flag_noPSD = 0 if (p_obj.get('S') == None).any(): S = gen_PSD(p_obj) p_obj['S'] = S flag_noPSD = 1 MVx = np.real(np.fft.ifft2(p_obj['S'] * np.random.randn(2 * p_obj['N'], 2 * p_obj['N']))) * np.sqrt(2) * 2 * p_obj['N'] * (p_obj['L'] / p_obj['delta0']) MVx = MVx[round(p_obj['N'] / 2) :2 * p_obj['N'] - round(p_obj['N'] / 2), 0: p_obj['N']] #MVx = 1 / p_obj['scaling'] * MVx[round(p_obj['N'] / 2):2 * p_obj['N'] - round(p_obj['N'] / 2), 0: p_obj['N']] MVy = np.real(np.fft.ifft2(p_obj['S'] * np.random.randn(2 * p_obj['N'], 2 * p_obj['N']))) * np.sqrt(2) * 2 * p_obj['N'] * (p_obj['L'] / p_obj['delta0']) MVy = MVy[0:p_obj['N'], round(p_obj['N'] / 2): 2 * p_obj['N'] - round(p_obj['N'] / 2)] #MVy = 1 / p_obj['scaling'] * MVy[0:p_obj['N'], round(p_obj['N'] / 2): 2 * p_obj['N'] - round(p_obj['N'] / 2)] img_ = motion_compensate(img, MVx - np.mean(MVx), MVy - np.mean(MVy), 0.5) #plt.quiver(MVx[::10,::10], MVy[::10,::10], scale=60) #plt.show() if flag_noPSD == 1: return img_, p_obj else: return img_, p_obj
时间: 2023-06-25 08:06:24 浏览: 151
这段代码看起来像是用来进行图像运动补偿的。首先检查输入的参数p_obj中是否有PSD(Spectral Density),如果没有则生成一个PSD。生成MVx和MVy,然后对输入的图像进行运动补偿,得到补偿后的图像img_。最后根据是否生成了PSD来返回img_和p_obj或仅仅返回img_和p_obj。
阅读全文
相关推荐


















