Initializing database.. Traceback (most recent call last): File "F:\anaconda\envs\label_studio\lib\site-packages\django\db\backends\utils.py", line 82, in _execute return self.cursor.execute(sql) File "F:\anaconda\envs\label_studio\lib\site-packages\django\db\backends\sqlite3\base.py", line 421, in execute return Database.Cursor.execute(self, query) sqlite3.OperationalError: no such column: "project" - should this be a string literal in single-quotes? The above exception was the direct cause of the following exception: Traceback (most recent call last): File "F:\anaconda\envs\label_studio\lib\runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "F:\anaconda\envs\label_studio\lib\runpy.py", line 87, in _run_code exec(code, run_globals) File "F:\anaconda\envs\label_studio\Scripts\label-studio.exe\__main__.py", line 7, in <module> sys.exit(main()) File "F:\anaconda\envs\label_studio\lib\site-packages\label_studio\server.py", line 302, in main _apply_database_migrations() File "F:\anaconda\envs\label_studio\lib\site-packages\label_studio\server.py", line 67, in _apply_database_migrations call_command('migrate', '--no-color', verbosity=0) File "F:\anaconda\envs\label_studio\lib\site-packages\django\core\management\__init__.py", line 181, in call_command return command.execute(*args, **defaults) File "F:\anaconda\envs\label_studio\lib\site-packages\django\core\management\base.py", line 398, in execute output = self.handle(*args, **options) File "F:\anaconda\envs\label_studio\lib\site-packages\django\core\management\base.py", line 89, in wrapped res = handle_func(*args, **kwargs) File "F:\anaconda\envs\label_studio\lib\site-packages\django\core\management\commands\migrate.py", line 244, in handle post_migrate_state = executor.migrate( File "F:\anaconda\envs\label_studio\lib\site-packages\django\db\migrations\executor.py", line 117, in migrate state = self._migra

时间: 2025-06-23 14:19:32 浏览: 36
<think>好的,我现在需要帮助用户解决Django项目中遇到的SQLite数据库迁移错误,具体是“no such column: project”的问题。首先,我需要理清用户的问题场景。用户可能在运行迁移命令或者启动应用时遇到了这个错误,提示某个列不存在,而列名是“project”。这可能是因为数据库迁移过程中出现了问题,导致表结构没有正确更新。 接下来,根据用户提供的引用资料,特别是引用[1]、[2]、[4],问题通常出现在未正确应用迁移或者迁移文件与实际模型不一致的时候。首先,用户应该检查是否已经创建并应用了所有迁移。有时候,用户可能只执行了makemigrations而没有执行migrate,导致表结构没有更新。这时候,运行python manage.py migrate命令应该能解决问题。但根据用户的错误信息,可能已经执行过迁移,但问题仍然存在,所以需要考虑其他原因。 另外,引用[3]提到JSON_VALID函数的问题,这可能与SQLite版本有关,但用户的问题是关于列不存在,所以暂时可以排除这个因素。用户的问题可能出现在迁移文件冲突或者手动修改了数据库的情况下。例如,用户可能修改了模型后没有生成新的迁移文件,或者生成的迁移文件存在错误,导致应用迁移时没有正确添加列。 接下来,我需要考虑可能的解决步骤。首先,用户应该确认是否所有的迁移文件都已经应用。可以通过运行python manage.py showmigrations来查看哪些迁移已经应用,哪些还没有。如果发现未应用的迁移,执行migrate命令来应用它们。 如果迁移已经应用,但问题仍然存在,可能需要检查迁移文件是否正确。例如,用户可能在模型中添加了名为“project”的字段,但迁移文件没有正确生成,或者在生成迁移文件后手动修改了模型而没有重新生成迁移文件。这种情况下,用户需要删除迁移文件并重新生成,但需要注意删除迁移文件的步骤是否正确,避免引起其他问题。 另外,用户可能在数据库中手动修改了表结构,导致迁移文件与实际数据库不一致。这时,可以考虑删除数据库文件(如db.sqlite3),然后重新运行makemigrations和migrate,从头开始重建数据库。但这种方法会导致数据丢失,所以需要谨慎,尤其是在生产环境中。 还有一种可能是迁移文件之间存在依赖关系错误,或者多个迁移文件冲突。此时,用户需要检查迁移文件的顺序是否正确,或者是否有重复的迁移操作。如果发现冲突,可以尝试回滚迁移(使用migrate app_name migration_name),然后重新生成和应用迁移。 此外,用户在模型中定义字段时可能使用了错误的语法,比如字段名拼写错误,或者在迁移文件中引用了不存在的字段。例如,如果在模型中定义了一个字段名为“project”,但在迁移文件中写成了“projct”,就会导致列不存在的错误。需要仔细检查模型定义和迁移文件中的字段名是否一致。 最后,用户可能没有正确注册应用,导致迁移文件没有生成。在Django的settings.py中,需要确保应用已经被添加到INSTALLED_APPS中,否则Django不会为该应用生成迁移文件。 总结可能的解决步骤: 1. 检查并应用所有未完成的迁移。 2. 确认模型定义和迁移文件中的字段名一致。 3. 删除并重新生成迁移文件,然后重新应用迁移。 4. 在必要时重置数据库(注意备份数据)。 5. 检查应用是否已正确注册。 用户提到的错误信息中,“project”列不存在,可能是在某个迁移文件中尝试添加或修改该列,但由于迁移未正确应用或迁移文件错误,导致该列未被创建。需要按照上述步骤逐一排查,找到具体原因并解决。</think>### Django SQLite迁移错误解决方案:列不存在问题 #### 问题分析 错误`no such column: project`通常由以下原因导致: 1. 未正确应用数据库迁移 2. 迁移文件与模型定义不一致 3. 手动修改数据库导致结构不同步 4. 应用未注册或迁移依赖关系错误 #### 解决步骤 1. **检查迁移状态** ```bash python manage.py showmigrations ``` 查看是否有未应用的迁移(标记为`[ ]`的条目)。若存在未应用的迁移,执行: ```bash python manage.py migrate ``` 2. **重建迁移文件(适用于模型与迁移文件不一致)** ```bash # 删除已有迁移文件(保留__init__.py) rm your_app/migrations/0*.py # 重新生成迁移文件 python manage.py makemigrations python manage.py migrate ``` *注意:此操作会丢失自定义迁移逻辑,需谨慎操作* 3. **强制重置数据库(开发环境适用)** ```bash # 删除数据库文件 rm db.sqlite3 # 重新建立数据库 python manage.py makemigrations python manage.py migrate python manage.py createsuperuser # 可选重建管理员 ``` 4. **检查模型字段定义** 确认`models.py`中字段名称与报错列名完全一致: ```python class YourModel(models.Model): project = models.CharField(max_length=100) # 确认字段名称和类型 ``` 5. **验证应用注册状态** 在`settings.py`中确认应用已正确注册: ```python INSTALLED_APPS = [ ... 'your_app.apps.YourAppConfig', # 必须包含当前应用 ] ``` #### 常见错误场景 - **场景1**:新增字段后未迁移 *现象*:在模型中添加`project`字段后直接运行服务器 *解决方案*: ```bash python manage.py makemigrations python manage.py migrate ``` - **场景2**:手动修改数据库后不同步 *现象*:使用DB Browser等工具直接修改表结构 *解决方案*:使用[重置数据库](#_3)方法重建结构 - **场景3**:迁移文件冲突 *现象*:多个开发者创建的迁移文件编号冲突 *解决方案*: ```bash python manage.py migrate --fake your_app 0001 # 先同步迁移记录 python manage.py makemigrations --merge # 合并冲突 ``` #### 高级调试技巧 1. **查看SQL语句** ```bash python manage.py sqlmigrate your_app 0002 ``` 查看特定迁移文件生成的SQL语句,验证是否包含`ALTER TABLE... ADD COLUMN project` 2. **使用Django Shell验证** ```bash python manage.py shell ``` ```python from your_app.models import YourModel print(YourModel._meta.get_fields()) # 查看模型实际字段 ``` [^1]: 数据库迁移未完成会导致表结构不同步 [^2]: 必须按顺序执行makemigrations和migrate [^4]: 列不存在错误与模型定义直接相关
阅读全文

相关推荐

(VScode) zhaohy@workspace2:~/VSCode-main$ python train_test_eval.py --Training True --Testing True --Evaluation True /home/zhaohy/anaconda3/envs/VScode/lib/python3.8/site-packages/timm/models/layers/__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning) /home/zhaohy/anaconda3/envs/VScode/lib/python3.8/site-packages/timm/models/layers/__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning) /home/zhaohy/anaconda3/envs/VScode/lib/python3.8/site-packages/timm/models/layers/__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning) W0311 15:54:21.788752 136232691705664 torch/multiprocessing/spawn.py:145] Terminating process 2342884 via signal SIGTERM Traceback (most recent call last): File "train_test_eval.py", line 67, in <module> Training.train_net(num_gpus=num_gpus, args=args) File "/home/zhaohy/VSCode-main/Training.py", line 64, in train_net mp.spawn(main, nprocs=num_gpus, args=(num_gpus, args)) File "/home/zhaohy/anaconda3/envs/VScode/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 281, in spawn return start_processes(fn, args, nprocs, join, daemon, start_method="spawn") File "/home/zhaohy/anaconda3/envs/VScode/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 237, in start_processes while not context.join(): File "/home/zhaohy/anaconda3/envs/VScode/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 188, in join raise ProcessRaisedException(msg, error_index, failed_process.pid) torch.multiprocessing.spawn.ProcessRaisedException: -- Process 1 terminated with the following error: Traceback (most recent call last): File "/home/zhaohy/anaconda3/envs/VScode/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 75, in _wrap fn(i, *args) File "/home/zhaohy/VSCode-main/Training.py", line 71, in main dist.init_process_group(backend='nccl', init_method='env://') # 自动从环境变量读取 RANK/WORLD_SIZE File "/home/zhaohy/anaconda3/envs/VScode/lib/python3.8/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper return func(*args, **kwargs) File "/home/zhaohy/anaconda3/envs/VScode/lib/python3.8/site-packages/torch/distributed/c10d_logger.py", line 89, in wrapper func_return = func(*args, **kwargs) File "/home/zhaohy/anaconda3/envs/VScode/lib/python3.8/site-packages/torch/distributed/distributed_c10d.py", line 1305, in init_process_group store, rank, world_size = next(rendezvous_iterator) File "/home/zhaohy/anaconda3/envs/VScode/lib/python3.8/site-packages/torch/distributed/rendezvous.py", line 234, in _env_rendezvous_handler rank = int(_get_env_or_raise("RANK")) File "/home/zhaohy/anaconda3/envs/VScode/lib/python3.8/site-packages/torch/distributed/rendezvous.py", line 219, in _get_env_or_raise raise _env_error(env_var) ValueError: Error initializing torch.distributed using env:// rendezvous: environment variable RANK expected, but not set

(vllm) zhzx@zhzx-S2600WF-LS:/media/zhzx/ssd2/Qwen3-32B$ vllm serve "/media/zhzx/ssd2/Qwen3-32B" --host 0.0.0.0 --port 8060 --dtype bfloat16 --tensor-parallel-size 2 --cpu-offload-gb 20 --gpu-memory-utilization 0.8 --max-model-len 8126 --api-key token-abc123 --enable-prefix-caching --trust-remote-code \ > INFO 05-10 20:06:33 [__init__.py:239] Automatically detected platform cuda. INFO 05-10 20:06:36 [api_server.py:1043] vLLM API server version 0.8.5.post1 INFO 05-10 20:06:36 [api_server.py:1044] args: Namespace(subparser='serve', model_tag='/media/zhzx/ssd2/Qwen3-32B', config='', host='0.0.0.0', port=8060, uvicorn_log_level='info', disable_uvicorn_access_log=False, allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key='token-abc123', lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, enable_ssl_refresh=False, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_request_id_headers=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='/media/zhzx/ssd2/Qwen3-32B', task='auto', tokenizer=None, hf_config_path=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=True, allowed_local_media_path=None, load_format='auto', download_dir=None, model_loader_extra_config={}, use_tqdm_on_load=True, config_format=<ConfigFormat.AUTO: 'auto'>, dtype='bfloat16', max_model_len=8126, guided_decoding_backend='auto', reasoning_parser=None, logits_processor_pattern=None, model_impl='auto', distributed_executor_backend=None, pipeline_parallel_size=1, tensor_parallel_size=2, data_parallel_size=1, enable_expert_parallel=False, max_parallel_loading_workers=None, ray_workers_use_nsight=False, disable_custom_all_reduce=False, block_size=None, gpu_memory_utilization=0.8, swap_space=4, kv_cache_dtype='auto', num_gpu_blocks_override=None, enable_prefix_caching=True, prefix_caching_hash_algo='builtin', cpu_offload_gb=20.0, calculate_kv_scales=False, disable_sliding_window=False, use_v2_block_manager=True, seed=None, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_token=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config={}, limit_mm_per_prompt={}, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=None, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=None, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', speculative_config=None, ignore_patterns=[], served_model_name=None, qlora_adapter_name_or_path=None, show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, max_num_batched_tokens=None, max_num_seqs=None, max_num_partial_prefills=1, max_long_partial_prefills=1, long_prefill_token_threshold=0, num_lookahead_slots=0, scheduler_delay_factor=0.0, preemption_mode=None, num_scheduler_steps=1, multi_step_stream_outputs=True, scheduling_policy='fcfs', enable_chunked_prefill=None, disable_chunked_mm_input=False, scheduler_cls='vllm.core.scheduler.Scheduler', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', worker_extension_cls='', generation_config='auto', override_generation_config=None, enable_sleep_mode=False, additional_config=None, enable_reasoning=False, disable_cascade_attn=False, disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False, enable_server_load_tracking=False, dispatch_function=<function ServeSubcommand.cmd at 0x7f625a071bc0>) WARNING 05-10 20:06:36 [config.py:2972] Casting torch.float16 to torch.bfloat16. INFO 05-10 20:06:42 [config.py:717] This model supports multiple tasks: {'reward', 'embed', 'generate', 'classify', 'score'}. Defaulting to 'generate'. WARNING 05-10 20:06:42 [arg_utils.py:1658] Compute Capability < 8.0 is not supported by the V1 Engine. Falling back to V0. INFO 05-10 20:06:42 [config.py:1770] Defaulting to use mp for distributed inference INFO 05-10 20:06:42 [api_server.py:246] Started engine process with PID 73230 INFO 05-10 20:06:45 [__init__.py:239] Automatically detected platform cuda. INFO 05-10 20:06:47 [llm_engine.py:240] Initializing a V0 LLM engine (v0.8.5.post1) with config: model='/media/zhzx/ssd2/Qwen3-32B', speculative_config=None, tokenizer='/media/zhzx/ssd2/Qwen3-32B', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=True, dtype=torch.bfloat16, max_seq_len=8126, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=2, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='auto', reasoning_backend=None), observability_config=ObservabilityConfig(show_hidden_metrics=False, otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=None, served_model_name=/media/zhzx/ssd2/Qwen3-32B, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=False, use_async_output_proc=True, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"splitting_ops":[],"compile_sizes":[],"cudagraph_capture_sizes":[256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"max_capture_size":256}, use_cached_outputs=True, WARNING 05-10 20:06:48 [multiproc_worker_utils.py:306] Reducing Torch parallelism from 16 threads to 1 to avoid unnecessary CPU contention. Set OMP_NUM_THREADS in the external environment to tune this value as needed. INFO 05-10 20:06:48 [cuda.py:240] Cannot use FlashAttention-2 backend for Volta and Turing GPUs. INFO 05-10 20:06:48 [cuda.py:289] Using XFormers backend. INFO 05-10 20:06:50 [__init__.py:239] Automatically detected platform cuda. (VllmWorkerProcess pid=73270) INFO 05-10 20:06:53 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks (VllmWorkerProcess pid=73270) INFO 05-10 20:06:53 [cuda.py:240] Cannot use FlashAttention-2 backend for Volta and Turing GPUs. (VllmWorkerProcess pid=73270) INFO 05-10 20:06:53 [cuda.py:289] Using XFormers backend. ERROR 05-10 20:06:53 [engine.py:448] Bfloat16 is only supported on GPUs with compute capability of at least 8.0. Your Quadro RTX 6000 GPU has compute capability 7.5. You can use float16 instead by explicitly setting the dtype flag in CLI, for example: --dtype=half. ERROR 05-10 20:06:53 [engine.py:448] Traceback (most recent call last): ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 436, in run_mp_engine ERROR 05-10 20:06:53 [engine.py:448] engine = MQLLMEngine.from_vllm_config( ERROR 05-10 20:06:53 [engine.py:448] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 128, in from_vllm_config ERROR 05-10 20:06:53 [engine.py:448] return cls( ERROR 05-10 20:06:53 [engine.py:448] ^^^^ ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 82, in __init__ ERROR 05-10 20:06:53 [engine.py:448] self.engine = LLMEngine(*args, **kwargs) ERROR 05-10 20:06:53 [engine.py:448] ^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/engine/llm_engine.py", line 275, in __init__ ERROR 05-10 20:06:53 [engine.py:448] self.model_executor = executor_class(vllm_config=vllm_config) ERROR 05-10 20:06:53 [engine.py:448] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 286, in __init__ ERROR 05-10 20:06:53 [engine.py:448] super().__init__(*args, **kwargs) ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 52, in __init__ ERROR 05-10 20:06:53 [engine.py:448] self._init_executor() ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/executor/mp_distributed_executor.py", line 124, in _init_executor ERROR 05-10 20:06:53 [engine.py:448] self._run_workers("init_device") ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/executor/mp_distributed_executor.py", line 185, in _run_workers ERROR 05-10 20:06:53 [engine.py:448] driver_worker_output = run_method(self.driver_worker, sent_method, ERROR 05-10 20:06:53 [engine.py:448] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/utils.py", line 2456, in run_method ERROR 05-10 20:06:53 [engine.py:448] return func(*args, **kwargs) ERROR 05-10 20:06:53 [engine.py:448] ^^^^^^^^^^^^^^^^^^^^^ ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/worker/worker_base.py", line 604, in init_device ERROR 05-10 20:06:53 [engine.py:448] self.worker.init_device() # type: ignore ERROR 05-10 20:06:53 [engine.py:448] ^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/worker/worker.py", line 177, in init_device ERROR 05-10 20:06:53 [engine.py:448] _check_if_gpu_supports_dtype(self.model_config.dtype) ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/worker/worker.py", line 546, in _check_if_gpu_supports_dtype ERROR 05-10 20:06:53 [engine.py:448] raise ValueError( ERROR 05-10 20:06:53 [engine.py:448] ValueError: Bfloat16 is only supported on GPUs with compute capability of at least 8.0. Your Quadro RTX 6000 GPU has compute capability 7.5. You can use float16 instead by explicitly setting the dtype flag in CLI, for example: --dtype=half. Process SpawnProcess-1: ERROR 05-10 20:06:53 [multiproc_worker_utils.py:120] Worker VllmWorkerProcess pid 73270 died, exit code: -15 INFO 05-10 20:06:53 [multiproc_worker_utils.py:124] Killing local vLLM worker processes Traceback (most recent call last): File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/multiprocessing/process.py", line 314, in _bootstrap self.run() File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 450, in run_mp_engine raise e File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 436, in run_mp_engine engine = MQLLMEngine.from_vllm_config( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 128, in from_vllm_config return cls( ^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 82, in __init__ self.engine = LLMEngine(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/engine/llm_engine.py", line 275, in __init__ self.model_executor = executor_class(vllm_config=vllm_config) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 286, in __init__ super().__init__(*args, **kwargs) File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 52, in __init__ self._init_executor() File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/executor/mp_distributed_executor.py", line 124, in _init_executor self._run_workers("init_device") File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/executor/mp_distributed_executor.py", line 185, in _run_workers driver_worker_output = run_method(self.driver_worker, sent_method, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/utils.py", line 2456, in run_method return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/worker/worker_base.py", line 604, in init_device self.worker.init_device() # type: ignore ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/worker/worker.py", line 177, in init_device _check_if_gpu_supports_dtype(self.model_config.dtype) File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/worker/worker.py", line 546, in _check_if_gpu_supports_dtype raise ValueError( ValueError: Bfloat16 is only supported on GPUs with compute capability of at least 8.0. Your Quadro RTX 6000 GPU has compute capability 7.5. You can use float16 instead by explicitly setting the dtype flag in CLI, for example: --dtype=half. Traceback (most recent call last): File "/home/zhzx/miniconda3/envs/vllm/bin/vllm", line 8, in <module> sys.exit(main()) ^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/entrypoints/cli/main.py", line 53, in main args.dispatch_function(args) File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/entrypoints/cli/serve.py", line 27, in cmd uvloop.run(run_server(args)) File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/uvloop/__init__.py", line 109, in run return __asyncio.run( ^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/asyncio/runners.py", line 195, in run return runner.run(main) ^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/asyncio/runners.py", line 118, in run return self._loop.run_until_complete(task) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "uvloop/loop.pyx", line 1518, in uvloop.loop.Loop.run_until_complete File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/uvloop/__init__.py", line 61, in wrapper return await main ^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 1078, in run_server async with build_async_engine_client(args) as engine_client: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/contextlib.py", line 210, in __aenter__ return await anext(self.gen) ^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 146, in build_async_engine_client async with build_async_engine_client_from_engine_args( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/contextlib.py", line 210, in __aenter__ return await anext(self.gen) ^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 269, in build_async_engine_client_from_engine_args raise RuntimeError( RuntimeError: Engine process failed to start. See stack trace for the root cause.

. ____ _ __ _ _ /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \ ( ( )\___ | '_ | '_| | '_ \/ _ | \ \ \ \ \\/ ___)| |_)| | | | | || (_| | ) ) ) ) ' |____| .__|_| |_|_| |_\__, | / / / / =========|_|==============|___/=/_/_/_/ :: Spring Boot :: (v2.5.9) 2025-03-29 23:30:44.927 INFO 10080 --- [ main] com.example.SpringbootApplication : Starting SpringbootApplication using Java 1.8.0_341 on DESKTOP-EUNUR1G with PID 10080 (D:\毕业设计\manager\springboot\target\classes started by DELL in D:\毕业设计\manager) 2025-03-29 23:30:44.929 INFO 10080 --- [ main] com.example.SpringbootApplication : No active profile set, falling back to default profiles: default 2025-03-29 23:30:45.709 INFO 10080 --- [ main] o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat initialized with port(s): 9090 (http) 2025-03-29 23:30:45.716 INFO 10080 --- [ main] o.apache.catalina.core.StandardService : Starting service [Tomcat] 2025-03-29 23:30:45.716 INFO 10080 --- [ main] org.apache.catalina.core.StandardEngine : Starting Servlet engine: [Apache Tomcat/9.0.56] 2025-03-29 23:30:45.800 INFO 10080 --- [ main] o.a.c.c.C.[Tomcat].[localhost].[/] : Initializing Spring embedded WebApplicationContext 2025-03-29 23:30:45.800 INFO 10080 --- [ main] w.s.c.ServletWebServerApplicationContext : Root WebApplicationContext: initialization completed in 836 ms Logging initialized using 'class org.apache.ibatis.logging.stdout.StdOutImpl' adapter. Parsed mapper file: 'file [D:\毕业设计\manager\springboot\target\classes\mapper\AdminMapper.xml]' Parsed mapper file: 'file [D:\毕业设计\manager\springboot\target\classes\mapper\NoticeMapper.xml]' ,------. ,--. ,--. ,--. | .--. ' ,--,--. ,---. ,---. | '--' | ,---. | | ,---. ,---. ,--.--. | '--' | ' ,-. | | .-. | | .-. : | .--. | | .-. : | | | .-. | | .-. : | .--' | | -

Initializing NUTS using jitter+adapt_diag... C:\Users\35323\anaconda3\envs\py01\Lib\site-packages\pytensor\link\c\cmodule.py:2968: UserWarning: PyTensor could not link to a BLAS installation. Operations that might benefit from BLAS will be severely degraded. This usually happens when PyTensor is installed via pip. We recommend it be installed via conda/mamba/pixi instead. Alternatively, you can use an experimental backend such as Numba or JAX that perform their own BLAS optimizations, by setting pytensor.config.mode == 'NUMBA' or passing mode='NUMBA' when compiling a PyTensor function. For more options and details see https://pytensor.readthedocs.io/en/latest/troubleshooting.html#how-do-i-configure-test-my-blas-library warnings.warn( Traceback (most recent call last): File "C:\Program Files\JetBrains\PyCharm 2025.1.1.1\plugins\python-ce\helpers\pydev\pydevd.py", line 1570, in _exec pydev_imports.execfile(file, globals, locals) # execute the script ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Program Files\JetBrains\PyCharm 2025.1.1.1\plugins\python-ce\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) ~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\35323\PycharmProjects\PythonProject1\bayes.py", line 28, in <module> trace = pm.sample( draws=2000, ...<3 lines>... return_inferencedata=True ) File "C:\Users\35323\anaconda3\envs\py01\Lib\site-packages\pymc\sampling\mcmc.py", line 832, in sample initial_points, step = init_nuts( ~~~~~~~~~^ init=init, ^^^^^^^^^^ ...<9 lines>... **kwargs, ^^^^^^^^^ ) ^ File "C:\Users\35323\anaconda3\envs\py01\Lib\site-packages\pymc\sampling\mcmc.py", line 1605, in init_nuts initial_points = _init_jitter( model, ...<4 lines>... logp_fn=model_logp_fn, ) File "C:\Users\35323\anaconda3\envs\py01\Lib\site-packages\pymc\sampling\mcmc.py", line 1486, in _init_jitter model.check_start_vals(point) ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^ File "C:\Users\35323\anaconda3\envs\py01\Lib\site-packages\pymc\model\core.py", line 1790, in check_start_vals raise SamplingError( ...<4 lines>... ) pymc.exceptions.SamplingError: Initial evaluation of model at starting point failed! Starting values: {'theta_interval__': array(nan), 'phi_interval__': array(-3.38044331)} Logp initial evaluation results: {'theta': np.float64(nan), 'phi': np.float64(-4.74)} You can call model.debug() for more details. python-BaseException

Traceback (most recent call last): File "D:\小论文\codes\MVASTGCN\train_ASTGCN_r.py", line 248, in <module> train_main() File "D:\小论文\codes\MVASTGCN\train_ASTGCN_r.py", line 181, in train_main val_loss = compute_val_loss_mstgcn(net, val_loader, criterion, masked_flag, missing_value, sw, epoch) File "D:\小论文\codes\MVASTGCN\lib\utils.py", line 251, in compute_val_loss_mstgcn outputs = net(encoder_inputs) File "C:\Users\16326\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1736, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Users\16326\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1747, in _call_impl return forward_call(*args, **kwargs) File "D:\小论文\codes\MVASTGCN\model\ASTGCN_r.py", line 265, in forward x = block(x) File "C:\Users\16326\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1736, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Users\16326\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1747, in _call_impl return forward_call(*args, **kwargs) File "D:\小论文\codes\MVASTGCN\model\ASTGCN_r.py", line 218, in forward spatial_gcn = self.cheb_conv_SAt(x, spatial_At) # (b,N,F,T) File "C:\Users\16326\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1736, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Users\16326\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1747, in _call_impl return forward_call(*args, **kwargs) File "D:\小论文\codes\MVASTGCN\model\ASTGCN_r.py", line 100, in forward graph_output *= fusion_weights[k] # 动态加权 IndexError: index 2 is out of bounds for dimension 0 with size 2

root@autodl-container-c85144bc1a-7cf0bfa7:~/autodl-tmp/Open-LLM-VTuber# uv run run_server.py # 第一次运行可能会下载一些模型,导致等待时间较久。 2025-07-17 19:14:19.094 | INFO | __main__:<module>:86 - Running in standard mode. For detailed debug logs, use: uv run run_server.py --verbose 2025-07-17 19:14:19 | INFO | __main__:run:57 | Open-LLM-VTuber, version v1.1.4 2025-07-17 19:14:19 | INFO | upgrade:sync_user_config:350 | [DEBUG] User configuration is up-to-date. 2025-07-17 19:14:19 | INFO | src.open_llm_vtuber.service_context:init_live2d:156 | Initializing Live2D: shizuku-local 2025-07-17 19:14:19 | INFO | src.open_llm_vtuber.live2d_model:_lookup_model_info:142 | Model Information Loaded. 2025-07-17 19:14:19 | INFO | src.open_llm_vtuber.service_context:init_asr:166 | Initializing ASR: sherpa_onnx_asr 2025-07-17 19:14:19 | INFO | src.open_llm_vtuber.asr.sherpa_onnx_asr:__init__:81 | Sherpa-Onnx-ASR: Using cpu for inference 2025-07-17 19:14:19 | WARNING | src.open_llm_vtuber.asr.sherpa_onnx_asr:_create_recognizer:166 | SenseVoice model not found. Downloading the model... 2025-07-17 19:14:19 | INFO | src.open_llm_vtuber.asr.utils:check_and_extract_local_file:141 | ✅ Extracted directory exists: models/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17, no operation needed. 2025-07-17 19:14:19 | INFO | src.open_llm_vtuber.asr.sherpa_onnx_asr:_create_recognizer:179 | Local file found. Using existing file. 2025-07-17 19:14:19 | ERROR | __main__:<module>:91 | An error has been caught in function '<module>', process 'MainProcess' (186339), thread 'MainThread' (140161628456768): Traceback (most recent call last): > File "/root/autodl-tmp/Open-LLM-VTuber/run_server.py", line 91, in <module> run(console_log_level=console_log_level) │ └ 'INFO' └ <function run at 0x7f79baae0790> File "/root/autodl-tmp/Open-LLM-VTuber/run_server.py", line 71, in run server = WebSocketServer(config=config) │ └ Config(system_config=SystemConfig(conf_version='v1.1.1', host='localhost', port=12393, config_alts_dir='characters', tool_pro... └ <class 'src.open_llm_vtuber.server.WebSocketServer'> File "/root/autodl-tmp/Open-LLM-VTuber/src/open_llm_vtuber/server.py", line 45, in __init__ default_context_cache.load_from_config(config) │ │ └ Config(system_config=SystemConfig(conf_version='v1.1.1', host='localhost', port=12393, config_alts_dir='characters', tool_pro... │ └ <function ServiceContext.load_from_config at 0x7f79bac70430> └ <src.open_llm_vtuber.service_context.ServiceContext object at 0x7f79bab10310> File "/root/autodl-tmp/Open-LLM-VTuber/src/open_llm_vtuber/service_context.py", line 132, in load_from_config self.init_asr(config.character_config.asr_config) │ │ │ │ └ ASRConfig(asr_model='sherpa_onnx_asr', azure_asr=AzureASRConfig(api_key='azure_api_key', region='eastus', languages=['en-US',... │ │ │ └ CharacterConfig(conf_name='shizuku-local', conf_uid='shizuku-local-001', live2d_model_name='shizuku-local', character_name='S... │ │ └ Config(system_config=SystemConfig(conf_version='v1.1.1', host='localhost', port=12393, config_alts_dir='characters', tool_pro... │ └ <function ServiceContext.init_asr at 0x7f79bac70550> └ <src.open_llm_vtuber.service_context.ServiceContext object at 0x7f79bab10310> File "/root/autodl-tmp/Open-LLM-VTuber/src/open_llm_vtuber/service_context.py", line 167, in init_asr self.asr_engine = ASRFactory.get_asr_system( │ │ │ └ <staticmethod(<function ASRFactory.get_asr_system at 0x7f79bc0c37f0>)> │ │ └ <class 'src.open_llm_vtuber.asr.asr_factory.ASRFactory'> │ └ None └ <src.open_llm_vtuber.service_context.ServiceContext object at 0x7f79bab10310> File "/root/autodl-tmp/Open-LLM-VTuber/src/open_llm_vtuber/asr/asr_factory.py", line 58, in get_asr_system return SherpaOnnxASR(**kwargs) │ └ {'model_type': 'sense_voice', 'encoder': None, 'decoder': None, 'joiner': None, 'paraformer': None, 'nemo_ctc': None, 'wenet_... └ <class 'src.open_llm_vtuber.asr.sherpa_onnx_asr.VoiceRecognition'> File "/root/autodl-tmp/Open-LLM-VTuber/src/open_llm_vtuber/asr/sherpa_onnx_asr.py", line 83, in __init__ self.recognizer = self._create_recognizer() │ │ └ <function VoiceRecognition._create_recognizer at 0x7f79b930d510> │ └ <src.open_llm_vtuber.asr.sherpa_onnx_asr.VoiceRecognition object at 0x7f79bab101f0> └ <src.open_llm_vtuber.asr.sherpa_onnx_asr.VoiceRecognition object at 0x7f79bab101f0> File "/root/autodl-tmp/Open-LLM-VTuber/src/open_llm_vtuber/asr/sherpa_onnx_asr.py", line 188, in _create_recognizer recognizer = sherpa_onnx.OfflineRecognizer.from_sense_voice( │ │ └ <classmethod(<function OfflineRecognizer.from_sense_voice at 0x7f79baae1750>)> │ └ <class 'sherpa_onnx.offline_recognizer.OfflineRecognizer'> └ <module 'sherpa_onnx' from '/root/autodl-tmp/Open-LLM-VTuber/.venv/lib/python3.10/site-packages/sherpa_onnx/__init__.py'> File "/root/autodl-tmp/Open-LLM-VTuber/.venv/lib/python3.10/site-packages/sherpa_onnx/offline_recognizer.py", line 259, in from_sense_voice self.recognizer = _Recognizer(recognizer_config) │ │ └ <_sherpa_onnx.OfflineRecognizerConfig object at 0x7f79bab49130> │ └ <class '_sherpa_onnx.OfflineRecognizer'> └ <sherpa_onnx.offline_recognizer.OfflineRecognizer object at 0x7f79bab10700> RuntimeError: No graph was found in the protobuf.

(env) (base) PS D:\MiniGPT-4> python demo.py --cfg-path eval_configs/minigpt4_eval.yaml Initializing Chat Loading VIT Loading VIT Done Loading Q-Former Traceback (most recent call last): File "D:\MiniGPT-4\env\lib\site-packages\transformers\utils\hub.py", line 409, in cached_file resolved_file = hf_hub_download( File "D:\MiniGPT-4\env\lib\site-packages\huggingface_hub\utils\_validators.py", line 120, in _inner_fn return fn(*args, **kwargs) File "D:\MiniGPT-4\env\lib\site-packages\huggingface_hub\file_download.py", line 1259, in hf_hub_download raise LocalEntryNotFoundError( huggingface_hub.utils._errors.LocalEntryNotFoundError: Connection error, and we cannot find the requested files in the disk cache. Please try again or make sure your Internet connection is on. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:\MiniGPT-4\demo.py", line 57, in <module> model = model_cls.from_config(model_config).to('cuda:0') File "D:\MiniGPT-4\minigpt4\models\mini_gpt4.py", line 241, in from_config model = cls( File "D:\MiniGPT-4\minigpt4\models\mini_gpt4.py", line 64, in __init__ self.Qformer, self.query_tokens = self.init_Qformer( File "D:\MiniGPT-4\minigpt4\models\blip2.py", line 47, in init_Qformer encoder_config = BertConfig.from_pretrained("bert-base-uncased") File "D:\MiniGPT-4\env\lib\site-packages\transformers\configuration_utils.py", line 546, in from_pretrained config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) File "D:\MiniGPT-4\env\lib\site-packages\transformers\configuration_utils.py", line 573, in get_config_dict config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File "D:\MiniGPT-4\env\lib\site-packages\transformers\configuration_utils.py", line 628, in _get_config_dict resolved_config_file = cached_file( File "D:\MiniGPT-4\env\lib\site-packages\transformers\utils\hub.py", line 443, in cached_file raise EnvironmentError( OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like bert-base-uncased is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'.

2025-03-13T03:35:54.969000Z 0 [Warning] TIMESTAMP with implicit DEFAULT value is deprecated. Please use --explicit_defaults_for_timestamp server option (see documentation for more details). 2025-03-13T03:35:54.969000Z 0 [Note] --secure-file-priv is set to NULL. Operations related to importing and exporting data are disabled 2025-03-13T03:35:54.969000Z 0 [Note] mysqld (mysqld 5.7.28) starting as process 7772 ... 2025-03-13T03:35:55.037000Z 0 [Note] InnoDB: Mutexes and rw_locks use Windows interlocked functions 2025-03-13T03:35:55.038000Z 0 [Note] InnoDB: Uses event mutexes 2025-03-13T03:35:55.039000Z 0 [Note] InnoDB: _mm_lfence() and _mm_sfence() are used for memory barrier 2025-03-13T03:35:55.040000Z 0 [Note] InnoDB: Compressed tables use zlib 1.2.11 2025-03-13T03:35:55.044000Z 0 [Note] InnoDB: Number of pools: 1 2025-03-13T03:35:55.047000Z 0 [Note] InnoDB: Not using CPU crc32 instructions 2025-03-13T03:35:55.060000Z 0 [Note] InnoDB: Initializing buffer pool, total size = 128M, instances = 1, chunk size = 128M 2025-03-13T03:35:55.078000Z 0 [Note] InnoDB: Completed initialization of buffer pool 2025-03-13T03:35:55.095000Z 0 [Note] InnoDB: The first innodb_system data file 'ibdata1' did not exist. A new tablespace will be created! 2025-03-13T03:35:55.097000Z 0 [Note] InnoDB: Setting file '.\ibdata1' size to 12 MB. Physically writing the file full; Please wait ... 2025-03-13T03:35:55.274000Z 0 [Note] InnoDB: File '.\ibdata1' size is now 12 MB. 2025-03-13T03:35:55.295000Z 0 [Note] InnoDB: Setting log file .\ib_logfile101 size to 48 MB 2025-03-13T03:35:55.854000Z 0 [Note] InnoDB: Setting log file .\ib_logfile1 size to 48 MB 2025-03-13T03:35:56.633000Z 0 [Note] InnoDB: Renaming log file .\ib_logfile101 to .\ib_logfile0 2025-03-13T03:35:56.635000Z 0 [Warning] InnoDB: New log files created, LSN=45790 2025-03-13T03:35:56.636000Z 0 [Note] InnoDB: Creating shared tablespace for temporary tables 2025-03-13T03:35:56.638000Z 0 [Note] InnoDB: Setting file '.\ibtmp1' size to 12 MB.

C:\Users\TXN>CD C:// C:\>Python "C:\Program Files (x86)\Intel\openvino_2021.4.752\deployment_tools\open_model_zoo\demos\human_pose_estimation_demo\python\human_pose_estimation_demo.py" -at openpose -d CPU -i 0 -m D:\model\fall_detection_zpp\intel\human-pose-estimation-0001\FP16\human-pose-estimation-0001.xml [ INFO ] Initializing Inference Engine... [ INFO ] Loading network... [ INFO ] Reading network from IR... Traceback (most recent call last): File "C:\Program Files (x86)\Intel\openvino_2021.4.752\deployment_tools\open_model_zoo\demos\human_pose_estimation_demo\python\human_pose_estimation_demo.py", line 283, in <module> sys.exit(main() or 0) File "C:\Program Files (x86)\Intel\openvino_2021.4.752\deployment_tools\open_model_zoo\demos\human_pose_estimation_demo\python\human_pose_estimation_demo.py", line 184, in main model = get_model(ie, args, frame.shape[1] / frame.shape[0]) File "C:\Program Files (x86)\Intel\openvino_2021.4.752\deployment_tools\open_model_zoo\demos\human_pose_estimation_demo\python\human_pose_estimation_demo.py", line 111, in get_model prob_threshold=args.prob_threshold) File "C:\Program Files (x86)\Intel\openvino_2021.4.752\deployment_tools\open_model_zoo\demos\common\python\models\open_pose.py", line 62, in __init__ strides=(1, 1), name=self.pooled_heatmaps_blob_name) File "C:\Users\TXN\AppData\Local\Programs\Python\Python37\lib\site-packages\ngraph\utils\decorators.py", line 22, in wrapper node = node_factory_function(*args, **kwargs) TypeError: max_pool() missing 1 required positional argument: 'dilations'

D/BaseTestSuite: Initializing ModuleRepo ABIs:[{arm64-v8a, bitness=64}, {armeabi-v7a, bitness=32}] Test Args:[com.android.tradefed.testtype.AndroidJUnitTest:exclude-annotation:com.android.compatibility.common.util.CtsDownstreamingTest, com.android.compatibility.common.tradefed.testtype.JarHostTest:exclude-annotation:com.android.compatibility.common.util.CtsDownstreamingTest, com.android.tradefed.testtype.HostTest:exclude-annotation:com.android.compatibility.common.util.CtsDownstreamingTest, com.android.tradefed.testtype.AndroidJUnitTest:exclude-annotation:android.platform.test.annotations.AsbSecurityTest, com.android.compatibility.common.tradefed.testtype.JarHostTest:exclude-annotation:android.platform.test.annotations.AsbSecurityTest, com.android.tradefed.testtype.AndroidJUnitTest:exclude-annotation:android.platform.test.annotations.AppModeInstant, com.android.compatibility.common.tradefed.testtype.JarHostTest:exclude-annotation:android.platform.test.annotations.AppModeInstant, com.android.tradefed.testtype.HostTest:exclude-annotation:android.platform.test.annotations.AppModeInstant] Module Args:[] Includes: {arm64-v8a CtsAutoFillServiceTestCases=[arm64-v8a CtsAutoFillServiceTestCases android.autofillservice.cts.dropdown.FillEventHistoryTest#testEventsFromPreviousSessionIsDiscarded, arm64-v8a CtsAutoFillServiceTestCases android.autofillservice.cts.dialog.LoginActivityTest#testSuppressFillDialog_onMixedFields_withIsCredman, arm64-v8a CtsAutoFillServiceTestCases android.autofillservice.cts.inline.InlineFillEventHistoryTest#testEventsFromPreviousSessionIsDiscarded, arm64-v8a CtsAutoFillServiceTestCases android.autofillservice.cts.saveui.AutofillSaveDialogTest#testSuppressSaveDialog_onOnlyCredmanFields_withIsCredential, arm64-v8a CtsAutoFillServiceTestCases android.autofillservice.cts.dialog.LoginActivityTest#testSuppressingFillDialog_onCredmanFieldOnlyActivity_withIsCredman, arm64-v8a CtsAutoFillServiceTestCases android.autofillservice.cts.saveui.AutofillSaveDialogTes

03-10 17:42:02 D/BaseTestSuite: Initializing ModuleRepo ABIs:[{arm64-v8a, bitness=64}, {armeabi-v7a, bitness=32}] Test Args:[com.android.tradefed.testtype.AndroidJUnitTest:exclude-annotation:com.android.compatibility.common.util.CtsDownstreamingTest, com.android.compatibility.common.tradefed.testtype.JarHostTest:exclude-annotation:com.android.compatibility.common.util.CtsDownstreamingTest, com.android.tradefed.testtype.HostTest:exclude-annotation:com.android.compatibility.common.util.CtsDownstreamingTest, com.android.tradefed.testtype.AndroidJUnitTest:exclude-annotation:android.platform.test.annotations.AsbSecurityTest, com.android.compatibility.common.tradefed.testtype.JarHostTest:exclude-annotation:android.platform.test.annotations.AsbSecurityTest, com.android.tradefed.testtype.AndroidJUnitTest:exclude-annotation:android.platform.test.annotations.AppModeInstant, com.android.compatibility.common.tradefed.testtype.JarHostTest:exclude-annotation:android.platform.test.annotations.AppModeInstant, com.android.tradefed.testtype.HostTest:exclude-annotation:android.platform.test.annotations.AppModeInstant] Module Args:[] Includes: {arm64-v8a CtsAutoFillServiceTestCases=[arm64-v8a CtsAutoFillServiceTestCases android.autofillservice.cts.dropdown.FillEventHistoryTest#testEventsFromPreviousSessionIsDiscarded, arm64-v8a CtsAutoFillServiceTestCases android.autofillservice.cts.dialog.LoginActivityTest#testSuppressFillDialog_onMixedFields_withIsCredman, arm64-v8a CtsAutoFillServiceTestCases android.autofillservice.cts.inline.InlineFillEventHistoryTest#testEventsFromPreviousSessionIsDiscarded, arm64-v8a CtsAutoFillServiceTestCases android.autofillservice.cts.saveui.AutofillSaveDialogTest#testSuppressSaveDialog_onOnlyCredmanFields_withIsCredential, arm64-v8a CtsAutoFillServiceTestCases android.autofillservice.cts.dialog.LoginActivityTest#testSuppressingFillDialog_onCredmanFieldOnlyActivity_withIsCredman, arm64-v8a CtsAutoFillServiceTestCases android.autofillservice.cts.saveui.Autofi

2025-03-10T06:43:37.165038Z 0 [Warning] TIMESTAMP with implicit DEFAULT value is deprecated. Please use --explicit_defaults_for_timestamp server option (see documentation for more details). 2025-03-10T06:43:37.165092Z 0 [Note] --secure-file-priv is set to NULL. Operations related to importing and exporting data are disabled 2025-03-10T06:43:37.165104Z 0 [Note] /usr/local/mysql/bin/mysqld (mysqld 5.7.18) starting as process 26836 ... 2025-03-10T06:43:37.169695Z 0 [Note] InnoDB: PUNCH HOLE support not available 2025-03-10T06:43:37.169704Z 0 [Note] InnoDB: Mutexes and rw_locks use GCC atomic builtins 2025-03-10T06:43:37.169706Z 0 [Note] InnoDB: Uses event mutexes 2025-03-10T06:43:37.169708Z 0 [Note] InnoDB: GCC builtin __sync_synchronize() is used for memory barrier 2025-03-10T06:43:37.169709Z 0 [Note] InnoDB: Compressed tables use zlib 1.2.3 2025-03-10T06:43:37.169711Z 0 [Note] InnoDB: Using Linux native AIO 2025-03-10T06:43:37.169831Z 0 [Note] InnoDB: Number of pools: 1 2025-03-10T06:43:37.169878Z 0 [Note] InnoDB: Using CPU crc32 instructions 2025-03-10T06:43:37.170938Z 0 [Note] InnoDB: Initializing buffer pool, total size = 128M, instances = 1, chunk size = 128M 2025-03-10T06:43:37.178293Z 0 [Note] InnoDB: Completed initialization of buffer pool 2025-03-10T06:43:37.179917Z 0 [Note] InnoDB: If the mysqld execution user is authorized, page cleaner thread priority can be changed. See the man page of setpriority(). 2025-03-10T06:43:37.191665Z 0 [Note] InnoDB: Highest supported file format is Barracuda. 2025-03-10T06:43:37.195822Z 0 [Note] InnoDB: Creating shared tablespace for temporary tables 2025-03-10T06:43:37.195863Z 0 [Note] InnoDB: Setting file './ibtmp1' size to 12 MB. Physically writing the file full; Please wait ... 2025-03-10T06:43:37.209862Z 0 [Note] InnoDB: File './ibtmp1' size is now 12 MB. 2025-03-10T06:43:37.210297Z 0 [Note] InnoDB: 96 redo rollback segment(s) found. 96 redo rollback segment(s) are active. 2025-03-10T06:43:37.210301Z 0 [Note] InnoDB: 32 n

sudo cat /usr/local/mysql/data/VM-16-9-centos.err 2025-03-20T02:00:15.739959Z 0 [Warning] TIMESTAMP with implicit DEFAULT value is deprecated. Please use --explicit_defaults_for_timestamp server option (see documentation for more details). 2025-03-20T02:00:15.740032Z 0 [Note] --secure-file-priv is set to NULL. Operations related to importing and exporting data are disabled 2025-03-20T02:00:15.740057Z 0 [Note] /usr/local/mysql/bin/mysqld (mysqld 5.7.36) starting as process 813856 ... 2025-03-20T02:00:15.747664Z 0 [Note] InnoDB: PUNCH HOLE support available 2025-03-20T02:00:15.747684Z 0 [Note] InnoDB: Mutexes and rw_locks use GCC atomic builtins 2025-03-20T02:00:15.747688Z 0 [Note] InnoDB: Uses event mutexes 2025-03-20T02:00:15.747691Z 0 [Note] InnoDB: GCC builtin __sync_synchronize() is used for memory barrier 2025-03-20T02:00:15.747695Z 0 [Note] InnoDB: Compressed tables use zlib 1.2.11 2025-03-20T02:00:15.747698Z 0 [Note] InnoDB: Using Linux native AIO 2025-03-20T02:00:15.747921Z 0 [Note] InnoDB: Number of pools: 1 2025-03-20T02:00:15.748013Z 0 [Note] InnoDB: Using CPU crc32 instructions 2025-03-20T02:00:15.749664Z 0 [Note] InnoDB: Initializing buffer pool, total size = 128M, instances = 1, chunk size = 128M 2025-03-20T02:00:15.758255Z 0 [Note] InnoDB: Completed initialization of buffer pool 2025-03-20T02:00:15.760782Z 0 [Note] InnoDB: If the mysqld execution user is authorized, page cleaner thread priority can be changed. See the man page of setpriority(). 2025-03-20T02:00:15.772580Z 0 [Note] InnoDB: Highest supported file format is Barracuda. 2025-03-20T02:00:15.783164Z 0 [Note] InnoDB: Creating shared tablespace for temporary tables 2025-03-20T02:00:15.783219Z 0 [Note] InnoDB: Setting file './ibtmp1' size to 12 MB. Physically writing the file full; Please wait ... 2025-03-20T02:00:15.815854Z 0 [Note] InnoDB: File './ibtmp1' size is now 12 MB. 2025-03-20T02:00:15.816646Z 0 [Note] InnoDB: 96 redo rollback segment(s) found. 96 redo rollback segment(s) are active.

最新推荐

recommend-type

langchain4j-1.0.0-beta2.jar中文-英文对照文档.zip

1、压缩文件中包含: 中文-英文对照文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文-英文对照文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

spring-ai-autoconfigure-vector-store-pgvector-1.0.0.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

spring-ai-spring-boot-docker-compose-1.0.0-M6.jar中文-英文对照文档.zip

1、压缩文件中包含: 中文-英文对照文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文-英文对照文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

Wamp5: 一键配置ASP/PHP/HTML服务器工具

根据提供的文件信息,以下是关于标题、描述和文件列表中所涉及知识点的详细阐述。 ### 标题知识点 标题中提到的是"PHP集成版工具wamp5.rar",这里面包含了以下几个重要知识点: 1. **PHP**: PHP是一种广泛使用的开源服务器端脚本语言,主要用于网站开发。它可以嵌入到HTML中,从而让网页具有动态内容。PHP因其开源、跨平台、面向对象、安全性高等特点,成为最流行的网站开发语言之一。 2. **集成版工具**: 集成版工具通常指的是将多个功能组合在一起的软件包,目的是为了简化安装和配置流程。在PHP开发环境中,这样的集成工具通常包括了PHP解释器、Web服务器以及数据库管理系统等关键组件。 3. **Wamp5**: Wamp5是这类集成版工具的一种,它基于Windows操作系统。Wamp5的名称来源于它包含的主要组件的首字母缩写,即Windows、Apache、MySQL和PHP。这种工具允许开发者快速搭建本地Web开发环境,无需分别安装和配置各个组件。 4. **RAR压缩文件**: RAR是一种常见的文件压缩格式,它以较小的体积存储数据,便于传输和存储。RAR文件通常需要特定的解压缩软件进行解压缩操作。 ### 描述知识点 描述中提到了工具的一个重要功能:“可以自动配置asp/php/html等的服务器, 不用辛辛苦苦的为怎么配置服务器而烦恼”。这里面涵盖了以下知识点: 1. **自动配置**: 自动配置功能意味着该工具能够简化服务器的搭建过程,用户不需要手动进行繁琐的配置步骤,如修改配置文件、启动服务等。这是集成版工具的一项重要功能,极大地降低了初学者的技术门槛。 2. **ASP/PHP/HTML**: 这三种技术是Web开发中常用的组件。ASP (Active Server Pages) 是微软开发的服务器端脚本环境;HTML (HyperText Markup Language) 是用于创建网页的标准标记语言;PHP是服务器端脚本语言。在Wamp5这类集成环境中,可以很容易地对这些技术进行测试和开发,因为它们已经预配置在一起。 3. **服务器**: 在Web开发中,服务器是一个运行Web应用程序并响应客户端请求的软件或硬件系统。常见的服务器软件包括Apache、Nginx等。集成版工具提供了一个本地服务器环境,使得开发者可以在本地测试他们的应用程序。 ### 标签知识点 标签中仅出现了“PHP”一个关键词,这意味着该工具专注于与PHP相关的开发环境配置。 ### 压缩包子文件的文件名称列表知识点 1. **wamp.exe**: 这是Wamp5集成版工具的可执行文件,用户通过运行这个文件,即可启动Wamp5环境,开始进行PHP等相关开发。 2. **使用说明文档.txt**: 通常这样的文本文件包含了软件的安装指南、功能介绍、常见问题解答以及操作教程等内容。它是用户了解和使用软件的重要辅助资料,可以帮助用户快速上手。 ### 总结 Wamp5作为一个PHP集成版工具,为PHP开发者提供了一个便捷的本地开发环境。它通过自动化配置减少了开发者在搭建环境时的麻烦,整合了Web开发的关键组件,从而使得开发者能够专注于代码的编写,而不是环境配置。此外,它还提供了详尽的使用文档,帮助用户理解和运用这一工具,有效地提高了开发效率。对于希望快速入门PHP或需要一个简单易用的本地开发环境的开发者来说,Wamp5是一个非常好的选择。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

sht20温湿度传感器使用什么将上拉电阻和滤波电容引出

<think>好的,我需要解决用户关于SHT20温湿度传感器的上拉电阻和滤波电容的引出方法问题。首先,我得回忆一下SHT20的基本特性和常见电路设计。SHT20是数字传感器,通常使用I2C接口,所以上拉电阻是必须的,用于确保数据线和时钟线的稳定。根据引用[2],SHT10是通过SCK和DATA线与单片机通信,而SHT30在引用[3]中使用I2C协议,需要上拉电阻。虽然用户问的是SHT20,但SHT系列通常设计类似,所以可以推断SHT20也需要类似的上拉电阻配置。通常I2C总线的上拉电阻值在4.7kΩ到10kΩ之间,但具体值可能取决于总线速度和电源电压。需要确认数据手册中的推荐值,但用户可能没有
recommend-type

Delphi仿速达财务软件导航条组件开发教程

Delphi作为一款历史悠久的集成开发环境(IDE),由Embarcadero Technologies公司开发,它使用Object Pascal语言,被广泛应用于Windows平台下的桌面应用程序开发。在Delphi中开发组件是一项核心技术,它允许开发者创建可复用的代码单元,提高开发效率和软件模块化水平。本文将详细介绍如何在Delphi环境下仿制速达财务软件中的导航条组件,这不仅涉及到组件的创建和使用,还会涉及界面设计和事件处理等技术点。 首先,需要了解Delphi组件的基本概念。在Delphi中,组件是一种特殊的对象,它们被放置在窗体(Form)上,可以响应用户操作并进行交互。组件可以是可视的,也可以是不可视的,可视组件在设计时就能在窗体上看到,如按钮、编辑框等;不可视组件则主要用于后台服务,如定时器、数据库连接等。组件的源码可以分为接口部分和实现部分,接口部分描述组件的属性和方法,实现部分包含方法的具体代码。 在开发仿速达财务软件的导航条组件时,我们需要关注以下几个方面的知识点: 1. 组件的继承体系 仿制组件首先需要确定继承体系。在Delphi中,大多数可视组件都继承自TControl或其子类,如TPanel、TButton等。导航条组件通常会继承自TPanel或者TWinControl,这取决于导航条是否需要支持子组件的放置。如果导航条只是单纯的一个显示区域,TPanel即可满足需求;如果导航条上有多个按钮或其他控件,可能需要继承自TWinControl以提供对子组件的支持。 2. 界面设计与绘制 组件的外观和交互是用户的第一印象。在Delphi中,可视组件的界面主要通过重写OnPaint事件来完成。Delphi提供了丰富的绘图工具,如Canvas对象,使用它可以绘制各种图形,如直线、矩形、椭圆等,并且可以对字体、颜色进行设置。对于导航条,可能需要绘制背景图案、分隔线条、选中状态的高亮等。 3. 事件处理 导航条组件需要响应用户的交互操作,例如鼠标点击事件。在Delphi中,可以通过重写组件的OnClick事件来响应用户的点击操作,进而实现导航条的导航功能。如果导航条上的项目较多,还可能需要考虑使用滚动条,让更多的导航项能够显示在窗体上。 4. 用户自定义属性和方法 为了使组件更加灵活和强大,开发者通常会为组件添加自定义的属性和方法。在导航条组件中,开发者可能会添加属性来定义按钮个数、按钮文本、按钮位置等;同时可能会添加方法来处理特定的事件,如自动调整按钮位置以适应不同的显示尺寸等。 5. 数据绑定和状态同步 在财务软件中,导航条往往需要与软件其他部分的状态进行同步。例如,用户当前所处的功能模块会影响导航条上相应项目的选中状态。这通常涉及到数据绑定技术,Delphi支持组件间的属性绑定,通过数据绑定可以轻松实现组件状态的同步。 6. 导航条组件的封装和发布 开发完毕后,组件需要被封装成独立的单元供其他项目使用。封装通常涉及将组件源码保存为pas文件,并在设计时能够在组件面板中找到。发布组件可能还需要编写相应的安装包和使用文档,方便其他开发者安装和使用。 7. Delphi IDE的支持 Delphi IDE提供了组件面板编辑器(Component Palette),允许开发者将开发好的组件添加到组件面板中。在组件面板编辑器中,可以自定义组件的图标和分类,使得组件在Delphi中的使用更为便捷。 通过以上的知识点梳理,可以看出Delphi仿速达导航条组件的开发涉及到的不仅仅是简单的代码编写,还涉及到用户界面设计、事件驱动编程、组件封装等多个方面。掌握这些知识点,对于一名Delphi开发者而言,是十分重要的。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为
recommend-type

常见运放电路的基本结构和基本原理

<think>首先,用户的问题是关于运算放大器电路的基本结构和工作原理。我需要根据系统级指令来构建回答。系统级指令:-所有行内数学表达式必须使用$...$格式。-独立公式必须使用$$...$$格式并单独成段。-LaTeX语法正确。-使用中文回答。-生成相关问题。-回答中引用的段落末尾自然地添加引用标识,例如[^1]。-回答结构清晰,帮助用户逐步解决问题,尽量保证回答真实可靠。参考站内引用:-引用[1]:关于运算放大器基本电路用法,特别是反相放大器电路。-引用[2]:关于uA741运算放大器电路的基本原理,包括输入级、输出级等。用户的问题:"我想了解运放电路的基本结构和工作原理请问运算放大器电路
recommend-type

ASP.NET2.0初学者个人网站实例分享

标题:“ASP.NET 2.0个人网站”指向了一个网站开发项目,这个项目是使用ASP.NET 2.0框架构建的。ASP.NET 2.0是微软公司推出的一种用于Web开发的服务器端技术,它是.NET Framework的一部分。这个框架允许开发者构建动态网站、网络应用程序和网络服务。开发者可以使用C#或VB.NET等编程语言来编写应用程序。由于这被标签为“2.0”,我们可以假设这是一个较早版本的ASP.NET,相较于后来的版本,它可能没有那么先进的特性,但对于初学者来说,它提供了基础并且易于上手的工具和控件来学习Web开发。 描述:“个人练习所做,适合ASP.NET初学者参考啊,有兴趣的可以前来下载去看看,同时帮小弟我赚些积分”提供了关于该项目的背景信息。它是某个个人开发者或学习者为了实践和学习ASP.NET 2.0而创建的个人网站项目。这个项目被描述为适合初学者作为学习参考。开发者可能是为了积累积分或网络声誉,鼓励他人下载该项目。这样的描述说明了该项目可以被其他人获取,进行学习和参考,或许还能给予原作者一些社区积分或其他形式的回报。 标签:“2.0”表明这个项目专门针对ASP.NET的2.0版本,可能意味着它不是最新的项目,但是它可以帮助初学者理解早期ASP.NET版本的设计和开发模式。这个标签对于那些寻找具体版本教程或资料的人来说是有用的。 压缩包子文件的文件名称列表:“MySelf”表示在分享的压缩文件中,可能包含了与“ASP.NET 2.0个人网站”项目相关的所有文件。文件名“我的”是中文,可能是指创建者以“我”为中心构建了这个个人网站。虽然文件名本身没有提供太多的信息,但我们可以推测它包含的是网站源代码、相关资源文件、数据库文件(如果有的话)、配置文件和可能的文档说明等。 知识点总结: 1. ASP.NET 2.0是.NET Framework下的一个用于构建Web应用程序的服务器端框架。 2. 它支持使用C#和VB.NET等.NET支持的编程语言进行开发。 3. ASP.NET 2.0提供了一组丰富的控件,可帮助开发者快速构建Web表单、用户界面以及实现后台逻辑。 4. 它还提供了一种称作“Web站点”项目模板,使得初学者能够方便地开始Web开发项目。 5. ASP.NET 2.0是微软.NET历史上一个重要的里程碑,引入了许多创新特性,如成员资格和角色管理、主题和皮肤、网站导航和个性化设置等。 6. 在学习ASP.NET 2.0的过程中,初学者可以了解到如HTTP请求和响应、服务器控件、状态管理、数据绑定、缓存策略等基础概念。 7. 本项目可作为ASP.NET初学者的实践平台,帮助他们理解框架的基本结构和工作流程,从而为学习更高版本的ASP.NET打下坚实基础。 8. 个人网站项目的构建可以涵盖前端设计(HTML, CSS, JavaScript)和后端逻辑(C#或VB.NET)的综合应用。 9. 在学习过程中,初学者应该学会如何配置和使用IIS(Internet Information Services)来部署ASP.NET网站。 10. “赚取积分”可能指的是在某个在线社区、论坛或代码托管平台上,通过分享项目来获得一定的积分或奖励,这通常是用来衡量用户对社区贡献大小的一种方式。 综上所述,该“ASP.NET 2.0个人网站”项目不仅为初学者提供了一个实用的学习资源,同时体现了开发者对于开源共享精神的实践,对社区贡献出自己的力量。通过这样的实践,初学者能够更好地理解ASP.NET框架的运作,逐步建立起自己的Web开发技能。