resnet34的结构参数设置
时间: 2025-09-03 16:20:31 AIGC 浏览: 6
### 关于ResNet34的网络结构及参数配置
#### ResNet34概述
ResNet(残差网络)是一种通过引入残差连接解决深层神经网络训练困难问题的经典架构。ResNet34属于较浅层的ResNet变体之一,其核心特点是利用短路连接(skip connection),使得梯度能够更高效地反向传播[^2]。
#### 网络结构详情
ResNet34由34层组成,采用分组设计的方式构建卷积层堆栈。具体而言,它分为以下几个阶段:
1. **输入层**
输入图像经过一次7×7大小的卷积核处理,步幅为2,通道数设为64,并随后应用最大池化操作(kernel size=3, stride=2)。此部分负责初步特征提取。
2. **基础模块定义**
基础模块主要基于两层卷积构成:第一层使用3×3的小型卷积核保持空间分辨率不变;第二层同样维持相同尺寸但可能调整输出channel数量。对于每一个stage内部重复多次这样的basic block形成完整的layer stack。
3. **Stage划分**
整个网络被划分为四个stages (conv2_x至conv5_x),各包含不同数目和规格的基础blocks:
- conv2_x: 有三个Basic Blocks;
- conv3_x: 六个Blocks;
- conv4_x: 十二个Blocks;
- conv5_x: 另外六个Blocks。
每进入新的stage时通常会降采样并增加feature map depth以捕捉更高层次的信息。
4. **全连接层与Softmax分类器**
在最后一个平均池化之后接上一个标准线性变换作为最终预测头,配合softmax函数完成多类别概率分布估计任务。
#### 参数设置建议
当在PyTorch框架下实现ResNet34时可以遵循如下初始化策略:
```python
import torch.nn as nn
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
# 定义两个连续的3x3卷积层
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = nn.ReLU()(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = nn.ReLU()(out)
return out
def make_layer(block, in_planes, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(in_planes, planes, stride))
in_planes = planes * block.expansion
return nn.Sequential(*layers), in_planes
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=1000):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1, _ = make_layer(block, 64, 64, num_blocks[0], stride=1)
self.layer2, _ = make_layer(block, _, 128, num_blocks[1], stride=2)
self.layer3, _ = make_layer(block, _, 256, num_blocks[2], stride=2)
self.layer4, _ = make_layer(block, _, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512*block.expansion, num_classes)
def forward(self, x):
out = nn.ReLU()(self.bn1(self.conv1(x)))
out = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = nn.AdaptiveAvgPool2d((1, 1))(out)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def resnet34():
return ResNet(BasicBlock, [3, 4, 6, 3])
```
上述代码片段展示了如何自定义创建ResNet34模型实例的过程。
阅读全文
相关推荐




















