theta = atan2((x_rand(2) - x_near(2)),(x_rand(1) - x_near(1))); x_new(1) = x_near(1) + cos(theta) * Delta; x_new(2) = x_near(2) + sin(theta) * Delta;
时间: 2024-04-26 21:23:04 浏览: 122
这是一个用于计算机器人运动规划的代码段。其中x_rand和x_near是二维笛卡尔坐标系中的点,theta是两点之间的夹角,delta是机器人每次移动的距离。代码首先通过计算x_rand和x_near之间的夹角theta,确定机器人应该向哪个方向移动。然后,通过cos(theta)和sin(theta)计算x_new的坐标值,使机器人向目标点移动一个固定的距离Delta。最终,x_new将成为机器人移动后的新位置。
相关问题
rrt_connect算法c++实现
以下是RRT-Connect算法的C++实现示例。
```cpp
#include <iostream>
#include <cmath>
#include <vector>
#include <cstdlib>
#include <ctime>
#include <chrono>
using namespace std;
// 定义状态结构体
struct State {
double x;
double y;
};
// 定义节点结构体
struct Node {
State state;
Node* parent;
};
// 定义RRT-Connect类
class RRTConnect {
public:
RRTConnect(State start, State goal, double map_width, double map_height, double step_size);
void planning();
vector<State> getPath();
private:
Node* getRandomNode();
Node* getNearestNode(Node* node);
bool isCollide(State state);
bool isReach(State s1, State s2);
void addVertex(Node* parent, Node* child);
State generateRandomState();
vector<Node*> tree1;
vector<Node*> tree2;
State start_;
State goal_;
double map_width_;
double map_height_;
double step_size_;
double goal_radius_ = 0.5;
int max_iterations_ = 5000;
};
// RRT-Connect算法类构造函数
RRTConnect::RRTConnect(State start, State goal, double map_width, double map_height, double step_size)
: start_(start), goal_(goal), map_width_(map_width), map_height_(map_height), step_size_(step_size) {
Node* start_node = new Node{ start_, nullptr };
Node* goal_node = new Node{ goal_, nullptr };
tree1.push_back(start_node);
tree2.push_back(goal_node);
srand(time(nullptr)); // 初始化随机数种子
}
// 获取随机节点
Node* RRTConnect::getRandomNode() {
double x = (double)rand() / RAND_MAX * map_width_;
double y = (double)rand() / RAND_MAX * map_height_;
return new Node{ State{x, y}, nullptr };
}
// 获取最近节点
Node* RRTConnect::getNearestNode(Node* node) {
Node* nearest_node = tree1.front();
double min_dist = hypot(nearest_node->state.x - node->state.x, nearest_node->state.y - node->state.y);
for (auto n : tree1) {
double dist = hypot(n->state.x - node->state.x, n->state.y - node->state.y);
if (dist < min_dist) {
nearest_node = n;
min_dist = dist;
}
}
return nearest_node;
}
// 判断状态是否碰撞
bool RRTConnect::isCollide(State state) {
double obs_x = map_width_ / 2;
double obs_y = map_height_ / 2;
double obs_r = 2.0;
double dist = hypot(state.x - obs_x, state.y - obs_y);
return dist < obs_r;
}
// 判断两个状态是否可达
bool RRTConnect::isReach(State s1, State s2) {
double dist = hypot(s1.x - s2.x, s1.y - s2.y);
return dist < step_size_;
}
// 添加节点
void RRTConnect::addVertex(Node* parent, Node* child) {
child->parent = parent;
tree1.push_back(child);
}
// 生成随机状态
State RRTConnect::generateRandomState() {
double x = (double)rand() / RAND_MAX * map_width_;
double y = (double)rand() / RAND_MAX * map_height_;
return State{ x, y };
}
// RRT-Connect算法主函数
void RRTConnect::planning() {
for (int i = 0; i < max_iterations_; i++) {
Node* q_rand = getRandomNode();
Node* q_near = getNearestNode(q_rand);
State new_state;
if (isReach(q_near->state, q_rand->state)) {
new_state = q_rand->state;
} else {
double theta = atan2(q_rand->state.y - q_near->state.y, q_rand->state.x - q_near->state.x);
new_state = State{ q_near->state.x + step_size_ * cos(theta), q_near->state.y + step_size_ * sin(theta) };
}
if (isCollide(new_state)) {
continue;
}
Node* new_node = new Node{ new_state, nullptr };
addVertex(q_near, new_node);
if (isReach(new_state, goal_)) {
addVertex(tree2.front(), new Node{ goal_, nullptr });
break;
}
swap(tree1, tree2);
}
}
// 获取路径
vector<State> RRTConnect::getPath() {
vector<State> path;
Node* node = tree1.back();
while (node) {
path.push_back(node->state);
node = node->parent;
}
reverse(path.begin(), path.end());
node = tree2.front()->parent;
while (node) {
path.push_back(node->state);
node = node->parent;
}
return path;
}
int main() {
State start{ 1.0, 1.0 };
State goal{ 9.0, 9.0 };
RRTConnect rrt(start, goal, 10.0, 10.0, 0.5);
auto start_time = chrono::high_resolution_clock::now();
rrt.planning();
auto end_time = chrono::high_resolution_clock::now();
auto duration = chrono::duration_cast<chrono::milliseconds>(end_time - start_time);
cout << "Time: " << duration.count() << "ms" << endl;
vector<State> path = rrt.getPath();
for (auto state : path) {
cout << "(" << state.x << ", " << state.y << ")" << endl;
}
return 0;
}
```
这个示例中,我们使用了两个树来进行RRT-Connect算法的搜索。其中,tree1是从起点出发的树,tree2是从终点出发的树。在每次迭代中,我们随机生成一个节点q_rand,并在tree1中寻找距离q_rand最近的节点q_near。然后,我们通过扩展q_near,生成新的节点new_node,并将其添加到tree1中。如果new_node离终点goal足够近,我们将生成一个新的终点节点,并结束搜索。在添加完new_node后,我们交换tree1和tree2,以便下一次迭代时,tree1成为从终点开始的树,tree2成为从起点开始的树。
值得注意的是,这个示例中我们假设地图中只有一个障碍物,障碍物的位置和大小都是固定的。在实际应用中,我们需要根据实际场景来确定障碍物的位置和大小。
用C++实现informed-rrt*算法
Informed-RRT*算法是一种用于路径规划的算法,它可以在高维空间中找到一条最短路径。下面是使用C语言实现Informed-RRT*算法的示例代码。
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#define WIDTH 500 // 定义环境宽度
#define HEIGHT 500 // 定义环境高度
typedef struct node{ // 定义树节点
int x, y;
float cost;
struct node *parent;
} Node;
typedef struct{ // 定义目标点
int x, y;
} Goal;
float euclidean_distance(Node *node1, Node *node2){ // 计算欧几里得距离
float dx = node1->x - node2->x;
float dy = node1->y - node2->y;
return sqrt(dx*dx + dy*dy);
}
Node *generate_random_node(){ // 随机生成节点
Node *node = (Node *)malloc(sizeof(Node));
node->x = rand() % WIDTH;
node->y = rand() % HEIGHT;
node->cost = 0.0;
node->parent = NULL;
return node;
}
Node *nearest_vertex(Node *node, Node **tree, int tree_size){ // 找到最近的节点
float min_distance = 999999.0;
Node *nearest_node = NULL;
for(int i=0; i<tree_size; i++){
float distance = euclidean_distance(node, tree[i]);
if(distance < min_distance){
min_distance = distance;
nearest_node = tree[i];
}
}
return nearest_node;
}
Node *new_node(Node *nearest_node, Node *random_node, float step_size){ // 创建新节点
Node *new_node = (Node *)malloc(sizeof(Node));
float distance = euclidean_distance(nearest_node, random_node);
if(distance < step_size){ // 如果距离小于步长,直接连接两个节点
new_node->x = random_node->x;
new_node->y = random_node->y;
}
else{ // 否则在两个节点之间插值
float theta = atan2(random_node->y - nearest_node->y, random_node->x - nearest_node->x);
new_node->x = nearest_node->x + step_size * cos(theta);
new_node->y = nearest_node->y + step_size * sin(theta);
}
new_node->cost = nearest_node->cost + euclidean_distance(nearest_node, new_node);
new_node->parent = nearest_node;
return new_node;
}
void add_node_to_tree(Node *node, Node **tree, int *tree_size){ // 将节点添加到树中
tree[*tree_size] = node;
(*tree_size)++;
}
Goal *generate_random_goal(){ // 随机生成目标点
Goal *goal = (Goal *)malloc(sizeof(Goal));
goal->x = rand() % WIDTH;
goal->y = rand() % HEIGHT;
return goal;
}
Node *find_best_goal_node(Node **tree, int tree_size, Goal *goal){ // 找到最优的目标节点
float min_distance = 999999.0;
Node *best_node = NULL;
for(int i=0; i<tree_size; i++){
float distance = euclidean_distance(tree[i], (Node *)goal);
if(distance < min_distance){
min_distance = distance;
best_node = tree[i];
}
}
return best_node;
}
void rewire(Node *node, Node **tree, int tree_size, float step_size){ // 重新连接节点
for(int i=0; i<tree_size; i++){
Node *near_node = tree[i];
float distance = euclidean_distance(node, near_node);
float new_cost = node->cost + distance;
if(new_cost < near_node->cost){ // 如果新的路径比原来的路径更短,则重新连接节点
float theta = atan2(node->y - near_node->y, node->x - near_node->x);
int new_x = near_node->x + step_size * cos(theta);
int new_y = near_node->y + step_size * sin(theta);
if(new_x > 0 && new_x < WIDTH && new_y > 0 && new_y < HEIGHT){ // 确保新节点在环境内
near_node->parent = node;
near_node->cost = new_cost;
}
}
}
}
void print_path(Node *node){ // 打印路径
while(node != NULL){
printf("(%d,%d) ", node->x, node->y);
node = node->parent;
}
printf("\n");
}
void informed_rrt_star(int max_iterations, float step_size){
srand((unsigned int)time(NULL)); // 设置随机种子
Node *start_node = generate_random_node(); // 随机生成起始节点
Node *tree[10000];
int tree_size = 1;
tree[0] = start_node;
Goal *goal = generate_random_goal(); // 随机生成目标点
for(int i=0; i<max_iterations; i++){ // 执行迭代
Node *random_node = generate_random_node(); // 随机生成节点
Node *nearest_node = nearest_vertex(random_node, tree, tree_size); // 找到最近的节点
Node *new_node = new_node(nearest_node, random_node, step_size); // 创建新节点
if(new_node->x == nearest_node->x && new_node->y == nearest_node->y){ // 如果新节点和最近节点重合,则跳过
continue;
}
if(new_node->x == goal->x && new_node->y == goal->y){ // 如果新节点是目标节点,则返回路径
print_path(new_node);
return;
}
if(new_node->x < 0 || new_node->x > WIDTH || new_node->y < 0 || new_node->y > HEIGHT){ // 如果新节点不在环境内,则跳过
continue;
}
add_node_to_tree(new_node, tree, &tree_size); // 将新节点添加到树中
rewire(new_node, tree, tree_size, step_size); // 重新连接节点
}
Node *best_goal_node = find_best_goal_node(tree, tree_size, goal); // 找到最优的目标节点
print_path(best_goal_node); // 打印路径
}
int main(){
informed_rrt_star(1000, 10.0);
return 0;
}
```
上述代码使用了一个简单的环境,节点和目标点都是二维坐标。算法首先随机生成一个起始节点和目标点,然后在环境中随机生成节点,并将其与树中的最近节点连接。如果新节点和最近节点重合,则跳过。如果新节点是目标节点,则返回路径。如果新节点不在环境内,则跳过。然后将新节点添加到树中,并重新连接节点。最后找到最优的目标节点,并返回路径。
阅读全文
相关推荐






