernel, padding, dilation """Pad to 'same' shape outputs.""" if d > 1: k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad return p class Conv(nn.Module): """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation).""" default_act = nn.SiLU() # default activation def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): """Initialize Conv layer with given arguments including activation.""" super().__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() def forward(self, x): """Apply convolution, batch normalization and activation to input tensor.""" return self.act(self.bn(self.conv(x))) def forward_fuse(self, x): """Perform transposed convolution of 2D data.""" return self.act(self.conv(x)) import torch from torch import nn from ultralytics.nn.modules.conv import Conv from torch.nn import functional as F class Channel_Att(nn.Module): def __init__(self, channels, t=16): super(Channel_Att, self).__init__() self.channels = channels self.bn2 = nn.BatchNorm2d(self.channels, affine=True) def forward(self, x): residual = x x = self.bn2(x) weight_bn = self.bn2.weight.data.abs() / torch.sum(self.bn2.weight.data.abs()) x = x.permute(0, 2, 3, 1).contiguous() x = torch.mul(weight_bn, x) x = x.permute(0, 3, 1, 2).contiguous() x = torch.sigmoid(x) * residual # return x class NAMAttention(nn.Module): def __init__(self, channels, shape, out_channels=None, no_spatial=True): super(NAMAttention, self).__init__() self.Channel_Att = Channel_Att(channels) def forward(self, x): x_out1 = self.Channel_Att(x) return x_out1 根据这些代码,参考Conv的结构,创建一个名为MSConv的模块,输入分为两个分支,第一个是MSDC模块到BatchNorm2d到SiLU,另一个是NAM注意力,注意力机制与其他三个模块并行,最后将SiLU的输出与NAM的输出合并为最终的输出。请编辑代码实现这个思路。注意NAM注意力机制的参数问题

from typing import Dict, Tuple import torch import torch.nn.functional as F import numpy as np from einops import rearrange from diffusers.schedulers.scheduling_ddpm import DDPMScheduler import inspect from controller.model.common.normalizer import LinearNormalizer from controller.policy.base_image_policy import BaseImagePolicy from controller.model.diffusion.transformer_for_action_diffusion import TransformerForActionDiffusion from controller.model.vision.obs_encoder import ObsEncoder from scipy.optimize import linear_sum_assignment import pickle # Adapted from https://github.com/lucidrains/pi-zero-pytorch/blob/e82fced40e55023a0ded22ab3bda495964353253/pi_zero_pytorch/pi_zero.py#L216 def noise_assignment(data, noise): device = data.device data, noise = tuple(rearrange(t, 'b ... -> b (...)') for t in (data, noise)) dist = torch.cdist(data, noise) _, assign = linear_sum_assignment(dist.cpu()) return torch.from_numpy(assign).to(device) class DexGraspVLAController(BaseImagePolicy): def __init__(self, shape_meta: dict, noise_scheduler: DDPMScheduler, obs_encoder: ObsEncoder, num_inference_steps=None, # arch n_layer=7, n_head=8, p_drop_attn=0.1, use_attn_mask=False, start_ckpt_path=None, # parameters passed to step **kwargs): super().__init__() # parse shapes action_shape = shape_meta['action']['shape'] assert len(action_shape) == 1 action_dim = action_shape[0] action_horizon = shape_meta['action']['horizon'] obs_shape, obs_part_length = obs_encoder.output_shape() n_emb = obs_shape[-1] obs_tokens = obs_shape[-2] model = TransformerForActionDiffusion( input_dim=action_dim, output_dim=action_dim, action_horizon=action_horizon, n_layer=n_layer, n_head=n_head, n_emb=n_emb, max_cond_tokens=obs_tokens+1, # obs tokens + 1 token for time p_drop_attn=p_drop_attn, obs_part_length=obs_part_length, use_attn_mask=use_attn_mask ) self.obs_encoder = obs_encoder self.model = model self.noise_scheduler = noise_scheduler self.normalizer = LinearNormalizer() self.action_dim = action_dim self.action_horizon = action_horizon self.start_ckpt_path = start_ckpt_path self.kwargs = kwargs if num_inference_steps is None: num_inference_steps = noise_scheduler.config.num_train_timesteps self.num_inference_steps = num_inference_steps # ========= inference ============ def conditional_sample(self, cond=None, gen_attn_map=True, **kwargs): model = self.model scheduler = self.noise_scheduler B = cond.shape[0] trajectory = torch.randn( size=(B, self.action_horizon, self.action_dim), dtype=self.dtype, device=self.device) # set step values scheduler.set_timesteps(self.num_inference_steps) # Store attention maps for all timesteps all_timestep_attention_maps = {} for t in scheduler.timesteps: # 1. predict model output model_output, attention_maps = model(trajectory, t, cond, training=False, gen_attn_map=gen_attn_map) all_timestep_attention_maps[t.cpu().item()] = attention_maps # 2. compute previous image: x_t -> x_t-1 trajectory = scheduler.step( model_output, t, trajectory, **kwargs ).prev_sample return trajectory, all_timestep_attention_maps def predict_action(self, obs_dict: Dict[str, torch.Tensor], output_path: str = None) -> Dict[str, torch.Tensor]: """ obs_dict: must include "obs" key action_pred: predicted action """ assert 'past_action' not in obs_dict # not implemented yet # normalize input # nobs = self.normalizer.normalize(obs_dict) nobs = obs_dict B = next(iter(nobs.values())).shape[0] # process input obs_tokens = self.obs_encoder(nobs, training=False) # (B, N, n_emb) # run sampling nsample, all_timestep_attention_maps = self.conditional_sample( cond=obs_tokens, gen_attn_map=True if output_path is not None else False, **self.kwargs) # unnormalize prediction assert nsample.shape == (B, self.action_horizon, self.action_dim) action_pred = self.normalizer['action'].unnormalize(nsample) if output_path is not None: # Convert tensors in obs_dict to numpy arrays obs_dict_numpy = {} for k, v in obs_dict.items(): if k in ['rgbm', 'right_cam_img']: obs_dict_numpy[k] = np.clip(v.detach().cpu().numpy() * 255, 0, 255).astype(np.uint8) else: obs_dict_numpy[k] = v.detach().cpu().numpy() obs_dict_numpy[k] = obs_dict_numpy[k][:2] save_dict = { 'attention_maps': all_timestep_attention_maps, 'obs_dict': obs_dict_numpy } with open(output_path, 'wb') as f: pickle.dump(save_dict, f) return action_pred # ========= training ============ def set_normalizer(self, normalizer: LinearNormalizer): self.normalizer.load_state_dict(normalizer.state_dict()) def get_optimizer( self, lr: float, weight_decay: float, betas: Tuple[float, float], ) -> torch.optim.Optimizer: # start with all of the candidate parameters (that require grad) param_dict = {pn: p for pn, p in self.named_parameters()} param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no. # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't. decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] optim_groups = [ {'params': decay_params, 'weight_decay': weight_decay}, {'params': nodecay_params, 'weight_decay': 0.0} ] num_decay_params = sum(p.numel() for p in decay_params) num_nodecay_params = sum(p.numel() for p in nodecay_params) print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters print(f"Fused AdamW available: {fused_available}") optimizer = torch.optim.AdamW( optim_groups, lr=lr, betas=betas, fused=fused_available ) return optimizer def compute_loss(self, batch, training=True): # normalize input assert 'valid_mask' not in batch # nobs = self.normalizer.normalize(batch['obs']) nobs = batch['obs'] nactions = self.normalizer['action'].normalize(batch['action']) trajectory = nactions # process input obs_tokens = self.obs_encoder(nobs, training) # (B, N, n_emb) # Sample noise that we'll add to the images noise = torch.randn(trajectory.shape, device=trajectory.device) assignment = noise_assignment(trajectory, noise) noise = noise[assignment] # Sample a random timestep for each image timesteps = torch.randint( 0, self.noise_scheduler.config.num_train_timesteps, (nactions.shape[0],), device=trajectory.device ).long() # Add noise to the clean images according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_trajectory = self.noise_scheduler.add_noise( trajectory, noise, timesteps) # Predict the noise residual pred, _ = self.model( noisy_trajectory, timesteps, cond=obs_tokens, training=training, gen_attn_map=False ) pred_type = self.noise_scheduler.config.prediction_type if pred_type == 'epsilon': target = noise elif pred_type == 'sample': target = trajectory else: raise ValueError(f"Unsupported prediction type {pred_type}") loss = F.mse_loss(pred, target) return loss def forward(self, batch, training=True): return self.compute_loss(batch, training)全文注释

from typing import Dict, Tuple, Union import torch import torch.nn.functional as F import numpy as np from einops import rearrange from diffusers.schedulers.scheduling_ddpm import DDPMScheduler import inspect from controller.model.common.normalizer import LinearNormalizer from controller.policy.base_image_policy import BaseImagePolicy from controller.model.diffusion.transformer_for_action_diffusion import ( TransformerForActionDiffusion, ) from controller.model.vision.obs_encoder import ObsEncoder from controller.model.vision.obs_encoder_without_mask import ObsEncoderWithoutMask from scipy.optimize import linear_sum_assignment import pickle # Adapted from https://github.com/lucidrains/pi-zero-pytorch/blob/e82fced40e55023a0ded22ab3bda495964353253/pi_zero_pytorch/pi_zero.py#L216 def noise_assignment(data, noise): device = data.device data, noise = tuple(rearrange(t, "b ... -> b (...)") for t in (data, noise)) dist = torch.cdist(data, noise) _, assign = linear_sum_assignment(dist.cpu()) return torch.from_numpy(assign).to(device) class DexGraspVLAController(BaseImagePolicy): def __init__( self, shape_meta: dict, noise_scheduler: DDPMScheduler, obs_encoder: Union[ObsEncoder, ObsEncoderWithoutMask], num_inference_steps=None, # arch n_layer=7, n_head=8, p_drop_attn=0.1, use_attn_mask=False, start_ckpt_path=None, # parameters passed to step **kwargs, ): super().__init__() # parse shapes action_shape = shape_meta["action"]["shape"] assert len(action_shape) == 1 action_dim = action_shape[0] action_horizon = shape_meta["action"]["horizon"] obs_shape, obs_part_length = obs_encoder.output_shape() n_emb = obs_shape[-1] obs_tokens = obs_shape[-2] model = TransformerForActionDiffusion( input_dim=action_dim, output_dim=action_dim, action_horizon=action_horizon, n_layer=n_layer, n_head=n_head, n_emb=n_emb, max_cond_tokens=obs_tokens + 1, # obs tokens + 1 token for time p_drop_attn=p_drop_attn, obs_part_length=obs_part_length, use_attn_mask=use_attn_mask, ) self.obs_encoder = obs_encoder self.model = model self.noise_scheduler = noise_scheduler self.normalizer = LinearNormalizer() self.action_dim = action_dim self.action_horizon = action_horizon self.start_ckpt_path = start_ckpt_path self.kwargs = kwargs if num_inference_steps is None: num_inference_steps = noise_scheduler.config.num_train_timesteps self.num_inference_steps = num_inference_steps # ========= inference ============ def conditional_sample(self, cond=None, gen_attn_map=True, **kwargs): model = self.model scheduler = self.noise_scheduler B = cond.shape[0] trajectory = torch.randn( size=(B, self.action_horizon, self.action_dim), dtype=self.dtype, device=self.device, ) # set step values scheduler.set_timesteps(self.num_inference_steps) # Store attention maps for all timesteps all_timestep_attention_maps = {} # 从 num_inference_steps - 1 到 0 for t in scheduler.timesteps: # 1. predict model output model_output, attention_maps = model( trajectory, t, cond, training=False, gen_attn_map=gen_attn_map ) all_timestep_attention_maps[t.cpu().item()] = attention_maps # 2. compute previous image: x_t -> x_t-1 trajectory = scheduler.step( model_output, t, trajectory, **kwargs ).prev_sample return trajectory, all_timestep_attention_maps def predict_action( self, obs_dict: Dict[str, torch.Tensor], output_path: str = None ) -> Dict[str, torch.Tensor]: """ obs_dict: must include "obs" key action_pred: predicted action """ assert "past_action" not in obs_dict # not implemented yet # normalize input # nobs = self.normalizer.normalize(obs_dict) nobs = obs_dict B = next(iter(nobs.values())).shape[0] # process input obs_tokens = self.obs_encoder(nobs, training=False) # (B, N, n_emb) # run sampling nsample, all_timestep_attention_maps = self.conditional_sample( cond=obs_tokens, gen_attn_map=True if output_path is not None else False, **self.kwargs, ) # unnormalize prediction assert nsample.shape == (B, self.action_horizon, self.action_dim) action_pred = self.normalizer["action"].unnormalize(nsample) if output_path is not None: # Convert tensors in obs_dict to numpy arrays obs_dict_numpy = {} for k, v in obs_dict.items(): if k in ["rgbm", "right_cam_img", "rgb"]: obs_dict_numpy[k] = np.clip( v.detach().cpu().numpy() * 255, 0, 255 ).astype(np.uint8) else: obs_dict_numpy[k] = v.detach().cpu().numpy() obs_dict_numpy[k] = obs_dict_numpy[k][:2] save_dict = { "attention_maps": all_timestep_attention_maps, "obs_dict": obs_dict_numpy, } with open(output_path, "wb") as f: pickle.dump(save_dict, f) return action_pred # ========= training ============ def set_normalizer(self, normalizer: LinearNormalizer): self.normalizer.load_state_dict(normalizer.state_dict()) def get_optimizer( self, lr: float, weight_decay: float, betas: Tuple[float, float], ) -> torch.optim.Optimizer: # start with all of the candidate parameters (that require grad) param_dict = {pn: p for pn, p in self.named_parameters()} param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no. # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't. decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] optim_groups = [ {"params": decay_params, "weight_decay": weight_decay}, {"params": nodecay_params, "weight_decay": 0.0}, ] num_decay_params = sum(p.numel() for p in decay_params) num_nodecay_params = sum(p.numel() for p in nodecay_params) print( f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters" ) print( f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters" ) fused_available = "fused" in inspect.signature(torch.optim.AdamW).parameters print(f"Fused AdamW available: {fused_available}") optimizer = torch.optim.AdamW( optim_groups, lr=lr, betas=betas, fused=fused_available ) return optimizer def compute_loss(self, batch, training=True): # normalize input assert "valid_mask" not in batch # nobs = self.normalizer.normalize(batch['obs']) nobs = batch["obs"] nactions = self.normalizer["action"].normalize(batch["action"]) trajectory = nactions # process input obs_tokens = self.obs_encoder(nobs, training) # (B, N, n_emb) # Sample noise that we'll add to the images noise = torch.randn(trajectory.shape, device=trajectory.device) assignment = noise_assignment(trajectory, noise) noise = noise[assignment] # Sample a random timestep for each image timesteps = torch.randint( 0, self.noise_scheduler.config.num_train_timesteps, (nactions.shape[0],), device=trajectory.device, ).long() # Add noise to the clean images according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_trajectory = self.noise_scheduler.add_noise(trajectory, noise, timesteps) # Predict the noise residual pred, _ = self.model( noisy_trajectory, timesteps, cond=obs_tokens, training=training, gen_attn_map=False, ) pred_type = self.noise_scheduler.config.prediction_type if pred_type == "epsilon": target = noise elif pred_type == "sample": target = trajectory else: raise ValueError(f"Unsupported prediction type {pred_type}") loss = F.mse_loss(pred, target) return loss def forward(self, batch, training=True): return self.compute_loss(batch, training) 全文注释

这是main.py文件的代码:from datetime import datetime from functools import partial from PIL import Image import cv2 import numpy as np from torch.utils.data import DataLoader from torch.version import cuda from torchvision import transforms from torchvision.datasets import CIFAR10 from torchvision.models import resnet from tqdm import tqdm import argparse import json import math import os import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F #数据增强(核心增强部分) import torch from torchvision import transforms from torch.utils.data import Dataset, DataLoader # 设置参数 parser = argparse.ArgumentParser(description='Train MoCo on CIFAR-10') parser.add_argument('-a', '--arch', default='resnet18') # lr: 0.06 for batch 512 (or 0.03 for batch 256) parser.add_argument('--lr', '--learning-rate', default=0.06, type=float, metavar='LR', help='initial learning rate', dest='lr') parser.add_argument('--epochs', default=300, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--schedule', default=[120, 160], nargs='*', type=int, help='learning rate schedule (when to drop lr by 10x); does not take effect if --cos is on') parser.add_argument('--cos', action='store_true', help='use cosine lr schedule') parser.add_argument('--batch-size', default=64, type=int, metavar='N', help='mini-batch size') parser.add_argument('--wd', default=5e-4, type=float, metavar='W', help='weight decay') # moco specific configs: parser.add_argument('--moco-dim', default=128, type=int, help='feature dimension') parser.add_argument('--moco-k', default=4096, type=int, help='queue size; number of negative keys') parser.add_argument('--moco-m', default=0.99, type=float, help='moco momentum of updating key encoder') parser.add_argument('--moco-t', default=0.1, type=float, help='softmax temperature') parser.add_argument('--bn-splits', default=8, type=int, help='simulate multi-gpu behavior of BatchNorm in one gpu; 1 is SyncBatchNorm in multi-gpu') parser.add_argument('--symmetric', action='store_true', help='use a symmetric loss function that backprops to both crops') # knn monitor parser.add_argument('--knn-k', default=20, type=int, help='k in kNN monitor') parser.add_argument('--knn-t', default=0.1, type=float, help='softmax temperature in kNN monitor; could be different with moco-t') # utils parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--results-dir', default='', type=str, metavar='PATH', help='path to cache (default: none)') ''' args = parser.parse_args() # running in command line ''' args = parser.parse_args('') # running in ipynb # set command line arguments here when running in ipynb args.epochs = 300 # 修改处 args.cos = True args.schedule = [] # cos in use args.symmetric = False if args.results_dir == '': args.results_dir = "E:\\contrast\\yolov8\\MoCo\\run\\cache-" + datetime.now().strftime("%Y-%m-%d-%H-%M-%S-moco") moco_args = args class CIFAR10Pair(CIFAR10): def __getitem__(self, index): img = self.data[index] img = Image.fromarray(img) # 原始图像增强 im_1 = self.transform(img) im_2 = self.transform(img) # 退化增强生成额外视图 degraded_results = image_degradation_and_augmentation(img) im_3 = self.transform(Image.fromarray(degraded_results['augmented_images'][0])) # 选择第一组退化增强 im_4 = self.transform(Image.fromarray(degraded_results['cutmix_image'])) return im_1, im_2, im_3, im_4 # 返回原始增强+退化增强 # 定义数据加载器 # class CIFAR10Pair(CIFAR10): # """CIFAR10 Dataset. # """ # def __getitem__(self, index): # img = self.data[index] # img = Image.fromarray(img) # if self.transform is not None: # im_1 = self.transform(img) # im_2 = self.transform(img) # return im_1, im_2 import cv2 import numpy as np import random def apply_interpolation_degradation(img, method): """ 应用插值退化 参数: img: 输入图像(numpy数组) method: 插值方法('nearest', 'bilinear', 'bicubic') 返回: 退化后的图像 """ # 获取图像尺寸 h, w = img.shape[:2] # 应用插值方法 if method == 'nearest': # 最近邻退化: 下采样+上采样 downsampled = cv2.resize(img, (w//2, h//2), interpolation=cv2.INTER_NEAREST) degraded = cv2.resize(downsampled, (w, h), interpolation=cv2.INTER_NEAREST) elif method == 'bilinear': # 双线性退化: 下采样+上采样 downsampled = cv2.resize(img, (w//2, h//2), interpolation=cv2.INTER_LINEAR) degraded = cv2.resize(downsampled, (w, h), interpolation=cv2.INTER_LINEAR) elif method == 'bicubic': # 双三次退化: 下采样+上采样 downsampled = cv2.resize(img, (w//2, h//2), interpolation=cv2.INTER_CUBIC) degraded = cv2.resize(downsampled, (w, h), interpolation=cv2.INTER_CUBIC) else: degraded = img return degraded def darken_image(img, intensity=0.3): """ 应用黑暗处理 - 降低图像亮度并增加暗区对比度 参数: img: 输入图像(numpy数组) intensity: 黑暗强度 (0.1-0.9) 返回: 黑暗处理后的图像 """ # 限制强度范围 intensity = max(0.1, min(0.9, intensity)) # 将图像转换为HSV颜色空间 hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV).astype(np.float32) # 降低亮度(V通道) hsv[:, :, 2] = hsv[:, :, 2] * intensity # 增加暗区的对比度 - 使用gamma校正 gamma = 1.0 + (1.0 - intensity) # 黑暗强度越大,gamma值越大 hsv[:, :, 2] = np.power(hsv[:, :, 2]/255.0, gamma) * 255.0 # 限制值在0-255范围内 hsv[:, :, 2] = np.clip(hsv[:, :, 2], 0, 255) # 转换回RGB return cv2.cvtColor(hsv.astype(np.uint8), cv2.COLOR_HSV2RGB) def random_affine(image): """ 随机仿射变换(缩放和平移) 参数: image: 输入图像(numpy数组) 返回: 变换后的图像 """ height, width = image.shape[:2] # 随机缩放因子 (0.8 to 1.2) scale = random.uniform(0.8, 1.2) # 随机平移 (10% of image size) max_trans = 0.1 * min(width, height) tx = random.randint(-int(max_trans), int(max_trans)) ty = random.randint(-int(max_trans), int(max_trans)) # 变换矩阵 M = np.array([[scale, 0, tx], [0, scale, ty]], dtype=np.float32) # 应用仿射变换 transformed = cv2.warpAffine(image, M, (width, height)) return transformed def augment_hsv(image, h_gain=0.1, s_gain=0.5, v_gain=0.5): """ HSV色彩空间增强 参数: image: 输入图像(numpy数组) h_gain, s_gain, v_gain: 各通道的增益范围 返回: 增强后的图像 """ # 限制增益范围 h_gain = max(-0.1, min(0.1, random.uniform(-h_gain, h_gain))) s_gain = max(0.5, min(1.5, random.uniform(1-s_gain, 1+s_gain))) v_gain = max(0.5, min(1.5, random.uniform(1-v_gain, 1+v_gain))) # 转换为HSV hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV).astype(np.float32) # 应用增益 hsv[:, :, 0] = (hsv[:, :, 0] * (1 + h_gain)) % 180 hsv[:, :, 1] = np.clip(hsv[:, :, 1] * s_gain, 0, 255) hsv[:, :, 2] = np.clip(hsv[:, :, 2] * v_gain, 0, 255) # 转换回RGB return cv2.cvtColor(hsv.astype(np.uint8), cv2.COLOR_HSV2RGB) # def mixup(img1, img2, alpha=0.6): # """ # 将两幅图像混合在一起 # 参数: # img1, img2: 输入图像(numpy数组) # alpha: Beta分布的参数,控制混合比例 # 返回: # 混合后的图像 # """ # # 生成混合比例 # lam = random.betavariate(alpha, alpha) # # 确保图像尺寸相同 # if img1.shape != img2.shape: # img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0])) # # 混合图像 # mixed = (lam * img1.astype(np.float32) + (1 - lam) * img2.astype(np.float32)).astype(np.uint8) # return mixed # def image_degradation_and_augmentation(image,dark_intensity=0.3): # """ # 完整的图像退化和增强流程 # 参数: # image: 输入图像(PIL.Image或numpy数组) # 返回: # dict: 包含所有退化组和最终增强结果的字典 # """ # # 确保输入是numpy数组 # if not isinstance(image, np.ndarray): # image = np.array(image) # # 确保图像为RGB格式 # if len(image.shape) == 2: # image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) # elif image.shape[2] == 4: # image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB) # # 原始图像 # original = image.copy() # # 插值方法列表 # interpolation_methods = ['nearest', 'bilinear', 'bicubic'] # # 第一组退化: 三种插值方法 # group1 = [] # for method in interpolation_methods: # degraded = apply_interpolation_degradation(original, method) # group1.append(degraded) # # 第二组退化: 随机额外退化 # group2 = [] # for img in group1: # # 随机选择一种退化方法 # method = random.choice(interpolation_methods) # extra_degraded = apply_interpolation_degradation(img, method) # group2.append(extra_degraded) # # 所有退化图像组合 # all_degraded_images = [original] + group1 + group2 # # 应用黑暗处理 (在增强之前) # darkened_images = [darken_image(img, intensity=dark_intensity) for img in all_degraded_images] # # 应用数据增强 # # 1. 随机仿射变换 # affine_images = [random_affine(img) for img in darkened_images] # # 2. HSV增强 # hsv_images = [augment_hsv(img) for img in affine_images] # # 3. MixUp增强 # # 随机选择两个增强后的图像进行混合 # mixed_image = mixup( # random.choice(hsv_images), # random.choice(hsv_images) # ) # # 返回结果 # results = { # 'original': original, # 'degraded_group1': group1, # 第一组退化图像 # 'degraded_group2': group2, # 第二组退化图像 # 'augmented_images': hsv_images, # 所有增强后的图像(原始+六组退化) # 'mixup_image': mixed_image # MixUp混合图像 # } # return results # # def add_gaussian_noise(image, mean=0, sigma=25): # # """添加高斯噪声""" # # noise = np.random.normal(mean, sigma, image.shape) # # noisy = np.clip(image + noise, 0, 255).astype(np.uint8) # # return noisy # # def random_cutout(image, max_holes=3, max_height=16, max_width=16): # # """随机CutOut增强""" # # h, w = image.shape[:2] # # for _ in range(random.randint(1, max_holes)): # # hole_h = random.randint(1, max_height) # # hole_w = random.randint(1, max_width) # # y = random.randint(0, h - hole_h) # # x = random.randint(0, w - hole_w) # # image[y:y+hole_h, x:x+hole_w] = 0 # # return image import cv2 import numpy as np import random from matplotlib import pyplot as plt import pywt def wavelet_degradation(image, level=0.5): """小波系数衰减退化""" # 小波分解 coeffs = pywt.dwt2(image, 'haar') cA, (cH, cV, cD) = coeffs # 衰减高频系数 cH = cH * level cV = cV * level cD = cD * level # 重建图像 return pywt.idwt2((cA, (cH, cV, cD)), 'haar')[:image.shape[0], :image.shape[1]] def adaptive_interpolation_degradation(image): """自适应插值退化(随机选择最近邻或双三次插值)""" if random.choice([True, False]): method = cv2.INTER_NEAREST # 最近邻插值 else: method = cv2.INTER_CUBIC # 双三次插值 # 先缩小再放大 scale_factor = random.uniform(0.3, 0.8) small = cv2.resize(image, None, fx=scale_factor, fy=scale_factor, interpolation=method) return cv2.resize(small, (image.shape[1], image.shape[0]), interpolation=method) def bilinear_degradation(image): """双线性插值退化""" # 先缩小再放大 scale_factor = random.uniform(0.3, 0.8) small = cv2.resize(image, None, fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_LINEAR) return cv2.resize(small, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR) def cutmix(img1, img2, bboxes1=None, bboxes2=None, beta=1.0): """ 参数: img1: 第一张输入图像(numpy数组) img2: 第二张输入图像(numpy数组) bboxes1: 第一张图像的边界框(可选) bboxes2: 第二张图像的边界框(可选) beta: Beta分布的参数,控制裁剪区域的大小 返回: 混合后的图像和边界框(如果有) """ # 确保图像尺寸相同 if img1.shape != img2.shape: img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0])) h, w = img1.shape[:2] # 生成裁剪区域的lambda值(混合比例) lam = np.random.beta(beta, beta) # 计算裁剪区域的宽高 cut_ratio = np.sqrt(1. - lam) cut_w = int(w * cut_ratio) cut_h = int(h * cut_ratio) # 随机确定裁剪区域的中心点 cx = np.random.randint(w) cy = np.random.randint(h) # 计算裁剪区域的边界 x1 = np.clip(cx - cut_w // 2, 0, w) y1 = np.clip(cy - cut_h // 2, 0, h) x2 = np.clip(cx + cut_w // 2, 0, w) y2 = np.clip(cy + cut_h // 2, 0, h) # 执行CutMix操作 mixed_img = img1.copy() mixed_img[y1:y2, x1:x2] = img2[y1:y2, x1:x2] # 计算实际的混合比例 lam = 1 - ((x2 - x1) * (y2 - y1) / (w * h)) # 处理边界框(如果有) mixed_bboxes = None if bboxes1 is not None and bboxes2 is not None: mixed_bboxes = [] # 添加第一张图像的边界框 for bbox in bboxes1: mixed_bboxes.append(bbox + [lam]) # 添加混合权重 # 添加第二张图像的边界框(只添加在裁剪区域内的) for bbox in bboxes2: # 检查边界框是否在裁剪区域内 bbox_x_center = (bbox[0] + bbox[2]) / 2 bbox_y_center = (bbox[1] + bbox[3]) / 2 if (x1 <= bbox_x_center <= x2) and (y1 <= bbox_y_center <= y2): mixed_bboxes.append(bbox + [1 - lam]) return mixed_img, mixed_bboxes def image_degradation_and_augmentation(image, bboxes=None): """ 完整的图像退化和增强流程(修改为使用CutMix) 参数: image: 输入图像(PIL.Image或numpy数组) bboxes: 边界框(可选) 返回: dict: 包含所有退化组和最终增强结果的字典 """ # 确保输入是numpy数组 if not isinstance(image, np.ndarray): image = np.array(image) # 确保图像为RGB格式 if len(image.shape) == 2: image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) elif image.shape[2] == 4: image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB) degraded_sets = [] original = image.copy() # 第一组退化:三种基础退化 degraded_sets.append(wavelet_degradation(original.copy())) degraded_sets.append(degraded_sets) degraded_sets.append(adaptive_interpolation_degradation(original.copy())) degraded_sets.append(degraded_sets) degraded_sets.append(bilinear_degradation(original.copy())) degraded_sets.append(degraded_sets) # # 原始图像 # original = image.copy() # # 插值方法列表 # interpolation_methods = ['nearest', 'bilinear', 'bicubic'] # # 第一组退化: 三种插值方法 # group1 = [] # for method in interpolation_methods: # degraded = apply_interpolation_degradation(original, method) # group1.append(degraded) # 第二组退化: 随机额外退化 # group2 = [] # for img in group1: # # 随机选择一种退化方法 # method = random.choice(interpolation_methods) # extra_degraded = apply_interpolation_degradation(img, method) # group2.append(extra_degraded) # 第二组退化:随机选择再退化 methods = [wavelet_degradation, adaptive_interpolation_degradation, bilinear_degradation] group2=[] for img in degraded_sets: selected_method = random.choice(methods) group2.append(selected_method(img)) group2.append(group2) # 原始图像 original = image.copy() all_degraded_images = [original] + degraded_sets + group2 # 应用黑暗处理 dark_original = darken_image(original) dark_degraded = [darken_image(img) for img in all_degraded_images] # 合并原始和退化图像 all_images = [dark_original] + dark_degraded # 应用数据增强 # 1. 随机仿射变换 affine_images = [random_affine(img) for img in all_images] # 2. HSV增强 hsv_images = [augment_hsv(img) for img in affine_images] # 3. CutMix增强 # 随机选择两个增强后的图像进行混合 mixed_image, mixed_bboxes = cutmix( random.choice(hsv_images), random.choice(hsv_images), bboxes1=bboxes if bboxes is not None else None, bboxes2=bboxes if bboxes is not None else None ) # 返回结果 results = { 'original': original, 'degraded': dark_degraded, 'augmented_images': hsv_images, # 所有增强后的图像(原始+六组退化) 'cutmix_image': mixed_image, # CutMix混合图像 'cutmix_bboxes': mixed_bboxes if bboxes is not None else None # 混合后的边界框 } return results train_transform = transforms.Compose([ transforms.RandomResizedCrop(32), transforms.RandomHorizontalFlip(p=0.5), transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8), transforms.RandomGrayscale(p=0.2), transforms.ToTensor(), transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])]) test_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])]) # data_processing prepare train_data = CIFAR10Pair(root="E:/contrast/yolov8/MoCo/data_visdrone2019", train=True, transform=train_transform, download=False) moco_train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=0, pin_memory=True, drop_last=True) memory_data = CIFAR10(root="E:/contrast/yolov8/MoCo/data_visdrone2019", train=True, transform=test_transform, download=False) memory_loader = DataLoader(memory_data, batch_size=args.batch_size, shuffle=False, num_workers=0, pin_memory=True) test_data = CIFAR10(root="E:/contrast/yolov8/MoCo/data_visdrone2019", train=False, transform=test_transform, download=False) test_loader = DataLoader(test_data, batch_size=args.batch_size, shuffle=False, num_workers=0, pin_memory=True) # 定义基本编码器 # SplitBatchNorm: simulate multi-gpu behavior of BatchNorm in one gpu by splitting alone the batch dimension # implementation adapted from https://github.com/davidcpage/cifar10-fast/blob/master/torch_backend.py class SplitBatchNorm(nn.BatchNorm2d): def __init__(self, num_features, num_splits, **kw): super().__init__(num_features, **kw) self.num_splits = num_splits def forward(self, input): N, C, H, W = input.shape if self.training or not self.track_running_stats: running_mean_split = self.running_mean.repeat(self.num_splits) running_var_split = self.running_var.repeat(self.num_splits) outcome = nn.functional.batch_norm( input.view(-1, C * self.num_splits, H, W), running_mean_split, running_var_split, self.weight.repeat(self.num_splits), self.bias.repeat(self.num_splits), True, self.momentum, self.eps).view(N, C, H, W) self.running_mean.data.copy_(running_mean_split.view(self.num_splits, C).mean(dim=0)) self.running_var.data.copy_(running_var_split.view(self.num_splits, C).mean(dim=0)) return outcome else: return nn.functional.batch_norm( input, self.running_mean, self.running_var, self.weight, self.bias, False, self.momentum, self.eps) class ModelBase(nn.Module): """ Common CIFAR ResNet recipe. Comparing with ImageNet ResNet recipe, it: (i) replaces conv1 with kernel=3, str=1 (ii) removes pool1 """ def __init__(self, feature_dim=128, arch=None, bn_splits=16): super(ModelBase, self).__init__() # use split batchnorm norm_layer = partial(SplitBatchNorm, num_splits=bn_splits) if bn_splits > 1 else nn.BatchNorm2d resnet_arch = getattr(resnet, arch) net = resnet_arch(num_classes=feature_dim, norm_layer=norm_layer) self.net = [] for name, module in net.named_children(): if name == 'conv1': module = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) if isinstance(module, nn.MaxPool2d): continue if isinstance(module, nn.Linear): self.net.append(nn.Flatten(1)) self.net.append(module) self.net = nn.Sequential(*self.net) def forward(self, x): x = self.net(x) # note: not normalized here return x # 定义MOCO class ModelMoCo(nn.Module): def __init__(self, dim=128, K=4096, m=0.99, T=0.1, arch='resnet18', bn_splits=8, symmetric=True): super(ModelMoCo, self).__init__() self.K = K self.m = m self.T = T self.symmetric = symmetric # create the encoders self.encoder_q = ModelBase(feature_dim=dim, arch=arch, bn_splits=bn_splits) self.encoder_k = ModelBase(feature_dim=dim, arch=arch, bn_splits=bn_splits) for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()): param_k.data.copy_(param_q.data) # initialize param_k.requires_grad = False # not update by gradient 不参与训练 # create the queue self.register_buffer("queue", torch.randn(dim, K)) self.queue = nn.functional.normalize(self.queue, dim=0) self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long)) @torch.no_grad() def _momentum_update_key_encoder(self): # 动量更新encoder_k """ Momentum update of the key encoder """ for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()): param_k.data = param_k.data * self.m + param_q.data * (1. - self.m) @torch.no_grad() def _dequeue_and_enqueue(self, keys): # 出队与入队 batch_size = keys.shape[0] ptr = int(self.queue_ptr) assert self.K % batch_size == 0 # for simplicity # replace the keys at ptr (dequeue and enqueue) self.queue[:, ptr:ptr + batch_size] = keys.t() # transpose ptr = (ptr + batch_size) % self.K # move pointer self.queue_ptr[0] = ptr @torch.no_grad() def _batch_shuffle_single_gpu(self, x): """ Batch shuffle, for making use of BatchNorm. """ # random shuffle index idx_shuffle = torch.randperm(x.shape[0]).cuda() # index for restoring idx_unshuffle = torch.argsort(idx_shuffle) return x[idx_shuffle], idx_unshuffle @torch.no_grad() def _batch_unshuffle_single_gpu(self, x, idx_unshuffle): """ Undo batch shuffle. """ return x[idx_unshuffle] def contrastive_loss(self, im_q, im_k): # compute query features q = self.encoder_q(im_q) # queries: NxC q = nn.functional.normalize(q, dim=1) # already normalized # compute key features with torch.no_grad(): # no gradient to keys # shuffle for making use of BN im_k_, idx_unshuffle = self._batch_shuffle_single_gpu(im_k) k = self.encoder_k(im_k_) # keys: NxC k = nn.functional.normalize(k, dim=1) # already normalized # undo shuffle k = self._batch_unshuffle_single_gpu(k, idx_unshuffle) # compute logits # Einstein sum is more intuitive # positive logits: Nx1 l_pos = torch.einsum('nc,nc->n', [q, k]).unsqueeze(-1) # negative logits: NxK l_neg = torch.einsum('nc,ck->nk', [q, self.queue.clone().detach()]) # logits: Nx(1+K) logits = torch.cat([l_pos, l_neg], dim=1) # apply temperature logits /= self.T # labels: positive key indicators labels = torch.zeros(logits.shape[0], dtype=torch.long).cuda() loss = nn.CrossEntropyLoss().cuda()(logits, labels) # 交叉熵损失 return loss, q, k def forward(self, im1, im2): """ Input: im_q: a batch of query images im_k: a batch of key images Output: loss """ # update the key encoder with torch.no_grad(): # no gradient to keys self._momentum_update_key_encoder() # compute loss if self.symmetric: # asymmetric loss loss_12, q1, k2 = self.contrastive_loss(im1, im2) loss_21, q2, k1 = self.contrastive_loss(im2, im1) loss = loss_12 + loss_21 k = torch.cat([k1, k2], dim=0) else: # asymmetric loss loss, q, k = self.contrastive_loss(im1, im2) self._dequeue_and_enqueue(k) return loss # create model moco_model = ModelMoCo( dim=args.moco_dim, K=args.moco_k, m=args.moco_m, T=args.moco_t, arch=args.arch, bn_splits=args.bn_splits, symmetric=args.symmetric, ).cuda() # print(moco_model.encoder_q) moco_model_1 = ModelMoCo( dim=args.moco_dim, K=args.moco_k, m=args.moco_m, T=args.moco_t, arch=args.arch, bn_splits=args.bn_splits, symmetric=args.symmetric, ).cuda() # print(moco_model_1.encoder_q) """ CIFAR10 Dataset. """ from torch.cuda import amp scaler = amp.GradScaler(enabled=cuda) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # train for one epoch # def moco_train(net, net_1, data_loader, train_optimizer, epoch, args): # net.train() # adjust_learning_rate(moco_optimizer, epoch, args) # total_loss, total_num, train_bar = 0.0, 0, tqdm(data_loader) # loss_add = 0.0 # for im_1, im_2 in train_bar: # im_1, im_2 = im_1.cuda(non_blocking=True), im_2.cuda(non_blocking=True) # loss = net(im_1, im_2) # 原始图像对比损失 梯度清零—>梯度回传—>梯度跟新 # # lossT = loss # 只使用原始对比损失 # # train_optimizer.zero_grad() # # lossT.backward() # # train_optimizer.step() # # loss_add += lossT.item() # # total_num += data_loader.batch_size # # total_loss += loss.item() * data_loader.batch_size # # train_bar.set_description( # # 'Train Epoch: [{}/{}], lr: {:.6f}, Loss: {:.4f}'.format( # # epoch, args.epochs, # # train_optimizer.param_groups[0]['lr'], # # loss_add / total_num # # ) # # ) # #傅里叶变换处理流程 # #im_3 = torch.rfft(im_1, 3, onesided=False, normalized=True)[:, :, :, :, 0] # fft_output = torch.fft.fftn(im_1, dim=(-3, -2, -1), norm="ortho")#转换为频域 # real_imag = torch.view_as_real(fft_output)#分解实部虚部 # im_3 = real_imag[..., 0]#提取频域实部作为新视图 # #该处理实现了频域空间的增强,与空间域增强形成了互补 # #im_4 = torch.rfft(im_2, 3, onesided=False, normalized=True)[:, :, :, :, 0] # fft_output = torch.fft.fftn(im_2, dim=(-3, -2, -1), norm="ortho") # real_imag = torch.view_as_real(fft_output) # im_4 = real_imag[..., 0] # loss_1 = net_1(im_3, im_4)#频域特征对比损失 # lossT = 0.8*loss + 0.2*loss_1#多模态损失对比融合 # train_optimizer.zero_grad() # lossT.backward() # train_optimizer.step() # loss_add += lossT # total_num += data_loader.batch_size # total_loss += loss.item() * data_loader.batch_size # # train_bar.set_description( # # 'Train Epoch: [{}/{}], lr: {:.6f}, Loss: {:.4f}'.format(epoch, args.epochs, moco_optimizer.param_groups[0]['lr'], # # loss_add / total_num)) # return (loss_add / total_num).cpu().item() # yolov5需要的损失 def moco_train(net, net_1, data_loader, train_optimizer, epoch, args): net.train() adjust_learning_rate(train_optimizer, epoch, args) total_loss, total_num = 0.0, 0 train_bar = tqdm(data_loader) for im_1, im_2, im_3, im_4 in train_bar: # 接收4组视图 im_1, im_2 = im_1.cuda(), im_2.cuda() im_3, im_4 = im_3.cuda(), im_4.cuda() # 原始空间域对比损失 loss_orig = net(im_1, im_2) # 退化增强图像的空间域对比损失 loss_degraded = net(im_3, im_4) # 频域处理(对退化增强后的图像) fft_3 = torch.fft.fftn(im_3, dim=(-3, -2, -1), norm="ortho") fft_3 = torch.view_as_real(fft_3)[..., 0] # 取实部 fft_4 = torch.fft.fftn(im_4, dim=(-3, -2, -1), norm="ortho") fft_4 = torch.view_as_real(fft_4)[..., 0] # 频域对比损失 loss_freq = net_1(fft_3, fft_4) # 多模态损失融合 loss = 0.6 * loss_orig + 0.3 * loss_degraded + 0.1 * loss_freq # 反向传播 train_optimizer.zero_grad() loss.backward() train_optimizer.step() # 记录损失 total_num += data_loader.batch_size total_loss += loss.item() # train_bar.set_description(f'Epoch: [{epoch}/{args.epochs}] Loss: {total_loss/total_num:.4f}') return total_loss / total_num # lr scheduler for training def adjust_learning_rate(optimizer, epoch, args): # 学习率衰减 """Decay the learning rate based on schedule""" lr = args.lr if args.cos: # cosine lr schedule lr *= 0.5 * (1. + math.cos(math.pi * epoch / args.epochs)) else: # stepwise lr schedule for milestone in args.schedule: lr *= 0.1 if epoch >= milestone else 1. for param_group in optimizer.param_groups: param_group['lr'] = lr # test using a knn monitor def test(net, memory_data_loader, test_data_loader, epoch, args): net.eval() classes = len(memory_data_loader.dataset.classes) total_top1, total_top5, total_num, feature_bank = 0.0, 0.0, 0, [] with torch.no_grad(): # generate feature bank for data, target in tqdm(memory_data_loader, desc='Feature extracting'): feature = net(data.cuda(non_blocking=True)) feature = F.normalize(feature, dim=1) feature_bank.append(feature) # [D, N] feature_bank = torch.cat(feature_bank, dim=0).t().contiguous() # [N] feature_labels = torch.tensor(memory_data_loader.dataset.targets, device=feature_bank.device) # loop test data_processing to predict the label by weighted knn search test_bar = tqdm(test_data_loader) for data, target in test_bar: data, target = data.cuda(non_blocking=True), target.cuda(non_blocking=True) feature = net(data) feature = F.normalize(feature, dim=1) pred_labels = knn_predict(feature, feature_bank, feature_labels, classes, args.knn_k, args.knn_t) total_num += data.size(0) total_top1 += (pred_labels[:, 0] == target).float().sum().item() test_bar.set_description( 'Test Epoch: [{}/{}] Acc@1:{:.2f}%'.format(epoch, args.epochs, total_top1 / total_num * 100)) return total_top1 / total_num * 100 # knn monitor as in InstDisc https://arxiv.org/abs/1805.01978 # implementation follows http://github.com/zhirongw/lemniscate.pytorch and https://github.com/leftthomas/SimCLR def knn_predict(feature, feature_bank, feature_labels, classes, knn_k, knn_t): # compute cos similarity between each feature vector and feature bank ---> [B, N] sim_matrix = torch.mm(feature, feature_bank) # [B, K] sim_weight, sim_indices = sim_matrix.topk(k=knn_k, dim=-1) # [B, K] sim_labels = torch.gather(feature_labels.expand(feature.size(0), -1), dim=-1, index=sim_indices) sim_weight = (sim_weight / knn_t).exp() # counts for each class one_hot_label = torch.zeros(feature.size(0) * knn_k, classes, device=sim_labels.device) # [B*K, C] one_hot_label = one_hot_label.scatter(dim=-1, index=sim_labels.view(-1, 1), value=1.0) # weighted score ---> [B, C] pred_scores = torch.sum(one_hot_label.view(feature.size(0), -1, classes) * sim_weight.unsqueeze(dim=-1), dim=1) pred_labels = pred_scores.argsort(dim=-1, descending=True) return pred_labels # 开始训练 # define optimizer moco_optimizer = torch.optim.SGD(moco_model.parameters(), lr=args.lr, weight_decay=args.wd, momentum=0.9) 上述问题怎么修改?

import cv2 import numpy as np import torch from piq import MS_SSIM from piq import vif_p from scipy import ndimage from scipy.stats import pearsonr import pywt def calculate_vif(ir_image, visible_image, fused_image): """ 计算视觉信息保真度(VIF) $$VIF = \frac{\sum_{j} I(\vec{C}^N_j; \vec{F}_j | s_j)}{\sum_{j} I(\vec{C}^N_j; \vec{E}_j | s_j)}$$ """ # 转换为PyTorch tensor ir_tensor = torch.tensor(ir_image).unsqueeze(0).unsqueeze(0).float() fused_tensor = torch.tensor(fused_image).unsqueeze(0).unsqueeze(0).float() # 使用piq库计算VIF vif_score = vif_p(ir_tensor, fused_tensor, data_range=1.0).item() return vif_score def calculate_scd(ir_image, visible_image, fused_image): """ 计算空间内容差异(SCD) $$SCD = corr(\nabla F, \nabla I) - corr(\nabla F, \nabla V)$$ """ # 计算梯度 def compute_gradient(img): dx = ndimage.sobel(img, axis=0, mode='constant') dy = ndimage.sobel(img, axis=1, mode='constant') return np.sqrt(dx ** 2 + dy ** 2) grad_ir = compute_gradient(ir_image) grad_vis = compute_gradient(visible_image) grad_fused = compute_gradient(fused_image) # 计算相关系数 corr_ir = pearsonr(grad_fused.flatten(), grad_ir.flatten())[0] corr_vis = pearsonr(grad_fused.flatten(), grad_vis.flatten())[0] scd = corr_ir - corr_vis return abs(scd) # 取绝对值表示差异程度 def calculate_qabf(ir_image, visible_image, fused_image): """ 计算基于梯度的指标(QAB/F) $$Q^{AB/F} = \frac{\sum_{i=1}^{W} \sum_{j=1}^{H} Q(i,j)}{\sum_{i=1}^{W} \sum_{j=1}^{H} \max(Q^A(i,j), Q^B(i,j))}$$ """ # 计算梯度幅值和方向 def compute_gradients(img): gx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3) gy = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3) magnitude = np.sqrt(gx ** 2 + gy ** 2) angle = np.arctan2(gy, gx) return magnitude, angle mag_ir, ang_ir = compute_gradients(ir_image) mag_vis, ang_vis = compute_gradients(visible_image) mag_fused, ang_fused = compute_gradients(fused_image) # 计算相似度 G_A = mag_ir G_B = mag_vis G_F = mag_fused Q_g = (2 * G_A * G_B) / (G_A ** 2 + G_B ** 2 + 1e-8) Q_a = 1 - np.abs(ang_ir - ang_vis) / (np.pi / 2) Q_AF = (Q_g * G_A * G_F + Q_a * (1 - G_A)) / (G_A + G_F + 1e-8) Q_BF = (Q_g * G_B * G_F + Q_a * (1 - G_B)) / (G_B + G_F + 1e-8) Q_ABF = (Q_AF + Q_BF) / 2 numerator = np.sum(Q_ABF) denominator = np.sum(np.maximum(mag_ir, mag_vis)) return numerator / (denominator + 1e-8) def calculate_ms_ssim(ir_image, visible_image, fused_image): """ 计算多尺度结构相似性(MS-SSIM) $$MS\text{-}SSIM(x,y) = [l_M(x,y)]^{\alpha_M} \prod_{j=1}^{M} [cs_j(x,y)]^{\beta_j}$$ """ # 转换为PyTorch tensor vis_tensor = torch.tensor(visible_image).unsqueeze(0).unsqueeze(0).float() fused_tensor = torch.tensor(fused_image).unsqueeze(0).unsqueeze(0).float() # 使用piq库计算MS-SSIM ms_ssim_metric = MS_SSIM(data_range=1.0) ms_ssim_score = ms_ssim_metric(vis_tensor, fused_tensor).item() return ms_ssim_score def calculate_fmi(ir_image, visible_image, fused_image): """ 计算特征互信息(FMI) $$FMI = \frac{1}{|P|} \sum_{p \in P} MI(\vec{F}_p; \vec{V}_p) + MI(\vec{F}_p; \vec{I}_p)$$ """ # 小波变换提取特征 def wavelet_features(img): coeffs = pywt.dwt2(img, 'haar') cA, (cH, cV, cD) = coeffs return np.vstack([cA.ravel(), cH.ravel(), cV.ravel(), cD.ravel()]) features_ir = wavelet_features(ir_image) features_vis = wavelet_features(visible_image) features_fused = wavelet_features(fused_image) # 计算互信息 def mutual_info(f1, f2): hist_2d, _, _ = np.histogram2d(f1, f2, bins=20) pxy = hist_2d / np.sum(hist_2d) px = np.sum(pxy, axis=1) py = np.sum(pxy, axis=0) px_py = px[:, None] * py[None, :] nzs = pxy > 0 return np.sum(pxy[nzs] * np.log(pxy[nzs] / (px_py[nzs] + 1e-8))) mi_ir = mutual_info(features_fused[0], features_ir[0]) mi_vis = mutual_info(features_fused[0], features_vis[0]) return (mi_ir + mi_vis) / 2 def evaluate_fusion(ir_path, vis_path, fused_path): """ 完整评估流程 """ # 读取图像并归一化 ir_image = cv2.imread(ir_path, cv2.IMREAD_GRAYSCALE).astype(np.float32) / 255.0 visible_image = cv2.imread(vis_path, cv2.IMREAD_GRAYSCALE).astype(np.float32) / 255.0 fused_image = cv2.imread(fused_path, cv2.IMREAD_GRAYSCALE).astype(np.float32) / 255.0 # 确保图像尺寸一致 assert ir_image.shape == visible_image.shape == fused_image.shape # 计算所有指标 results = { 'VIF': calculate_vif(ir_image, visible_image, fused_image), 'SCD': calculate_scd(ir_image, visible_image, fused_image), 'QAB/F': calculate_qabf(ir_image, visible_image, fused_image), 'MS-SSIM': calculate_ms_ssim(ir_image, visible_image, fused_image), 'FMI': calculate_fmi(ir_image, visible_image, fused_image) } return results # 使用示例 if __name__ == "__main__": # 替换为实际图像路径 CT_DIR = "dataset/CT_MRI_Original/CT/CT_1_ind2rgb/001.png" MRI_DIR = "dataset/CT_MRI_Original/MRI/MRI_1_ind2rgb/001.png" FUSED_DIR = "outputs_ct_mri/CT_1_ind2rgb/001.png" metrics = evaluate_fusion(CT_DIR, MRI_DIR, FUSED_DIR) print("融合性能评估结果:") for metric, value in metrics.items(): print(f"{metric}: {value:.4f}") 修改直至完善,给我完整代码

class BboxLoss(nn.Module): def init(self, reg_max=16): “”“Initialize the BboxLoss module with regularization maximum and DFL settings.”“” super().init() self.dfl_loss = DFLoss(reg_max) if reg_max > 1 else None self.focal_loss = FocalLoss(alpha=0.25, gamma=2.0) # 新增Focal Loss初始化 def forward(self, pred_dist, pred_bboxes, pred_scores, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask): """计算三类损失:IoU Loss + DFL Loss + Focal Loss""" # IoU损失计算(保持原有逻辑) weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1) iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, alpha_iou=True, alpha=3.0) if isinstance(iou, tuple): # 处理多返回值情况 loss_iou = ((1.0 - iou[0]) * iou[1].detach() * weight).sum() / target_scores_sum else: loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum # DFL损失计算(保持原有逻辑) if self.dfl_loss: target_ltrb = bbox2dist(anchor_points, target_bboxes, self.dfl_loss.reg_max - 1) loss_dfl = self.dfl_loss(pred_dist[fg_mask].view(-1, self.dfl_loss.reg_max), target_ltrb[fg_mask]) * weight loss_dfl = loss_dfl.sum() / target_scores_sum else: loss_dfl = torch.tensor(0.0).to(pred_dist.device) # 新增Focal Loss计算(处理类别不平衡) # pred_scores: 模型输出的分类预测值 [batch, num_anchors, num_classes] # target_scores: 实际分类标签 [batch, num_anchors, num_classes] loss_focal = self.focal_loss( pred_scores[fg_mask], # 只计算前景样本的分类损失 target_scores[fg_mask].to(pred_scores.dtype) # 确保数据类型一致 ).sum() / target_scores_sum # 与IoU/DFL损失保持归一化方式一致 return loss_iou, loss_dfl, loss_focal # 返回三类损失 在上述代码中添加了Focal Loss,现在我将提供了现在的bbox_iou函数,我希望修改添加Focal Loss后的bbox_iou函数 def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False,alpha_iou=False,alpha=3.0, eps=1e-7): if xywh: # transform from xywh to xyxy (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1) w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2 b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_ b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_ else: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1) b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1) w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps # 交集区域计算 inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * ( b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1) ).clamp_(0) # Union Area union = w1 * h1 + w2 * h2 - inter + eps # IoU iou = inter / union if CIoU or DIoU or GIoU: cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 c2 = cw.pow(2) + ch.pow(2) + eps # convex diagonal squared rho2 = ( (b2_x1 + b2_x2 - b1_x1 - b1_x2).pow(2) + (b2_y1 + b2_y2 - b1_y1 - b1_y2).pow(2) ) / 4 # center dist**2 if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi**2) * ((w2 / h2).atan() - (w1 / h1).atan()).pow(2) with torch.no_grad(): alpha = v / (v - iou + (1 + eps)) return iou - (rho2 / c2 + v * alpha) # CIoU return iou - rho2 / c2 # DIoU c_area = cw * ch + eps # convex area return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf # 添加Alpha-IoU计算 if alpha_iou: alpha = alpha if alpha > 0 else 3.0 # 默认α=3 alpha_iou = 1 - ((1 - iou) ** alpha) # Alpha-IoU公式 return alpha_iou return iou # IoU

class BboxLoss(nn.Module): def init(self, reg_max=16): “”“Initialize the BboxLoss module with regularization maximum and DFL settings.”“” super().init() self.dfl_loss = DFLoss(reg_max) if reg_max > 1 else None self.focal_loss = FocalLoss(alpha=0.25, gamma=2.0) # 新增Focal Loss初始化 def forward(self, pred_dist, pred_bboxes, pred_scores, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask): “”“计算三类损失:IoU Loss + DFL Loss + Focal Loss”“” # IoU损失计算(保持原有逻辑) weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1) iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, alpha_iou=True, alpha=3.0) if isinstance(iou, tuple): # 处理多返回值情况 loss_iou = ((1.0 - iou[0]) * iou[1].detach() * weight).sum() / target_scores_sum else: loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum # DFL损失计算(保持原有逻辑) if self.dfl_loss: target_ltrb = bbox2dist(anchor_points, target_bboxes, self.dfl_loss.reg_max - 1) loss_dfl = self.dfl_loss(pred_dist[fg_mask].view(-1, self.dfl_loss.reg_max), target_ltrb[fg_mask]) * weight loss_dfl = loss_dfl.sum() / target_scores_sum else: loss_dfl = torch.tensor(0.0).to(pred_dist.device) # 新增Focal Loss计算(处理类别不平衡) # pred_scores: 模型输出的分类预测值 [batch, num_anchors, num_classes] # target_scores: 实际分类标签 [batch, num_anchors, num_classes] loss_focal = self.focal_loss( pred_scores[fg_mask], # 只计算前景样本的分类损失 target_scores[fg_mask].to(pred_scores.dtype) # 确保数据类型一致 ).sum() / target_scores_sum # 与IoU/DFL损失保持归一化方式一致 return loss_iou, loss_dfl, loss_focal # 返回三类损失 def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False,alpha_iou=False,alpha=3.0, eps=1e-7): if xywh: # transform from xywh to xyxy (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1) w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2 b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_ b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_ else: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1) b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1) w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps # 交集区域计算 inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * ( b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1) ).clamp_(0) # Union Area union = w1 * h1 + w2 * h2 - inter + eps # IoU iou = inter / union if CIoU or DIoU or GIoU: cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 c2 = cw.pow(2) + ch.pow(2) + eps # convex diagonal squared rho2 = ( (b2_x1 + b2_x2 - b1_x1 - b1_x2).pow(2) + (b2_y1 + b2_y2 - b1_y1 - b1_y2).pow(2) ) / 4 # center dist**2 if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi**2) * ((w2 / h2).atan() - (w1 / h1).atan()).pow(2) with torch.no_grad(): alpha = v / (v - iou + (1 + eps)) return iou - (rho2 / c2 + v * alpha) # CIoU return iou - rho2 / c2 # DIoU c_area = cw * ch + eps # convex area return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf # 添加Alpha-IoU计算 if alpha_iou: alpha = alpha if alpha > 0 else 3.0 # 默认α=3 alpha_iou = 1 - ((1 - iou) ** alpha) # Alpha-IoU公式 return alpha_iou return iou # IoU 在上述代码中添加了Focal Loss,现在我将提供了现在的bbox_iou函数,我希望生成添加Focal Loss后的bbox_iou函数的完整代码

If the pretrained HGNetV2 can't be downloaded automatically. Please check your network connection. Please check your network connection. Or download the model manually from https://github.com/Peterande/storage/releases/download/dfinev1.0/PPHGNetV2_B0_stage1.pth to weight/hgnetv2/. Loaded stage1 B0 HGNetV2 from URL. /root/D-FINE-master/src/nn/backbone/hgnetv2.py:534: FutureWarning: You are using torch.load with weights_only=False (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for weights_only will be flipped to True. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via torch.serialization.add_safe_globals. We recommend you start setting weights_only=True for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. state = torch.load(model_path, map_location="cpu") Loaded stage1 B0 HGNetV2 from URL. Initial lr: [0.0001, 0.0001, 0.0002, 0.0002] building train_dataloader with batch_size=8... [rank0]: Traceback (most recent call last): [rank0]: File "train.py", line 113, in <module> [rank0]: main(args) [rank0]: File "train.py", line 75, in main [rank0]: solver.fit() [rank0]: File "/root/D-FINE-master/src/solver/det_solver.py", line 22, in fit [rank0]: self.train() [rank0]: File "/root/D-FINE-master/src/solver/_solver.py", line 172, in train [rank0]: self.cfg.train_dataloader, shuffle=self.cfg.train_dataloader.shuffle [rank0]: File "/root/D-FINE-master/src/core/yaml_config.py", line 79, in train_dataloader [rank0]: self._train_dataloader = self.build_dataloader("train_dataloader") [rank0]: File "/root/D-FINE-master/src/core/yaml_config.py", line 185, in build_dataloader [rank0]: loader = create(name, global_cfg, batch_size=bs) [rank0]: File "/root/D-FINE-master/src/core/workspace.py", line 119, in create [rank0]: module = getattr(cfg["_pymodule"], name) [rank0]: KeyError: '_pymodule' E0716 16:37:12.999565 140709997880512 torch/distributed/elastic/multiprocessing/api.py:833] failed (exitcode: 1) local_rank: 0 (pid: 797171) of binary: /root/miniconda3/bin/python Traceback (most recent call last): File "/root/miniconda3/bin/torchrun", line 8, in <module> sys.exit(main()) File "/root/miniconda3/lib/python3.8/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 348, in wrapper return f(*args, **kwargs) File "/root/miniconda3/lib/python3.8/site-packages/torch/distributed/run.py", line 901, in main run(args) File "/root/miniconda3/lib/python3.8/site-packages/torch/distributed/run.py", line 892, in run elastic_launch( File "/root/miniconda3/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 133, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/root/miniconda3/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 264, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ train.py FAILED ------------------------------------------------------------ Failures: <NO_OTHER_FAILURES> ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-07-16_16:37:12 host : autodl-container-9efe41855c-0b570216 rank : 0 (local_rank: 0) exitcode : 1 (pid: 797171) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================

Traceback (most recent call last): File "D:/YOLOV8/ultralytics-main/datasets/demo_2.py", line 10, in <module> results = model.train(data='data.yaml', epochs=100,workers=0,batch=16,imgsz=640,device=0, lr0= 0.001,weight_decay=0.05,mixup=0.2, hsv_h=0.015) File "D:\YOLOV8\ultralytics-main\ultralytics\engine\model.py", line 803, in train self.trainer.train() File "D:\YOLOV8\ultralytics-main\ultralytics\engine\trainer.py", line 207, in train self._do_train(world_size) File "D:\YOLOV8\ultralytics-main\ultralytics\engine\trainer.py", line 385, in _do_train self.loss, self.loss_items = self.model(batch) File "D:\anaconda\envs\yolo8\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "D:\YOLOV8\ultralytics-main\ultralytics\nn\tasks.py", line 111, in forward return self.loss(x, *args, **kwargs) File "D:\YOLOV8\ultralytics-main\ultralytics\nn\tasks.py", line 293, in loss return self.criterion(preds, batch) File "D:\YOLOV8\ultralytics-main\ultralytics\utils\loss.py", line 268, in __call__ loss[0], loss[2] = self.bbox_loss( File "D:\anaconda\envs\yolo8\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "D:\YOLOV8\ultralytics-main\ultralytics\utils\loss.py", line 128, in forward loss_cls = self.focal_loss(pred_cls, target_cls).sum() / target_scores_sum File "D:\anaconda\envs\yolo8\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "D:\YOLOV8\ultralytics-main\ultralytics\utils\loss.py", line 50, in forward loss = F.binary_cross_entropy_with_logits(pred, label, reduction="none") File "D:\anaconda\envs\yolo8\lib\site-packages\torch\nn\functional.py", line 2980, in binary_cross_entropy_with_logits raise ValueError("Target size ({}) must be the same as input size ({})".format(target.size(), input.size())) ValueError: Target size (torch.Size([793, 5])) must be the same as input size (torch.Size([793, 64]))帮我修改class FocalLoss(nn.Module): """Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5).""" def __init__(self, alpha=3.0, gamma=2): # 添加参数 super().__init__() self.alpha = alpha self.gamma = gamma @staticmethod def forward(pred, label, gamma=2, alpha=3.0): """Calculates and updates confusion matrix for object detection/classification tasks.""" loss = F.binary_cross_entropy_with_logits(pred, label, reduction="none") # p_t = torch.exp(-loss) # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py pred_prob = pred.sigmoid() # prob from logits p_t = label * pred_prob + (1 - label) * (1 - pred_prob) modulating_factor = (1.0 - p_t) ** gamma loss *= modulating_factor if alpha > 0: alpha_factor = label * alpha + (1 - label) * (1 - alpha) loss *= alpha_factor return loss.mean(1).sum()

C:\Users\86159\anaconda3\envs\pytorch\Lib\site-packages\thinc\shims\pytorch.py:261: FutureWarning: You are using torch.load with weights_only=False (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for weights_only will be flipped to True. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via torch.serialization.add_safe_globals. We recommend you start setting weights_only=True for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. model.load_state_dict(torch.load(filelike, map_location=device)) Traceback (most recent call last): File "C:\Users\86159\Desktop\Learn_pytorch\train.py", line 41, in <module> train() File "C:\Users\86159\Desktop\Learn_pytorch\train.py", line 24, in train for batch in train_loader: File "C:\Users\86159\anaconda3\envs\pytorch\Lib\site-packages\torch\utils\data\dataloader.py", line 701, in __next__ data = self._next_data() ^^^^^^^^^^^^^^^^^ File "C:\Users\86159\anaconda3\envs\pytorch\Lib\site-packages\torch\utils\data\dataloader.py", line 757, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\86159\anaconda3\envs\pytorch\Lib\site-packages\torch\utils\data\_utils\fetch.py", line 52, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\86159\anaconda3\envs\pytorch\Lib\site-packages\torch\utils\data\_uti

Using device: cuda training 0%| | 0/30000 [00:00<?, ?it/s] 第0轮 最终误差0.0025133900344371796 0%| | 1/30000 [00:00<3:34:01, 2.34it/s] c:\Users\cw\Desktop\model_HOT.py:192: FutureWarning: You are using torch.load with weights_only=False (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for weights_only will be flipped to True. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via torch.serialization.add_safe_globals. We recommend you start setting weights_only=True for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load('model_HOT.pth', map_location=device) D:\Aconda\envs\pytorch\lib\site-packages\torch\functional.py:534: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\aten\src\ATen\native\TensorShape.cpp:3596.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] Traceback (most recent call last): File "c:\Users\cw\Desktop\model_HOT.py", line 215, in <module> u_pred = U(xyt) File "D:\Aconda\envs\pytorch\lib\site-packages\torch\nn\modules\module

Traceback (most recent call last): File "/home/admin123/code/transformer_xl_encoder_decoder.py", line 210, in <module> output, enc_mems, dec_mems = model(src, tgt) File "/home/admin123/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/admin123/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "/home/admin123/code/transformer_xl_encoder_decoder.py", line 169, in forward enc_out, new_enc_mems = self.encoder(src_emb, enc_mems) File "/home/admin123/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/admin123/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "/home/admin123/code/transformer_xl_encoder_decoder.py", line 114, in forward x, new_mem = layer(x, mems[i] if mems is not None else None) File "/home/admin123/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/admin123/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "/home/admin123/code/transformer_xl_encoder_decoder.py", line 75, in forward attn_out, _ = self.attn( File "/home/admin123/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/admin123/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) TypeError: MultiheadAttention.forward() got an unexpected keyword argument 'pos_emb'

大家在看

recommend-type

mssdk10130048en MsSDK u14

mssdk101400111en.msi是microstation开发的sdk,版本是U14。文件解压密码是:https://blog.csdn.net/csdn_wuwt
recommend-type

matlab 伪距单点定位

本人利用matlab 编写的伪距单点定位,包含rinex 导航文件和观测文件读取的新方法,独立与定位程序之外。在单点定位的同时还进行了地球自转改正,卫星钟误差改正,接收机钟误差改正,地球自转改正,相对效应改正,电离层改正和对流层改正、额外部分还进行了简单的卡尔曼滤波处理定位结果。
recommend-type

libssl-1_1-x64.zip

如题,放到软件安装目录bin文件夹下即可。 在anaconda更新包时遇到了这个问题,找了了X64位可以用的,之后成功更新
recommend-type

Aptra NDC Reference manual

ATM 行业, 国外常用的Aptra NDC协议
recommend-type

的表中所-数据结构中文版

是用于对以位单位访问的点数进行指定的数据,在3.3.1项(1)的表中所 示的1次通信中可处理的点数以内进行指定。 a) 通过 ASCII代码进行数据通信时 将点数转换为 ASCII 代码 2位(16 进制数)后使用,从各高位进行 发送。 (示例) 5 点的情况 下 : 变为“05”,从“0”开始按顺序进行发送。 20 点的情 况下 : 变为“14”,从“1”开始按顺序进行发送。 b) 通过二进制代码进行数据通信时 使用表示点数的 1字节的数值进行发送。 (示例) 5 点的情况 下 : 发送 05H。 20 点的情 况下 : 发送 14H。 7) 设置/复位 是用于指定写入到位软元件中的数据的数据,以如下所示的值进行指 定。 写入数据 ON OFF 备注 ASCII 代码 “01” “00” 从“0”开始按顺序发送 2 字符 二进制代码 01H 00H 发送如左所示的 1 字节的数值

最新推荐

recommend-type

COMSOL多物理场仿真软件六大模块应用实例详解

内容概要:本文介绍了COMSOL多物理场仿真软件的六个主要模块应用实例,包括两相流、流固耦合、旋域、稀物质传递、表面对表面的辐射、固体传热、动网格及气象数据调取。每个案例都详细展示了如何使用COMSOL进行建模和仿真,旨在帮助用户掌握COMSOL的强大功能及其在不同领域的具体应用。通过这些案例,用户不仅可以了解各模块的具体操作步骤,还能深入理解背后的物理原理和技术细节。 适合人群:从事多物理场仿真工作的工程师、科研人员及高校师生。 使用场景及目标:适用于需要进行复杂物理现象模拟的研究项目,如化工、机械、航空航天、热科学等领域。目标是提升用户的仿真技能,优化设计方案,提高生产效率。 其他说明:文中提供的案例不仅展示了COMSOL的仿真能力,还提供了宝贵的实际操作经验和技巧,有助于用户在未来的工作中更加熟练地运用COMSOL解决实际问题。
recommend-type

基于MPC技术的自动泊车与智能轨迹跟踪系统:智能驾驶的关键组件

基于模型预测控制(MPC)技术的自动泊车与智能轨迹跟踪系统。首先解释了MPC的基本原理及其在自动泊车中的应用,即通过构建数学模型预测车辆未来行为并优化控制策略,确保泊车的安全性和效率。接着讨论了MPC在车辆跟踪中的作用,强调其能帮助车辆实现实时、精准的跟踪控制,提高行车的安全性和稳定性。最后总结了基于MPC的自动泊车与跟踪系统的四大优势——精确性、灵活性、安全性和高效性,指出该系统作为智能驾驶的重要组成部分,将对未来出行方式产生深远影响。 适用人群:对自动驾驶技术和智能驾驶感兴趣的科研人员、工程师和技术爱好者。 使用场景及目标:适用于研究和开发自动驾驶技术的企业和个人,旨在提升自动泊车和车辆跟踪的性能,推动智能驾驶技术的发展。 其他说明:文章不仅阐述了理论基础,还结合实际应用场景进行了深入浅出的讲解,有助于读者全面理解MPC技术在智能驾驶领域的应用前景。
recommend-type

Teleport Pro教程:轻松复制网站内容

标题中提到的“复制别人网站的软件”指向的是一种能够下载整个网站或者网站的特定部分,然后在本地或者另一个服务器上重建该网站的技术或工具。这类软件通常被称作网站克隆工具或者网站镜像工具。 描述中提到了一个具体的教程网址,并提到了“天天给力信誉店”,这可能意味着有相关的教程或资源可以在这个网店中获取。但是这里并没有提供实际的教程内容,仅给出了网店的链接。需要注意的是,根据互联网法律法规,复制他人网站内容并用于自己的商业目的可能构成侵权,因此在此类工具的使用中需要谨慎,并确保遵守相关法律法规。 标签“复制 别人 网站 软件”明确指出了这个工具的主要功能,即复制他人网站的软件。 文件名称列表中列出了“Teleport Pro”,这是一款具体的网站下载工具。Teleport Pro是由Tennyson Maxwell公司开发的网站镜像工具,允许用户下载一个网站的本地副本,包括HTML页面、图片和其他资源文件。用户可以通过指定开始的URL,并设置各种选项来决定下载网站的哪些部分。该工具能够帮助开发者、设计师或内容分析人员在没有互联网连接的情况下对网站进行离线浏览和分析。 从知识点的角度来看,Teleport Pro作为一个网站克隆工具,具备以下功能和知识点: 1. 网站下载:Teleport Pro可以下载整个网站或特定网页。用户可以设定下载的深度,例如仅下载首页及其链接的页面,或者下载所有可访问的页面。 2. 断点续传:如果在下载过程中发生中断,Teleport Pro可以从中断的地方继续下载,无需重新开始。 3. 过滤器设置:用户可以根据特定的规则过滤下载内容,如排除某些文件类型或域名。 4. 网站结构分析:Teleport Pro可以分析网站的链接结构,并允许用户查看网站的结构图。 5. 自定义下载:用户可以自定义下载任务,例如仅下载图片、视频或其他特定类型的文件。 6. 多任务处理:Teleport Pro支持多线程下载,用户可以同时启动多个下载任务来提高效率。 7. 编辑和管理下载内容:Teleport Pro具备编辑网站镜像的能力,并可以查看、修改下载的文件。 8. 离线浏览:下载的网站可以在离线状态下浏览,这对于需要测试网站在不同环境下的表现的情况十分有用。 9. 备份功能:Teleport Pro可以用来备份网站,确保重要数据的安全。 在实际使用此类工具时,需要注意以下几点: - 著作权法:复制网站内容可能侵犯原作者的版权,因此在使用此类工具时,必须确保有合法权利去下载和使用目标网站的内容。 - 服务条款:许多网站的服务条款明确禁止未经授权的网站克隆。因此,在使用此类软件之前,应当仔细阅读并遵守目标网站的服务条款。 - 数据隐私:下载含有个人数据的网站可能触及隐私保护法律,特别是在欧洲通用数据保护条例(GDPR)等法规的环境下。 - 网络安全:随意下载网站可能导致恶意软件和病毒的传播,用户应当使用最新的反病毒软件,并在安全的环境中进行操作。 综上所述,虽然“复制别人网站的软件”在技术上是可行的,且可以用于多种正当目的,但在使用此类工具时,必须遵守法律法规和道德规范,不可侵犯他人的合法权益。
recommend-type

【跨平台开发者的必读】:解决Qt5Widgetsd.lib目标计算机类型冲突终极指南

# 1. 跨平台开发与Qt框架简介 跨平台开发已经成为现代软件开发中不可或缺的一部分,它使得开发者能够构建出能够在多种操作系统上运行的应用程序,从而触及更广泛的用户群体。在这其中,Qt框架作为一套成熟的跨平台应用程序和用户界面框架,扮演着关键角色。Qt不仅仅是一个跨平台的工具集,它的设计哲学还包含了模块化和可扩展性,使其能够适应各种规模和复杂度的项目。本章节我们将简要介绍
recommend-type

普通RNN结构和特点

<think>首先,用户的问题是:“我想了解普通RNN的结构及其特点请问RNN循环神经网络结构特点工作原理”。这涉及到RNN的结构、特点和工作原理。根据系统级指令:-所有行内数学表达式必须使用$...$格式。-独立公式必须使用$$...$$格式并单独成段。-LaTeX语法正确。-使用中文回答。-生成相关问题。-回答中引用的段落末尾自然地添加引用标识。用户可见层指令:-回答结构清晰,帮助用户逐步解决问题。-保证回答真实可靠。参考站内引用:-引用[1]:关于RNN的基本介绍,为什么需要RNN。-引用[2]:关于RNN的工作原理、结构图,以及与其他网络的比较。用户上一次的问题和我的回答:用户是第一次
recommend-type

探讨通用数据连接池的核心机制与应用

根据给定的信息,我们能够推断出讨论的主题是“通用数据连接池”,这是一个在软件开发和数据库管理中经常用到的重要概念。在这个主题下,我们可以详细阐述以下几个知识点: 1. **连接池的定义**: 连接池是一种用于管理数据库连接的技术,通过维护一定数量的数据库连接,使得连接的创建和销毁操作更加高效。开发者可以在应用程序启动时预先创建一定数量的连接,并将它们保存在一个池中,当需要数据库连接时,可以直接从池中获取,从而降低数据库连接的开销。 2. **通用数据连接池的概念**: 当提到“通用数据连接池”时,它意味着这种连接池不仅支持单一类型的数据库(如MySQL、Oracle等),而且能够适应多种不同数据库系统。设计一个通用的数据连接池通常需要抽象出一套通用的接口和协议,使得连接池可以兼容不同的数据库驱动和连接方式。 3. **连接池的优点**: - **提升性能**:由于数据库连接创建是一个耗时的操作,连接池能够减少应用程序建立新连接的时间,从而提高性能。 - **资源复用**:数据库连接是昂贵的资源,通过连接池,可以最大化现有连接的使用,避免了连接频繁创建和销毁导致的资源浪费。 - **控制并发连接数**:连接池可以限制对数据库的并发访问,防止过载,确保数据库系统的稳定运行。 4. **连接池的关键参数**: - **最大连接数**:池中能够创建的最大连接数。 - **最小空闲连接数**:池中保持的最小空闲连接数,以应对突发的连接请求。 - **连接超时时间**:连接在池中保持空闲的最大时间。 - **事务处理**:连接池需要能够管理不同事务的上下文,保证事务的正确执行。 5. **实现通用数据连接池的挑战**: 实现一个通用的连接池需要考虑到不同数据库的连接协议和操作差异。例如,不同的数据库可能有不同的SQL方言、认证机制、连接属性设置等。因此,通用连接池需要能够提供足够的灵活性,允许用户配置特定数据库的参数。 6. **数据连接池的应用场景**: - **Web应用**:在Web应用中,为了处理大量的用户请求,数据库连接池可以保证数据库连接的快速复用。 - **批处理应用**:在需要大量读写数据库的批处理作业中,连接池有助于提高整体作业的效率。 - **微服务架构**:在微服务架构中,每个服务可能都需要与数据库进行交互,通用连接池能够帮助简化服务的数据库连接管理。 7. **常见的通用数据连接池技术**: - **Apache DBCP**:Apache的一个Java数据库连接池库。 - **C3P0**:一个提供数据库连接池和控制工具的开源Java框架。 - **HikariCP**:目前性能最好的开源Java数据库连接池之一。 - **BoneCP**:一个高性能的开源Java数据库连接池。 - **Druid**:阿里巴巴开源的一个数据库连接池,提供了对性能监控的高级特性。 8. **连接池的管理与监控**: 为了保证连接池的稳定运行,开发者需要对连接池的状态进行监控,并对其进行适当的管理。监控指标可能包括当前活动的连接数、空闲的连接数、等待获取连接的请求队列长度等。一些连接池提供了监控工具或与监控系统集成的能力。 9. **连接池的配置和优化**: 连接池的性能与连接池的配置密切相关。需要根据实际的应用负载和数据库性能来调整连接池的参数。例如,在高并发的场景下,可能需要增加连接池中连接的数量。另外,适当的线程池策略也可以帮助连接池更好地服务于多线程环境。 10. **连接池的应用案例**: 一个典型的案例是电商平台在大型促销活动期间,用户访问量激增,此时通用数据连接池能够保证数据库操作的快速响应,减少因数据库连接问题导致的系统瓶颈。 总结来说,通用数据连接池是现代软件架构中的重要组件,它通过提供高效的数据库连接管理,增强了软件系统的性能和稳定性。了解和掌握连接池的原理及实践,对于任何涉及数据库交互的应用开发都至关重要。在实现和应用连接池时,需要关注其设计的通用性、配置的合理性以及管理的有效性,确保在不同的应用场景下都能发挥出最大的效能。
recommend-type

【LabVIEW网络通讯终极指南】:7个技巧提升UDP性能和安全性

# 摘要 本文系统介绍了LabVIEW在网络通讯中的应用,尤其是针对UDP协议的研究与优化。首先,阐述了UDP的原理、特点及其在LabVIEW中的基础应用。随后,本文深入探讨了通过调整数据包大小、实现并发通信及优化缓冲区管理等技巧来优化UDP性能的LabVIEW方法。接着,文章聚焦于提升UDP通信安全性,介绍了加密技术和认证授权机制在LabVIEW中的实现,以及防御网络攻击的策略。最后,通过具体案例展示了LabVIEW在实时数据采集和远程控制系统中的高级应用,并展望了LabVIEW与UDP通讯技术的未来发展趋势及新兴技术的影响。 # 关键字 LabVIEW;UDP网络通讯;性能优化;安全性;
recommend-type

简要介绍cnn卷积神经网络

<think>首先,用户的问题是:“我想了解卷积神经网络的基本概念和原理 请问CNN卷积神经网络简介及其工作原理”。所以,我需要基于提供的引用材料,构建一个清晰的回答。 引用材料总结: - [^1]: CNN的核心思想是局部感受野、权值共享和时间或空间亚采样,提供位移、尺度、形变不变性。三大特色:局部感知、权重共享和多卷积核。 - [^2]: CNN是一种前馈神经网络,由卷积层和池化层组成,特别在图像处理方面出色。与传统多层神经网络相比,CNN加入了卷积层和池化层,使特征学习更有效。 - [^3]: CNN与全连接神经网络的区别:至少有一个卷积层提取特征;神经元局部连接和权值共享,减少参数数
recommend-type

基于ASP的深度学习网站导航系统功能详解

从给定文件中我们可以提取以下IT知识点: ### 标题知识点 #### "ASP系统篇" - **ASP技术介绍**:ASP(Active Server Pages)是一种服务器端的脚本环境,用于创建动态交互式网页。ASP允许开发者将HTML网页与服务器端脚本结合,使用VBScript或JavaScript等语言编写代码,以实现网页内容的动态生成。 - **ASP技术特点**:ASP适用于小型到中型的项目开发,它可以与数据库紧密集成,如Microsoft的Access和SQL Server。ASP支持多种组件和COM(Component Object Model)对象,使得开发者能够实现复杂的业务逻辑。 #### "深度学习网址导航系统" - **深度学习概念**:深度学习是机器学习的一个分支,通过构建深层的神经网络来模拟人类大脑的工作方式,以实现对数据的高级抽象和学习。 - **系统功能与深度学习的关系**:该标题可能意味着系统在进行网站分类、搜索优化、内容审核等方面采用了深度学习技术,以提供更智能、自动化的服务。然而,根据描述内容,实际上系统并没有直接使用深度学习技术,而是提供了一个传统的网址导航服务,可能是命名上的噱头。 ### 描述知识点 #### "全后台化管理,操作简单" - **后台管理系统的功能**:后台管理系统允许网站管理员通过Web界面执行管理任务,如内容更新、用户管理等。它通常要求界面友好,操作简便,以适应不同技术水平的用户。 #### "栏目无限分类,自由添加,排序,设定是否前台显示" - **动态网站结构设计**:这意味着网站结构具有高度的灵活性,支持创建无限层级的分类,允许管理员自由地添加、排序和设置分类的显示属性。这种设计通常需要数据库支持动态生成内容。 #### "各大搜索和站内搜索随意切换" - **搜索引擎集成**:网站可能集成了外部搜索引擎(如Google、Bing)和内部搜索引擎功能,让用户能够方便地从不同来源获取信息。 #### "网站在线提交、审阅、编辑、删除" - **内容管理系统的功能**:该系统提供了一个内容管理平台,允许用户在线提交内容,由管理员进行审阅、编辑和删除操作。 #### "站点相关信息后台动态配置" - **动态配置机制**:网站允许管理员通过后台系统动态调整各种配置信息,如网站设置、参数调整等,从而实现快速的网站维护和更新。 #### "自助网站收录,后台审阅" - **网站收录和审核机制**:该系统提供了一套自助收录流程,允许其他网站提交申请,由管理员进行后台审核,决定是否收录。 #### "网站广告在线发布" - **广告管理功能**:网站允许管理员在线发布和管理网站广告位,以实现商业变现。 #### "自动生成静态页 ver2.4.5" - **动态与静态内容**:系统支持动态内容的生成,同时也提供了静态页面的生成机制,这可能有助于提高网站加载速度和搜索引擎优化。 #### "重写后台网址分类管理" - **系统优化与重构**:提到了后台网址分类管理功能的重写,这可能意味着系统进行了一次重要的更新,以修复前一个版本的错误,并提高性能。 ### 标签知识点 #### "ASP web 源代码 源码" - **ASP程序开发**:标签表明这是一个ASP语言编写的网站源代码,可能是一个开源项目,供开发者下载、研究或部署到自己的服务器上。 ### 压缩包子文件名称列表知识点 #### "深度学习(asp)网址导航程序" - **文件内容和类型**:文件列表中提到的“深度学习(asp)网址导航程序”表明这是一个ASP语言编写的网址导航系统程序,可能包含了系统安装和配置需要的所有源文件。 通过以上分析,我们可以得出这个ASP系统是一个传统的网址导航系统,以后台管理为核心功能,并没有实际运用到深度学习技术。系统的主要功能包括对网站内容、分类、搜索引擎、广告位、以及其他网站相关信息的管理。它可能还提供了一个平台,供用户提交网址,供管理员审核并收录到导航中。源代码可能以ASP语言编写,并在文件中包含了所有必要的程序文件。
recommend-type

【Oracle数据泵进阶技巧】:避免ORA-31634和ORA-31664错误的终极策略

# 1. Oracle数据泵技术概述 ## Oracle数据泵技术简介 Oracle数据泵(Data Pump)是一种用于高效地在Oracle数据库之间传输数据和元数据的工具。它从Oracle 10g版本开始引入,提供了快速且灵活的数据导入导出功能。数据泵技术优于旧版的`imp`和`exp`工具,因为它支持多线程,可以在导入和导出过程中显著提高性能。 ## 数据泵的核心优势 数据泵的核心优势在于它能并行处理数据,支持大对象(LOBs)和网络传输。它还允许用户自定义数据和对象的传输方式,以及可以控制传输过程中的各种细节,如过滤对象、调整数据缓冲区大小、并行度和网络数据包大小等。 ## 数据