Traceback (most recent call last): File "/root/autodl-tmp/ultralytics-main/run.py", line 7, in <module> model.train(data='/root/autodl-tmp/ultralytics-main/traindata3/data.yaml') File "/root/autodl-tmp/ultralytics-main/ultralytics/yolo/engine/model.py", line 371, in train self.trainer.train() File "/root/autodl-tmp/ultralytics-main/ultralytics/yolo/engine/trainer.py", line 192, in train self._do_train(world_size) File "/root/autodl-tmp/ultralytics-main/ultralytics/yolo/engine/trainer.py", line 328, in _do_train preds = self.model(batch['img']) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/root/autodl-tmp/ultralytics-main/ultralytics/nn/tasks.py", line 219, in forward return self._forward_once(x, profile, visualize) # single-scale inference, train File "/root/autodl-tmp/ultralytics-main/ultralytics/nn/tasks.py", line 70, in _forward_once x = m(x) # run File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/root/autodl-tmp/ultralytics-main/ultralytics/nn/modules/block.py", line 183, in forward return self.cv2(torch.cat(y, 1)) torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 100.00 MiB (GPU 0; 23.65 GiB total capacity; 6.18 GiB already allocated; 98.56 MiB free; 6.21 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF terminate called without an active exception Aborted (core dumped)

时间: 2023-10-23 11:14:17 浏览: 913
这是一个CUDA out of memory错误,说明你的GPU显存已经不足以支持你的模型在训练时的计算了。你可以尝试减小batch size或者使用更高显存的GPU来解决这个问题。另外,你也可以尝试使用PyTorch提供的一些内存管理的工具,比如设置max_split_size_mb参数来避免内存碎片化。
相关问题

Traceback (most recent call last): File "/root/autodl-tmp/ultralytics-main/run.py", line 4, in <module> model = YOLO('/root/autodl-tmp/ultralytics-main/ultralytics/models/v8/yolov8.yaml').load('/root/autodl-tmp/ultralytics-main/yolov8x.pt') # build from YAML and transfer weights File "/root/autodl-tmp/ultralytics-main/ultralytics/yolo/engine/model.py", line 105, in __init__ self._new(model, task) File "/root/autodl-tmp/ultralytics-main/ultralytics/yolo/engine/model.py", line 138, in _new self.model = TASK_MAP[self.task][0](cfg_dict, verbose=verbose and RANK == -1) # build model File "/root/autodl-tmp/ultralytics-main/ultralytics/nn/tasks.py", line 194, in __init__ self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist File "/root/autodl-tmp/ultralytics-main/ultralytics/nn/tasks.py", line 496, in parse_model m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m] # get module KeyError: 'CBAM'

这个错误通常发生在使用YOLOv8时,因为YOLOv8中使用了CBAM模块,而您的环境中没有安装CBAM模块。 解决这个问题的方法是安装CBAM模块。您可以使用以下命令安装CBAM模块: ``` pip install cbam ``` 或者,您可以在运行YOLOv8之前将CBAM模块的源代码下载到您的环境中,并将其添加到您的PYTHONPATH中。 ``` git clone https://github.com/Jongchan/attention-module.git export PYTHONPATH=$PYTHONPATH:/path/to/attention-module ``` 如果您已经安装了CBAM模块,但仍然遇到此错误,请确保您的PYTHONPATH包含CBAM模块的路径。

Traceback (most recent call last): File "/root/autodl-tmp/MASt3R-SLAM/main.py", line 302, in <module> keyframes.append(frame) File "/root/autodl-tmp/MASt3R-SLAM/mast3r_slam/frame.py", line 316, in append self[self.n_size.value] = value ~~~~^^^^^^^^^^^^^^^^^^^ File "/root/autodl-tmp/MASt3R-SLAM/mast3r_slam/frame.py", line 294, in __setitem__ self.dataset_idx[idx] = value.frame_id ~~~~~~~~~~~~~~~~^^^^^ IndexError: index 64 is out of bounds for dimension 0 with size 64 Process Process-2: Traceback (most recent call last): File "/root/autodl-tmp/myenv/lib/python3.11/multiprocessing/process.py", line 314, in _bootstrap self.run() File "/root/autodl-tmp/myenv/lib/python3.11/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/root/autodl-tmp/MASt3R-SLAM/main.py", line 100, in run_backend if len(states.global_optimizer_tasks) > 0: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "<string>", line 2, in __len__ File "/root/autodl-tmp/myenv/lib/python3.11/multiprocessing/managers.py", line 837, in _callmethod raise convert_to_error(kind, result) multiprocessing.managers.RemoteError: --------------------------------------------------------------------------- Traceback (most recent call last): File "/root/autodl-tmp/myenv/lib/python3.11/multiprocessing/managers.py", line 260, in serve_client self.id_to_local_proxy_obj[ident] ~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^ KeyError: '7f218a6928c0' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/root/autodl-tmp/myenv/lib/python3.11/multiprocessing/managers.py", line 262, in serve_client raise ke File "/root/autodl-tmp/myenv/lib/python3.11/multiprocessing/managers.py", line 256, in serve_client obj, exposed, gettypeid = id_to_obj[ident] ~~~~~~~~~^^^^^^^ KeyError: '7f218a6928c0' --------------------------------------------------------------

<think>好的,我需要解决用户提到的Python多进程问题,具体是IndexError和RemoteError。用户提到了IndexError: 'index 64 is out of bounds'和RemoteError中的KeyError,涉及MASt3R-SLAM项目的frame.py和main.py。首先,我需要分析这些错误的可能原因,并给出解决方案。 首先,IndexError通常发生在尝试访问列表、数组等数据结构中不存在的索引。例如,当列表长度为64时,最大有效索引是63,如果访问索引64就会报错。在多进程环境下,可能是因为数据分发的逻辑错误,比如每个进程处理的数据块大小不一致,导致某个进程的数据不足。需要检查数据分块的方式,确认每个进程分配的数据索引是否在合理范围内。例如,使用multiprocessing.Pool时,如果任务队列的索引生成有误,可能导致子进程尝试访问超出范围的数据。这时候需要检查数据分割的逻辑,确保每个进程处理的数据段正确。 接下来是RemoteError中的KeyError。RemoteError通常发生在多进程间通信时,子进程抛出的异常传递到主进程的情况。KeyError说明在字典中访问了不存在的键,可能是共享数据(如共享字典或Manager().dict())中存在键不一致的问题。例如,主进程和子进程对共享字典的键操作不同步,或者某个进程在写入前未正确初始化键。需要检查共享数据的使用,确保所有进程访问的键存在,或者在访问前进行存在性检查。 另外,用户提到的MASt3R-SLAM项目中的frame.py和main.py可能涉及到多进程间的数据传递和共享。可能需要检查这两个文件中与多进程相关的代码部分,尤其是数据索引的生成和共享变量的使用。例如,在frame.py中,是否存在对某个数据结构的越界访问;在main.py中,多进程的启动和任务分配是否正确。 针对IndexError,可能的解决方案包括: 1. 检查数据分发的逻辑,确保每个进程处理的数据索引不超过数据结构的长度减一。例如,使用循环分割数据时,确保分割后的每个块的大小正确。 2. 在访问列表或数组前,添加条件判断,确保索引有效。例如,使用if index < len(data):再进行访问。 3. 使用try-except块捕获IndexError,并记录详细的错误信息,帮助定位问题。 对于RemoteError中的KeyError,可能的解决方案有: 1. 确保所有进程在访问共享字典前,所需的键已经正确初始化。例如,主进程在创建共享字典时预先生成所有可能的键,或者子进程在访问前检查键是否存在,若不存在则进行适当处理。 2. 使用锁机制(如multiprocessing.Lock)来同步对共享数据的访问,防止多个进程同时修改导致键丢失或冲突。 3. 检查多进程间的数据传递是否正确,特别是在使用队列(Queue)或管道(Pipe)时,确保发送和接收的数据结构一致,避免键被意外修改或丢失。 此外,用户提供的引用中提到了解决报错的方法,如更换torch版本或修改参数名称。虽然用户的问题不直接涉及torch的版本,但可能需要考虑Python环境或第三方库的兼容性问题。例如,某些多进程库在不同版本中的行为可能不同,导致异常。建议用户检查使用的Python版本和multiprocessing库的相关文档,确认是否存在已知的问题或兼容性建议。 还需要考虑MASt3R-SLAM项目本身的代码是否存在已知的多进程问题。如果该项目是开源项目,可以查阅其issue跟踪系统,看是否有其他用户遇到类似问题,并参考他们的解决方案。此外,确保代码中的多进程部分符合最佳实践,如正确使用if __name__ == '__main__':来避免在子进程中重复执行主模块代码,导致意外的行为。 最后,建议用户在调试时使用更详细的日志记录,例如在每个子进程中打印当前的进程ID和正在处理的数据索引,帮助定位具体是哪个进程和哪部分数据导致了错误。同时,简化问题,例如减少进程数量或数据规模,看是否问题依然存在,从而缩小排查范围。</think>### Python多进程IndexError与RemoteError解决方案 针对**MASt3R-SLAM**项目中`frame.py`和`main.py`出现的多进程`IndexError`和`RemoteError`问题,以下是分步解决方案: --- #### **1. IndexError: "index 64 is out of bounds"** **原因分析** 此错误通常发生在以下场景: - 多进程任务分配不均衡,导致某个进程尝试访问超出数据长度的索引。 - 共享数据结构(如列表、数组)在进程间未正确同步。 **解决方案** 1. **检查数据分块逻辑** 确保每个子进程分配的数据块索引在有效范围内。例如,使用`numpy`数组时,需验证分割后的索引: ```python import numpy as np data = np.arange(100) num_processes = 4 chunks = np.array_split(data, num_processes) # 自动均匀分割 ``` 避免手动计算分块导致索引越界。 2. **添加索引有效性验证** 在访问数据前增加条件判断: ```python if index < len(data): value = data[index] else: print(f"Invalid index {index} for data length {len(data)}") ``` 3. **使用`try-except`捕获异常** 在关键代码段包裹异常处理: ```python try: item = data[64] except IndexError as e: print(f"Error accessing index 64: {e}") # 可选:记录日志或回退操作 ``` --- #### **2. RemoteError中的KeyError** **原因分析** 该错误通常由以下原因导致: - 共享字典(如`multiprocessing.Manager().dict()`)中键未正确初始化。 - 进程间竞争条件导致键被意外删除或覆盖。 **解决方案** 1. **初始化共享字典的键** 在创建共享字典时预先生成所有可能的键: ```python from multiprocessing import Manager manager = Manager() shared_dict = manager.dict() # 主进程中初始化键 for key in expected_keys: shared_dict[key] = None # 或默认值 ``` 2. **使用锁机制同步访问** 通过`multiprocessing.Lock`确保共享资源的原子操作: ```python lock = manager.Lock() def worker(key): with lock: if key not in shared_dict: shared_dict[key] = initial_value # 后续操作 ``` 3. **检查键的存在性** 在访问共享字典前验证键是否存在: ```python if key in shared_dict: value = shared_dict[key] else: print(f"Key {key} not found") ``` --- #### **3. 多进程调试建议** 1. **简化复现条件** - 减少进程数量(如从8进程改为2进程)以缩小问题范围。 - 使用小规模数据集验证逻辑正确性。 2. **记录详细日志** 在每个子进程中输出进程ID和当前操作: ```python import os print(f"Process {os.getpid()} handling index {index}") ``` 3. **检查`if __name__ == '__main__'`** 确保主模块代码被正确保护,避免子进程重复执行初始化代码[^1]: ```python if __name__ == '__main__': # 主进程逻辑 start_multiprocessing() ``` --- #### **4. 参考案例** - **问题1:PyTorch多进程参数冲突** 用户通过将`local_rank`改为`local-rank`或更换Torch版本解决了参数解析问题[^2]。类似地,检查项目中是否有参数命名冲突。 - **问题2:共享资源竞争** 使用锁机制或进程安全的数据结构(如`multiprocessing.Queue`)替代共享字典。 ---
阅读全文

相关推荐

/root/miniconda3/bin/conda run -p /root/miniconda3 --no-capture-output python /root/autodl-tmp/yolo11master/val.py Ultralytics 8.3.96 🚀 Python-3.11.10 torch-2.0.0+cu118 CUDA:0 (NVIDIA GeForce RTX 3090, 24135MiB) Traceback (most recent call last): File "/root/autodl-tmp/yolo11master/val.py", line 6, in <module> model.val( File "/root/autodl-tmp/yolo11master/ultralytics/engine/model.py", line 628, in val validator(model=self.model) File "/root/miniconda3/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/root/autodl-tmp/yolo11master/ultralytics/engine/validator.py", line 160, in __call__ model = AutoBackend( ^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/root/autodl-tmp/yolo11master/ultralytics/nn/autobackend.py", line 163, in __init__ model = model.fuse(verbose=verbose) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/autodl-tmp/yolo11master/ultralytics/nn/tasks.py", line 245, in fuse m.fuse() File "/root/miniconda3/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/root/autodl-tmp/yolo11master/ultralytics/nn/modules/block.py", line 1155, in fuse conv = fuse_conv_and_bn(self.conv.conv, self.conv.bn) ^^^^^^^^^^^^^^^^ NameError: name 'fuse_conv_and_bn' is not defined ERROR conda.cli.main_run:execute(49): conda run python /root/autodl-tmp/yolo11master/val.py failed. (See above for error)

root@autodl-container-c85144bc1a-7cf0bfa7:~/autodl-tmp/Open-LLM-VTuber# ls -lh total 800K -rw-r--r-- 1 root root 1.2K Jul 16 21:44 LICENSE -rw-r--r-- 1 root root 57K Jul 16 21:44 LICENSE-Live2D.md -rw-r--r-- 1 root root 9.7K Jul 16 21:44 README.CN.md -rw-r--r-- 1 root root 11K Jul 16 21:44 README.md drwxr-xr-x 2 root root 86 Jul 17 09:51 __pycache__ drwxr-xr-x 2 root root 4.0K Jul 16 21:44 assets drwxr-xr-x 2 root root 52 Jul 16 21:44 avatars drwxr-xr-x 2 root root 4.0K Jul 16 21:44 backgrounds drwxr-xr-x 2 root root 155 Jul 16 21:44 characters -rw-r--r-- 1 root root 19K Jul 17 18:44 conf.yaml drwxr-xr-x 2 root root 92 Jul 16 21:44 config_templates drwxr-xr-x 3 root root 33 Jul 16 21:44 doc -rw-r--r-- 1 root root 1.7K Jul 16 21:44 dockerfile drwxr-xr-x 4 root root 105 Jul 16 21:44 frontend drwxr-xr-x 4 root root 48 Jul 16 21:44 live2d-models drwxr-xr-x 2 root root 42 Jul 17 09:51 logs -rw-r--r-- 1 root root 5.8K Jul 16 21:44 merge_configs.py -rw-r--r-- 1 root root 4.4K Jul 16 21:44 model_dict.json drwxr-xr-x 3 root root 142 Jul 17 18:05 models -rw-r--r-- 1 root root 88K Jul 16 21:44 pixi.lock drwxr-xr-x 4 root root 101 Jul 17 09:51 prompts -rw-r--r-- 1 root root 1.2K Jul 16 21:44 pyproject.toml -rw-r--r-- 1 root root 2.8K Jul 16 21:44 run_server.py drwxr-xr-x 3 root root 37 Jul 16 21:44 src -rw-r--r-- 1 root root 20K Jul 16 21:44 upgrade.py -rw-r--r-- 1 root root 547K Jul 16 21:52 uv.lock drwxr-xr-x 2 root root 95 Jul 16 21:44 web_tool root@autodl-container-c85144bc1a-7cf0bfa7:~/autodl-tmp/Open-LLM-VTuber# pip install onnx python -c "import onnx; onnx.load('your_model.onnx'); print('模型有效')" Looking in indexes: http://mirrors.aliyun.com/pypi/simple Collecting onnx Downloading http://mirrors.aliyun.com/pypi/packages/58/52/fa649429016c5790f68c614cdebfbefd3e72ba1c458966305297d540f713/onnx-1.18.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.6 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 17.6/17.6 MB 2.9 MB/s eta 0:00:00 Requirement already satisfied: protobuf>=4.25.1 in /root/miniconda3/lib/python3.10/site-packages (from onnx) (4.25.3) Requirement already satisfied: numpy>=1.22 in /root/miniconda3/lib/python3.10/site-packages (from onnx) (1.26.4) Requirement already satisfied: typing_extensions>=4.7.1 in /root/miniconda3/lib/python3.10/site-packages (from onnx) (4.12.2) Installing collected packages: onnx Successfully installed onnx-1.18.0 WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv Traceback (most recent call last): File "<string>", line 1, in <module> File "/root/miniconda3/lib/python3.10/site-packages/onnx/__init__.py", line 226, in load_model model = _get_serializer(format, f).deserialize_proto(_load_bytes(f), ModelProto()) File "/root/miniconda3/lib/python3.10/site-packages/onnx/__init__.py", line 163, in _load_bytes with open(f, "rb") as readable: FileNotFoundError: [Errno 2] No such file or directory: 'your_model.onnx' root@autodl-container-c85144bc1a-7cf0bfa7:~/autodl-tmp/Open-LLM-VTuber#

(my-env) root@autodl-container-242a4285b3-3647fd99:~/autodl-tmp/YOLOv10# pip install numpy==1.19 Looking in indexes: http://mirrors.aliyun.com/pypi/simple Collecting numpy==1.19 Downloading http://mirrors.aliyun.com/pypi/packages/f1/2c/717bdd12404c73ec0c8c734c81a0bad7048866bc36a88a1b69fd52b01c07/numpy-1.19.0.zip (7.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.3/7.3 MB 11.5 MB/s eta 0:00:00 Installing build dependencies ... done Getting requirements to build wheel ... done Preparing metadata (pyproject.toml) ... error error: subprocess-exited-with-error × Preparing metadata (pyproject.toml) did not run successfully. │ exit code: 1 ╰─> [24 lines of output] Running from numpy source directory. <string>:460: UserWarning: Unrecognized setuptools command, proceeding with generating Cython sources and expanding templates Traceback (most recent call last): File "/root/miniconda3/envs/my-env/lib/python3.9/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 389, in <module> main() File "/root/miniconda3/envs/my-env/lib/python3.9/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 373, in main json_out["return_val"] = hook(**hook_input["kwargs"]) File "/root/miniconda3/envs/my-env/lib/python3.9/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 175, in prepare_metadata_for_build_wheel return hook(metadata_directory, config_settings) File "/tmp/pip-build-env-yngvw6of/overlay/lib/python3.9/site-packages/setuptools/build_meta.py", line 377, in prepare_metadata_for_build_wheel self.run_setup() File "/tmp/pip-build-env-yngvw6of/overlay/lib/python3.9/site-packages/setuptools/build_meta.py", line 522, in run_setup super().run_setup(setup_script=setup_script) File "/tmp/pip-build-env-yngvw6of/overlay/lib/python3.9/site-packages/setuptools/build_meta.py", line 320, in run_

root@autodl-container-c85144bc1a-7cf0bfa7:~/autodl-tmp/Open-LLM-VTuber# uv run run_server.py # 第一次运行可能会下载一些模型,导致等待时间较久。 2025-07-17 19:14:19.094 | INFO | __main__:<module>:86 - Running in standard mode. For detailed debug logs, use: uv run run_server.py --verbose 2025-07-17 19:14:19 | INFO | __main__:run:57 | Open-LLM-VTuber, version v1.1.4 2025-07-17 19:14:19 | INFO | upgrade:sync_user_config:350 | [DEBUG] User configuration is up-to-date. 2025-07-17 19:14:19 | INFO | src.open_llm_vtuber.service_context:init_live2d:156 | Initializing Live2D: shizuku-local 2025-07-17 19:14:19 | INFO | src.open_llm_vtuber.live2d_model:_lookup_model_info:142 | Model Information Loaded. 2025-07-17 19:14:19 | INFO | src.open_llm_vtuber.service_context:init_asr:166 | Initializing ASR: sherpa_onnx_asr 2025-07-17 19:14:19 | INFO | src.open_llm_vtuber.asr.sherpa_onnx_asr:__init__:81 | Sherpa-Onnx-ASR: Using cpu for inference 2025-07-17 19:14:19 | WARNING | src.open_llm_vtuber.asr.sherpa_onnx_asr:_create_recognizer:166 | SenseVoice model not found. Downloading the model... 2025-07-17 19:14:19 | INFO | src.open_llm_vtuber.asr.utils:check_and_extract_local_file:141 | ✅ Extracted directory exists: models/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17, no operation needed. 2025-07-17 19:14:19 | INFO | src.open_llm_vtuber.asr.sherpa_onnx_asr:_create_recognizer:179 | Local file found. Using existing file. 2025-07-17 19:14:19 | ERROR | __main__:<module>:91 | An error has been caught in function '<module>', process 'MainProcess' (186339), thread 'MainThread' (140161628456768): Traceback (most recent call last): > File "/root/autodl-tmp/Open-LLM-VTuber/run_server.py", line 91, in <module> run(console_log_level=console_log_level) │ └ 'INFO' └ <function run at 0x7f79baae0790> File "/root/autodl-tmp/Open-LLM-VTuber/run_server.py", line 71, in run server = WebSocketServer(config=config) │ └ Config(system_config=SystemConfig(conf_version='v1.1.1', host='localhost', port=12393, config_alts_dir='characters', tool_pro... └ <class 'src.open_llm_vtuber.server.WebSocketServer'> File "/root/autodl-tmp/Open-LLM-VTuber/src/open_llm_vtuber/server.py", line 45, in __init__ default_context_cache.load_from_config(config) │ │ └ Config(system_config=SystemConfig(conf_version='v1.1.1', host='localhost', port=12393, config_alts_dir='characters', tool_pro... │ └ <function ServiceContext.load_from_config at 0x7f79bac70430> └ <src.open_llm_vtuber.service_context.ServiceContext object at 0x7f79bab10310> File "/root/autodl-tmp/Open-LLM-VTuber/src/open_llm_vtuber/service_context.py", line 132, in load_from_config self.init_asr(config.character_config.asr_config) │ │ │ │ └ ASRConfig(asr_model='sherpa_onnx_asr', azure_asr=AzureASRConfig(api_key='azure_api_key', region='eastus', languages=['en-US',... │ │ │ └ CharacterConfig(conf_name='shizuku-local', conf_uid='shizuku-local-001', live2d_model_name='shizuku-local', character_name='S... │ │ └ Config(system_config=SystemConfig(conf_version='v1.1.1', host='localhost', port=12393, config_alts_dir='characters', tool_pro... │ └ <function ServiceContext.init_asr at 0x7f79bac70550> └ <src.open_llm_vtuber.service_context.ServiceContext object at 0x7f79bab10310> File "/root/autodl-tmp/Open-LLM-VTuber/src/open_llm_vtuber/service_context.py", line 167, in init_asr self.asr_engine = ASRFactory.get_asr_system( │ │ │ └ <staticmethod(<function ASRFactory.get_asr_system at 0x7f79bc0c37f0>)> │ │ └ <class 'src.open_llm_vtuber.asr.asr_factory.ASRFactory'> │ └ None └ <src.open_llm_vtuber.service_context.ServiceContext object at 0x7f79bab10310> File "/root/autodl-tmp/Open-LLM-VTuber/src/open_llm_vtuber/asr/asr_factory.py", line 58, in get_asr_system return SherpaOnnxASR(**kwargs) │ └ {'model_type': 'sense_voice', 'encoder': None, 'decoder': None, 'joiner': None, 'paraformer': None, 'nemo_ctc': None, 'wenet_... └ <class 'src.open_llm_vtuber.asr.sherpa_onnx_asr.VoiceRecognition'> File "/root/autodl-tmp/Open-LLM-VTuber/src/open_llm_vtuber/asr/sherpa_onnx_asr.py", line 83, in __init__ self.recognizer = self._create_recognizer() │ │ └ <function VoiceRecognition._create_recognizer at 0x7f79b930d510> │ └ <src.open_llm_vtuber.asr.sherpa_onnx_asr.VoiceRecognition object at 0x7f79bab101f0> └ <src.open_llm_vtuber.asr.sherpa_onnx_asr.VoiceRecognition object at 0x7f79bab101f0> File "/root/autodl-tmp/Open-LLM-VTuber/src/open_llm_vtuber/asr/sherpa_onnx_asr.py", line 188, in _create_recognizer recognizer = sherpa_onnx.OfflineRecognizer.from_sense_voice( │ │ └ <classmethod(<function OfflineRecognizer.from_sense_voice at 0x7f79baae1750>)> │ └ <class 'sherpa_onnx.offline_recognizer.OfflineRecognizer'> └ <module 'sherpa_onnx' from '/root/autodl-tmp/Open-LLM-VTuber/.venv/lib/python3.10/site-packages/sherpa_onnx/__init__.py'> File "/root/autodl-tmp/Open-LLM-VTuber/.venv/lib/python3.10/site-packages/sherpa_onnx/offline_recognizer.py", line 259, in from_sense_voice self.recognizer = _Recognizer(recognizer_config) │ │ └ <_sherpa_onnx.OfflineRecognizerConfig object at 0x7f79bab49130> │ └ <class '_sherpa_onnx.OfflineRecognizer'> └ <sherpa_onnx.offline_recognizer.OfflineRecognizer object at 0x7f79bab10700> RuntimeError: No graph was found in the protobuf.

/root/miniconda3/bin/conda run -p /root/miniconda3 --no-capture-output python /root/autodl-tmp/clip-pytorch-main/mdistiller/train.py 使用设备: cuda 训练集: 12516 有效样本, 1 类 验证集: 3130 有效样本 教师模型加载完成,参数量: 149620737 /root/miniconda3/lib/python3.12/site-packages/torch/hub.py:293: UserWarning: You are about to download and run code from an untrusted repository. In a future release, this won't be allowed. To add the repository to your trusted list, change the command to {calling_fn}(..., trust_repo=False) and a command prompt will appear asking for an explicit confirmation of trust, or load(..., trust_repo=True), which will assume that the prompt is to be answered with 'yes'. You can also use load(..., trust_repo='check') which will only prompt for confirmation if the repo is not already trusted. This will eventually be the default behaviour warnings.warn( Traceback (most recent call last): File "/root/autodl-tmp/clip-pytorch-main/mdistiller/train.py", line 284, in <module> main() File "/root/autodl-tmp/clip-pytorch-main/mdistiller/train.py", line 208, in main student = torch.hub.load('apple/ml-mobilevit', 'mobilevit_xxs') ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/torch/hub.py", line 565, in load repo_or_dir = _get_cache_or_reload(repo_or_dir, force_reload, trust_repo, "load", ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/torch/hub.py", line 229, in _get_cache_or_reload _validate_not_a_forked_repo(repo_owner, repo_name, ref) File "/root/miniconda3/lib/python3.12/site-packages/torch/hub.py", line 189, in _validate_not_a_forked_repo response = json.loads(_read_url(Request(url, headers=headers))) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/torch/hub.py", line 172, in _read_url with urlopen(url) as r: ^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/urllib/request.py", line 215, in urlopen return opener.open(url, data, timeout) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/urllib/request.py", line 521, in open response = meth(req, response) ^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/urllib/request.py", line 630, in http_response response = self.parent.error( ^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/urllib/request.py", line 559, in error return self._call_chain(*args) ^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/urllib/request.py", line 492, in _call_chain result = func(*args) ^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/urllib/request.py", line 639, in http_error_default raise HTTPError(req.full_url, code, msg, hdrs, fp) urllib.error.HTTPError: HTTP Error 404: Not Found ERROR conda.cli.main_run:execute(125): conda run python /root/autodl-tmp/clip-pytorch-main/mdistiller/train.py failed. (See above for error) 进程已结束,退出代码为 1

root@autodl-container-c85144bc1a-7cf0bfa7:~# # 验证ONNX Runtime版本 python -c "import onnxruntime as ort; print(ort.__version__)" # 需要 >=1.15.0 (2024年模型要求) # 检查CUDA可用性(如使用GPU) python -c "import onnxruntime; print(onnxruntime.get_device())" # 应输出:['CPU', 'GPU:0'] 或类似 # 若出现CUDA错误(参考引用[3]),添加环境变量 export CUDA_LAUNCH_BLOCKING=1 Traceback (most recent call last): File "<string>", line 1, in <module> ModuleNotFoundError: No module named 'onnxruntime' Traceback (most recent call last): File "<string>", line 1, in <module> ModuleNotFoundError: No module named 'onnxruntime' root@autodl-container-c85144bc1a-7cf0bfa7:~# # 示例正确配置 sherpa_onnx: model_dir: "/root/autodl-tmp/Open-LLM-VTuber/models/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17" sample_rate: 16000 decoding_method: "greedy_search" bash: sherpa_onnx:: command not found bash: model_dir:: command not found bash: sample_rate:: command not found bash: decoding_method:: command not found root@autodl-container-c85144bc1a-7cf0bfa7:~# import onnxruntime as ort def load_model(model_path): try: sess = ort.InferenceSession(model_path) print(f"✅ 成功加载模型: {model_path}") print(f"输入形状: {sess.get_inputs()[0].shape}") print(f"输出形状: {sess.get_outputs()[0].shape}") except Exception as e: print(f"❌ 加载失败: {str(e)}") # 测试关键模型 load_model("/root/autodl-tmp/.../encoder.onnx") load_model("/root/autodl-tmp/.../decoder.onnx") bash: import: command not found bash: syntax error near unexpected token (' bash: try:: command not found bash: syntax error near unexpected token (' bash: syntax error near unexpected token f"✅ 成功加载模型: {model_path}"' bash: syntax error near unexpected token f"输入形状: {sess.get_inputs()[0].shape}"' bash: syntax error near unexpected token f"输出形状: {sess.get_outputs()[0].shape}"' bash: except: command not found bash: syntax error near unexpected token f"❌ 加载失败: {str(e)}"' bash: syntax error near unexpected token "/root/autodl-tmp/.../encoder.onnx"' bash: syntax error near unexpected token "/root/autodl-tmp/.../decoder.onnx"' root@autodl-container-c85144bc1a-7cf0bfa7:~/autodl-tmp/Open-LLM-VTuber# pip install netron python -m netron encoder.onnx Looking in indexes: http://mirrors.aliyun.com/pypi/simple Collecting netron Downloading http://mirrors.aliyun.com/pypi/packages/86/d5/8b72b3bcf717c765945014d41e28a3d3ef67e66965c65cc325a73dbfd097/netron-8.4.4-py3-none-any.whl (1.9 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.9/1.9 MB 4.4 MB/s eta 0:00:00 Installing collected packages: netron Successfully installed netron-8.4.4 WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv /root/miniconda3/bin/python: No module named netron.__main__; 'netron' is a package and cannot be directly executed root@autodl-container-c85144bc1a-7cf0bfa7:~/autodl-tmp/Open-LLM-VTuber# pip install onnxruntime==1.15.1 # 2024年模型常用兼容版本 Looking in indexes: http://mirrors.aliyun.com/pypi/simple Collecting onnxruntime==1.15.1 Downloading http://mirrors.aliyun.com/pypi/packages/2f/e2/ced4e64433097cb14425098ce3c6200b83d226005e8c23ba5bac44c89ab9/onnxruntime-1.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.9/5.9 MB 4.1 MB/s eta 0:00:00 Requirement already satisfied: numpy>=1.21.6 in /root/miniconda3/lib/python3.10/site-packages (from onnxruntime==1.15.1) (1.26.4) Requirement already satisfied: packaging in /root/miniconda3/lib/python3.10/site-packages (from onnxruntime==1.15.1) (24.1) Collecting flatbuffers Downloading http://mirrors.aliyun.com/pypi/packages/b8/25/155f9f080d5e4bc0082edfda032ea2bc2b8fab3f4d25d46c1e9dd22a1a89/flatbuffers-25.2.10-py2.py3-none-any.whl (30 kB) Requirement already satisfied: sympy in /root/miniconda3/lib/python3.10/site-packages (from onnxruntime==1.15.1) (1.12.1) Requirement already satisfied: protobuf in /root/miniconda3/lib/python3.10/site-packages (from onnxruntime==1.15.1) (4.25.3) Collecting coloredlogs Downloading http://mirrors.aliyun.com/pypi/packages/a7/06/3d6badcf13db419e25b07041d9c7b4a2c331d3f4e7134445ec5df57714cd/coloredlogs-15.0.1-py2.py3-none-any.whl (46 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 46.0/46.0 kB 2.5 MB/s eta 0:00:00 Collecting humanfriendly>=9.1 Downloading http://mirrors.aliyun.com/pypi/packages/f0/0f/310fb31e39e2d734ccaa2c0fb981ee41f7bd5056ce9bc29b2248bd569169/humanfriendly-10.0-py2.py3-none-any.whl (86 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 86.8/86.8 kB 3.8 MB/s eta 0:00:00 Requirement already satisfied: mpmath<1.4.0,>=1.1.0 in /root/miniconda3/lib/python3.10/site-packages (from sympy->onnxruntime==1.15.1) (1.3.0) Installing collected packages: flatbuffers, humanfriendly, coloredlogs, onnxruntime Successfully installed coloredlogs-15.0.1 flatbuffers-25.2.10 humanfriendly-10.0 onnxruntime-1.15.1 WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv root@autodl-container-c85144bc1a-7cf0bfa7:~/autodl-tmp/Open-LLM-VTuber# ort_session = ort.InferenceSession("encoder.onnx", providers=['CPUExecutionProvider']) # 强制使用CPU bash: syntax error near unexpected token (' bash: syntax error near unexpected token )'

/home/saman/anaconda3/envs/pytorch1110/bin/python /root/autodl-tmp/Llama_finance/finetune_qlora.py The installed version of bitsandbytes was compiled without GPU support. 8-bit optimizers, 8-bit multiplication, and GPU quantization are unavailable. CUDA is required but not available for bitsandbytes. Please consider installing the multi-platform enabled version of bitsandbytes, which is currently a work in progress. Please check currently supported platforms and installation instructions at https://huggingface.co/docs/bitsandbytes/main/en/installation#multi-backend Traceback (most recent call last): File "/root/autodl-tmp/Llama_finance/finetune_qlora.py", line 15, in <module> model = AutoModelForCausalLM.from_pretrained( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/saman/anaconda3/envs/pytorch1110/lib/python3.11/site-packages/transformers/models/auto/auto_factory.py", line 571, in from_pretrained return model_class.from_pretrained( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/saman/anaconda3/envs/pytorch1110/lib/python3.11/site-packages/transformers/modeling_utils.py", line 279, in _wrapper return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/home/saman/anaconda3/envs/pytorch1110/lib/python3.11/site-packages/transformers/modeling_utils.py", line 4228, in from_pretrained hf_quantizer.validate_environment( File "/home/saman/anaconda3/envs/pytorch1110/lib/python3.11/site-packages/transformers/quantizers/quantizer_bnb_4bit.py", line 84, in validate_environment validate_bnb_backend_availability(raise_exception=True) File "/home/saman/anaconda3/envs/pytorch1110/lib/python3.11/site-packages/transformers/integrations/bitsandbytes.py", line 561, in validate_bnb_backend_availability return _validate_bnb_cuda_backend_availability(raise_exception) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/saman/anaconda3/envs/pytorch1110/lib/python3.11/site-packages/transformers/

INFO|2025-03-04 21:58:56] llamafactory.model.model_utils.misc:157 >> Found linear modules: up_proj,o_proj,down_proj,v_proj,q_proj,k_proj,gate_proj [INFO|2025-03-04 21:58:56] llamafactory.model.loader:157 >> trainable params: 36,929,536 || all params: 1,814,017,536 || trainable%: 2.0358 [INFO|trainer.py:746] 2025-03-04 21:58:57,032 >> Using auto half precision backend [WARNING|trainer.py:781] 2025-03-04 21:58:57,033 >> No label_names provided for model class PeftModelForCausalLM. Since PeftModel hides base models input arguments, if label_names is not given, label_names can't be set automatically within Trainer. Note that empty label_names list will be used instead. [INFO|trainer.py:2789] 2025-03-04 21:58:57,034 >> Loading model from saves/DeepSeek-R1-1.5B-Distill/lora/train_2025-03-04-21-49-43/checkpoint-30. Traceback (most recent call last): File "/root/miniconda3/bin/llamafactory-cli", line 8, in <module> sys.exit(main()) ^^^^^^ File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/cli.py", line 112, in main run_exp() File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/train/tuner.py", line 93, in run_exp _training_function(config={"args": args, "callbacks": callbacks}) File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/train/tuner.py", line 67, in _training_function run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 102, in run_sft train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/transformers/trainer.py", line 2213, in train self._load_from_checkpoint(resume_from_checkpoint) File "/root/miniconda3/lib/python3.12/site-packages/transformers/trainer.py", line 2877, in _load_from_checkpoint model.load_adapter(resume_from_checkpoint, active_adapter, is_trainable=True) File "/root/miniconda3/lib/python3.12/site-packages/peft/peft_model.py", line 1117, in load_adapter load_result = set_peft_model_state_dict( ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/peft/utils/save_and_load.py", line 395, in set_peft_model_state_dict load_result = model.load_state_dict(peft_model_state_dict, strict=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 2581, in load_state_dict raise RuntimeError( RuntimeError: Error(s) in loading state_dict for PeftModelForCausalLM: size mismatch for base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight: copying a param with shape torch.Size([8, 1536]) from checkpoint, the shape in current model is torch.Size([32, 1536]).

[WARNING|logging.py:329] 2025-03-04 21:16:20,919 >> Unsloth: Dropout = 0 is supported for fast patching. You are using dropout = 0.01. Unsloth will patch all other layers, except LoRA matrices, causing a performance hit. Unsloth: Offloading input_embeddings to disk to save VRAM Traceback (most recent call last): File "/root/miniconda3/bin/llamafactory-cli", line 8, in <module> sys.exit(main()) ^^^^^^ File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/cli.py", line 112, in main run_exp() File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/train/tuner.py", line 93, in run_exp _training_function(config={"args": args, "callbacks": callbacks}) File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/train/tuner.py", line 67, in _training_function run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 52, in run_sft model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/model/loader.py", line 169, in load_model model = init_adapter(config, model, model_args, finetuning_args, is_trainable) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/model/adapter.py", line 299, in init_adapter model = _setup_lora_tuning( ^^^^^^^^^^^^^^^^^^^ File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/model/adapter.py", line 235, in _setup_lora_tuning model = get_unsloth_peft_model(model, model_args, peft_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/model/model_utils/unsloth.py", line 79, in get_unsloth_peft_model return FastLanguageModel.get_peft_model(**peft_kwargs, **unsloth_peft_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/unsloth/models/llama.py", line 2377, in get_peft_model offload_input_embeddings(model, temporary_location) File "/root/miniconda3/lib/python3.12/site-packages/unsloth/models/_utils.py", line 767, in offload_input_embeddings offloaded_W = offload_to_disk(model.get_input_embeddings(), model, "input_embeddings", temporary_location) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/unsloth/models/_utils.py", line 760, in offload_to_disk offloaded_W = torch.load(filename, map_location = "cpu", mmap = True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/torch/serialization.py", line 1470, in load raise pickle.UnpicklingError(_get_wo_message(str(e))) from None _pickle.UnpicklingError: Weights only load failed. In PyTorch 2.6, we changed the default value of the weights_only argument in torch.load from False to True. Re-running torch.load with weights_only set to False will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source. Please file an issue with the following so that we can make weights_only=True compatible with your use case: WeightsUnpickler error: Unsupported operand 149 Check the documentation of torch.load to learn more about types accepted by default with weights_only https://pytorch.org/docs/stable/generated/torch.load.html.

(pointllm) qiheng@qiheng-System-Product-Name:~/PointLLM$ python pointllm/eval/eval_objaverse.py --model_name /home/qiheng/PointLLM_7B_v1.2 --task_type captioning --prompt_index 2 Loading validation datasets. Loading anno file from data/anno_data/PointLLM_brief_description_val_200_GT.json. Using conversation_type: ('simple_description',) Before filtering, the dataset size is: 200. After filtering, the dataset size is: 200. Number of simple_description: 200 Done! [INFO] Loading model from local directory: /home/qiheng/PointLLM_7B_v1.2 [ERROR] Failed to load model from local path: Repo id must be in the form 'repo_name' or 'namespace/repo_name': '/home/qiheng/PointLLM_7B_v1.2'. Use repo_type argument if needed. [ERROR] This indicates a critical issue with your local model files. [ERROR] Please ensure all model files are present in the directory. Traceback (most recent call last): File "/home/qiheng/PointLLM/pointllm/eval/eval_objaverse.py", line 283, in <module> main(args) File "/home/qiheng/PointLLM/pointllm/eval/eval_objaverse.py", line 222, in main model, tokenizer, conv = init_model(args) File "/home/qiheng/PointLLM/pointllm/eval/eval_objaverse.py", line 63, in init_model tokenizer = AutoTokenizer.from_pretrained( File "/home/qiheng/anaconda3/envs/pointllm/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py", line 622, in from_pretrained tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs) File "/home/qiheng/anaconda3/envs/pointllm/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py", line 466, in get_tokenizer_config resolved_config_file = cached_file( File "/home/qiheng/anaconda3/envs/pointllm/lib/python3.10/site-packages/transformers/utils/hub.py", line 409, in cached_file resolved_file = hf_hub_download( File "/home/qiheng/anaconda3/envs/pointllm/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 106, in _inner_fn validate_repo_id(arg_value) File "/home/qiheng/anaconda3/envs/pointllm/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 154, in validate_repo_id raise HFValidationError( huggingface_hub.errors.HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/repo_name': '/home/qiheng/PointLLM_7B_v1.2'. Use repo_type argument if needed. (pointllm) qiheng@qiheng-System-Product-Name:~/PointLLM$

最新推荐

recommend-type

langchain4j-1.0.0-beta2.jar中文-英文对照文档.zip

1、压缩文件中包含: 中文-英文对照文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文-英文对照文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

spring-ai-autoconfigure-vector-store-pgvector-1.0.0.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

spring-ai-spring-boot-docker-compose-1.0.0-M6.jar中文-英文对照文档.zip

1、压缩文件中包含: 中文-英文对照文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文-英文对照文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

langchain4j-1.0.0-beta3.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

中小学学校门户网站栏目版块及分工职责表(1).docx

中小学学校门户网站栏目版块及分工职责表(1).docx
recommend-type

Wamp5: 一键配置ASP/PHP/HTML服务器工具

根据提供的文件信息,以下是关于标题、描述和文件列表中所涉及知识点的详细阐述。 ### 标题知识点 标题中提到的是"PHP集成版工具wamp5.rar",这里面包含了以下几个重要知识点: 1. **PHP**: PHP是一种广泛使用的开源服务器端脚本语言,主要用于网站开发。它可以嵌入到HTML中,从而让网页具有动态内容。PHP因其开源、跨平台、面向对象、安全性高等特点,成为最流行的网站开发语言之一。 2. **集成版工具**: 集成版工具通常指的是将多个功能组合在一起的软件包,目的是为了简化安装和配置流程。在PHP开发环境中,这样的集成工具通常包括了PHP解释器、Web服务器以及数据库管理系统等关键组件。 3. **Wamp5**: Wamp5是这类集成版工具的一种,它基于Windows操作系统。Wamp5的名称来源于它包含的主要组件的首字母缩写,即Windows、Apache、MySQL和PHP。这种工具允许开发者快速搭建本地Web开发环境,无需分别安装和配置各个组件。 4. **RAR压缩文件**: RAR是一种常见的文件压缩格式,它以较小的体积存储数据,便于传输和存储。RAR文件通常需要特定的解压缩软件进行解压缩操作。 ### 描述知识点 描述中提到了工具的一个重要功能:“可以自动配置asp/php/html等的服务器, 不用辛辛苦苦的为怎么配置服务器而烦恼”。这里面涵盖了以下知识点: 1. **自动配置**: 自动配置功能意味着该工具能够简化服务器的搭建过程,用户不需要手动进行繁琐的配置步骤,如修改配置文件、启动服务等。这是集成版工具的一项重要功能,极大地降低了初学者的技术门槛。 2. **ASP/PHP/HTML**: 这三种技术是Web开发中常用的组件。ASP (Active Server Pages) 是微软开发的服务器端脚本环境;HTML (HyperText Markup Language) 是用于创建网页的标准标记语言;PHP是服务器端脚本语言。在Wamp5这类集成环境中,可以很容易地对这些技术进行测试和开发,因为它们已经预配置在一起。 3. **服务器**: 在Web开发中,服务器是一个运行Web应用程序并响应客户端请求的软件或硬件系统。常见的服务器软件包括Apache、Nginx等。集成版工具提供了一个本地服务器环境,使得开发者可以在本地测试他们的应用程序。 ### 标签知识点 标签中仅出现了“PHP”一个关键词,这意味着该工具专注于与PHP相关的开发环境配置。 ### 压缩包子文件的文件名称列表知识点 1. **wamp.exe**: 这是Wamp5集成版工具的可执行文件,用户通过运行这个文件,即可启动Wamp5环境,开始进行PHP等相关开发。 2. **使用说明文档.txt**: 通常这样的文本文件包含了软件的安装指南、功能介绍、常见问题解答以及操作教程等内容。它是用户了解和使用软件的重要辅助资料,可以帮助用户快速上手。 ### 总结 Wamp5作为一个PHP集成版工具,为PHP开发者提供了一个便捷的本地开发环境。它通过自动化配置减少了开发者在搭建环境时的麻烦,整合了Web开发的关键组件,从而使得开发者能够专注于代码的编写,而不是环境配置。此外,它还提供了详尽的使用文档,帮助用户理解和运用这一工具,有效地提高了开发效率。对于希望快速入门PHP或需要一个简单易用的本地开发环境的开发者来说,Wamp5是一个非常好的选择。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

sht20温湿度传感器使用什么将上拉电阻和滤波电容引出

<think>好的,我需要解决用户关于SHT20温湿度传感器的上拉电阻和滤波电容的引出方法问题。首先,我得回忆一下SHT20的基本特性和常见电路设计。SHT20是数字传感器,通常使用I2C接口,所以上拉电阻是必须的,用于确保数据线和时钟线的稳定。根据引用[2],SHT10是通过SCK和DATA线与单片机通信,而SHT30在引用[3]中使用I2C协议,需要上拉电阻。虽然用户问的是SHT20,但SHT系列通常设计类似,所以可以推断SHT20也需要类似的上拉电阻配置。通常I2C总线的上拉电阻值在4.7kΩ到10kΩ之间,但具体值可能取决于总线速度和电源电压。需要确认数据手册中的推荐值,但用户可能没有
recommend-type

Delphi仿速达财务软件导航条组件开发教程

Delphi作为一款历史悠久的集成开发环境(IDE),由Embarcadero Technologies公司开发,它使用Object Pascal语言,被广泛应用于Windows平台下的桌面应用程序开发。在Delphi中开发组件是一项核心技术,它允许开发者创建可复用的代码单元,提高开发效率和软件模块化水平。本文将详细介绍如何在Delphi环境下仿制速达财务软件中的导航条组件,这不仅涉及到组件的创建和使用,还会涉及界面设计和事件处理等技术点。 首先,需要了解Delphi组件的基本概念。在Delphi中,组件是一种特殊的对象,它们被放置在窗体(Form)上,可以响应用户操作并进行交互。组件可以是可视的,也可以是不可视的,可视组件在设计时就能在窗体上看到,如按钮、编辑框等;不可视组件则主要用于后台服务,如定时器、数据库连接等。组件的源码可以分为接口部分和实现部分,接口部分描述组件的属性和方法,实现部分包含方法的具体代码。 在开发仿速达财务软件的导航条组件时,我们需要关注以下几个方面的知识点: 1. 组件的继承体系 仿制组件首先需要确定继承体系。在Delphi中,大多数可视组件都继承自TControl或其子类,如TPanel、TButton等。导航条组件通常会继承自TPanel或者TWinControl,这取决于导航条是否需要支持子组件的放置。如果导航条只是单纯的一个显示区域,TPanel即可满足需求;如果导航条上有多个按钮或其他控件,可能需要继承自TWinControl以提供对子组件的支持。 2. 界面设计与绘制 组件的外观和交互是用户的第一印象。在Delphi中,可视组件的界面主要通过重写OnPaint事件来完成。Delphi提供了丰富的绘图工具,如Canvas对象,使用它可以绘制各种图形,如直线、矩形、椭圆等,并且可以对字体、颜色进行设置。对于导航条,可能需要绘制背景图案、分隔线条、选中状态的高亮等。 3. 事件处理 导航条组件需要响应用户的交互操作,例如鼠标点击事件。在Delphi中,可以通过重写组件的OnClick事件来响应用户的点击操作,进而实现导航条的导航功能。如果导航条上的项目较多,还可能需要考虑使用滚动条,让更多的导航项能够显示在窗体上。 4. 用户自定义属性和方法 为了使组件更加灵活和强大,开发者通常会为组件添加自定义的属性和方法。在导航条组件中,开发者可能会添加属性来定义按钮个数、按钮文本、按钮位置等;同时可能会添加方法来处理特定的事件,如自动调整按钮位置以适应不同的显示尺寸等。 5. 数据绑定和状态同步 在财务软件中,导航条往往需要与软件其他部分的状态进行同步。例如,用户当前所处的功能模块会影响导航条上相应项目的选中状态。这通常涉及到数据绑定技术,Delphi支持组件间的属性绑定,通过数据绑定可以轻松实现组件状态的同步。 6. 导航条组件的封装和发布 开发完毕后,组件需要被封装成独立的单元供其他项目使用。封装通常涉及将组件源码保存为pas文件,并在设计时能够在组件面板中找到。发布组件可能还需要编写相应的安装包和使用文档,方便其他开发者安装和使用。 7. Delphi IDE的支持 Delphi IDE提供了组件面板编辑器(Component Palette),允许开发者将开发好的组件添加到组件面板中。在组件面板编辑器中,可以自定义组件的图标和分类,使得组件在Delphi中的使用更为便捷。 通过以上的知识点梳理,可以看出Delphi仿速达导航条组件的开发涉及到的不仅仅是简单的代码编写,还涉及到用户界面设计、事件驱动编程、组件封装等多个方面。掌握这些知识点,对于一名Delphi开发者而言,是十分重要的。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为