# SPDX-License-Identifier: GPL-2.0 obj-$(CONFIG_DEVICE_MODULES_VIRTIO_VSOCKETS) += vmw_vsock_virtio_transport.o vmw_vsock_virtio_transport-y += virtio_transport.o af_vsockx-objs := af_vsock.o gki_missing_symbols.o vmw_vsockx_virtio_transport_common-objs := virtio_transport_common.o obj-m += af_vsockx.o obj-m += vmw_vsockx_virtio_transport_common.o

时间: 2025-07-22 09:49:29 AIGC 浏览: 29
<think>我们正在讨论Linux内核模块配置,特别是与vsock和virtio相关的配置。用户询问的是`CONFIG_DEVICE_MODULES_VIRTIO_VSOCKETS`和vsock的编译规则。 首先,我们需要明确:在Linux内核中,配置选项通常以`CONFIG_`为前缀。但是,我并没有找到名为`CONFIG_DEVICE_MODULES_VIRTIO_VSOCKETS`的配置选项。这可能是一个用户自定义的配置项或者用户记错了名字。通常,与virtio vsock相关的配置选项是`CONFIG_VIRTIO_VSOCKETS`和`CONFIG_VSOCKETS`。 在Linux内核中,vsock(Virtual Sockets)是一种用于虚拟机和宿主机之间或者虚拟机之间通信的套接字。virtio是虚拟化I/O的标准,因此`virtio_vsock`是vsock的一种实现,它使用virtio作为传输层。 让我们梳理一下相关的配置选项: 1. `CONFIG_VSOCKETS`: 这个配置选项启用vsock核心模块,它提供了vsock套接字的通用支持。 2. `CONFIG_VIRTIO_VSOCKETS`: 这个配置选项启用基于virtio的vsock传输模块。它依赖于`CONFIG_VSOCKETS`和`CONFIG_VIRTIO`。 通常,这些配置选项在内核配置中可以通过以下方式找到: - 在`make menuconfig`等配置工具中,它们位于: ``` Device Drivers ---> [*] Network device support ---> <*> Virtio network driver (EXPERIMENTAL) [*] Virtio drivers ---> <*> Virtio Sockets Support ``` 或者更具体的路径可能是: ``` Networking support ---> Networking options ---> [*] Virtual Socket protocol ``` 然后,在`Device Drivers`中: ``` Virtio drivers ---> <*> Virtio Sockets Support ``` 注意:具体路径可能因内核版本而异。 关于编译规则: - 当配置为内置(`=y`)时,这些模块会直接编译进内核映像(vmlinux)中。 - 当配置为模块(`=m`)时,它们会被编译成可加载的内核模块(.ko文件)。 对于`CONFIG_VSOCKETS`和`CONFIG_VIRTIO_VSOCKETS`,如果设置为模块,那么编译后会产生: - `vsock.ko`(位于`net/vsock/`目录) - `virtio_vsock.ko`(位于`drivers/virtio/`目录) 用户提到的`CONFIG_DEVICE_MODULES_VIRTIO_VSOCKETS`可能是一个拼写错误或者是一个特定于某个发行版的配置项。在标准内核中,我们使用`CONFIG_VIRTIO_VSOCKETS`。 因此,在配置内核时,我们需要确保: 1. 启用`CONFIG_VSOCKETS`(作为内置或模块) 2. 启用`CONFIG_VIRTIO_VSOCKETS`(作为内置或模块) 另外,为了使用vsock,还需要在用户空间有相应的支持(如`AF_VSOCK`地址族的支持),这通常需要用户空间工具(如`vsock`工具)或者应用程序使用vsock套接字API。 编译规则: - 当配置好内核后,使用`make`命令编译内核和模块。 - 如果配置为模块,则使用`make modules`编译模块,然后使用`make modules_install`安装模块。 总结步骤: 1. 配置内核:确保`CONFIG_VSOCKETS`和`CONFIG_VIRTIO_VSOCKETS`被设置为`y`(内置)或`m`(模块)。 2. 编译内核和模块。 3. 安装内核和模块(如果需要)。 4. 加载模块(如果是模块方式):使用`modprobe`命令加载`vsock`和`virtio_vsock`。 注意:在较新的内核中,`virtio_vsock`可能被拆分为多个模块,但基本概念相同。 如果用户是在构建自定义内核,建议检查内核配置文件中(通常是`.config`文件)是否有正确的设置。 相关问题: 1. 如何检查当前内核是否启用了vsock和virtio_vsock? 2. 如何加载virtio_vsock模块? 3. 在用户空间如何使用vsock进行通信?</think>### Linux内核模块配置:CONFIG_VIRTIO_VSOCKETS 与 vsock 编译规则 #### 一、核心配置项解析 1. **`CONFIG_VSOCKETS` (必需基础)** 启用虚拟套接字(Virtual Sockets)框架,位于: ``` Networking support → Networking options → Virtual Socket protocol ``` 编译结果:`vsock.ko` 模块 (路径:`net/vsock/`) 2. **`CONFIG_VIRTIO_VSOCKETS` (virtio传输层)** 提供基于virtio的vsock实现,位于: ``` Device Drivers → Virtio drivers → Virtio Sockets Support ``` 编译结果:`virtio_vsock.ko` 模块 (路径:`drivers/virtio/`)[^1] 3. **依赖关系**: - `CONFIG_VIRTIO` (virtio核心驱动) - `CONFIG_VIRTIO_RING` (virtio环形缓冲区) - 依赖关系验证命令: ```bash make ARCH=x86_64 menuconfig # 搜索 CONFIG_VIRTIO_VSOCKETS ``` #### 二、编译规则详解 1. **配置生成** (以x86_64为例): ```bash cd /path/to/linux-src make ARCH=x86_64 defconfig # 生成默认配置 make ARCH=x86_64 menuconfig # 启用 VSOCKETS 和 VIRTIO_VSOCKETS ``` 2. **模块编译命令**: ```bash make ARCH=x86_64 modules # 编译所有模块 # 单独编译 vsock 模块 make ARCH=x86_64 M=net/vsock # 单独编译 virtio_vsock 模块 make ARCH=x86_64 M=drivers/virtio ``` 3. **安装与加载**: ```bash sudo make modules_install # 安装到 /lib/modules/$(uname -r)/ sudo modprobe vsock # 加载核心模块 sudo modprobe virtio_vsock # 加载virtio传输模块[^3] ``` #### 三、配置验证方法 1. **检查内核配置**: ```bash zcat /proc/config.gz | grep VSOCK # 应输出: CONFIG_VSOCKETS=y CONFIG_VIRTIO_VSOCKETS=m ``` 2. **查看加载模块**: ```bash lsmod | grep vsock # 输出示例: virtio_vsock 49152 0 vsock 45056 1 virtio_vsock ``` #### 四、典型应用场景 1. **主机-虚拟机通信**: 通过AF_VSOCK地址族实现零拷贝通信(如QEMU/KVM) 2. **容器间通信**: 在容器网络中使用vsock替代TCP/IP(如Firecracker微VM) 3. **云原生基础设施**: 用于serverless环境中的轻量级通信[^2] --- ### 相关问题 1. **如何在已运行的内核中动态加载`virtio_vsock`模块?** 2. **当`CONFIG_VIRTIO_VSOCKETS`编译为内置模块(=`y`)时,对内核启动过程有什么影响?** 3. **vsock通信与传统TCP/IP通信在性能指标上有哪些关键差异?** 4. **调试vsock模块时常用的Linux内核工具和技术有哪些?** [^1]: 内核模块路径参考DRM模块安装规范 [^2]: QEMU虚拟化环境中需启用`-device vhost-vsock-pci`选项 [^3]: 模块加载依赖关系由`depmod`自动处理
阅读全文

相关推荐

现在又Kbuild文件如下TOP := $(srctree)/.. CAMERA_ROOT=$(TOP)/vendor/oplus/kernel/camera ifeq ($(DEVICE_MODULES_PATH),) DEVICE_MODULES_PATH = $(srctree) else LINUXINCLUDE := $(DEVCIE_MODULES_INCLUDE) $(LINUXINCLUDE) endif LINUX_INC += -Iinclude/linux \ -Iinclude/linux/drm \ -Iinclude/linux/gunyah \ -Iinclude/linux/gunyah \ -Iinclude CDEFINES += -DANI_LITTLE_BYTE_ENDIAN \ -DANI_LITTLE_BIT_ENDIAN \ -DDOT11F_LITTLE_ENDIAN_HOST \ -DANI_COMPILER_TYPE_GCC \ -DANI_OS_TYPE_ANDROID=6 \ -DPTT_SOCK_SVC_ENABLE \ -Wall\ -Werror\ -D__linux__ KBUILD_CPPFLAGS += $(CDEFINES) ifneq ($(wildcard $(CAMERA_ROOT)/config/camera.conf),) include $(CAMERA_ROOT)/config/camera.conf LINUX_INC += -include $(CAMERA_ROOT)/config/camera.h endif ccflags-y += $(LINUX_INC) ifeq ($(call cc-option-yn, -Wmaybe-uninitialized),y) EXTRA_CFLAGS += -Wmaybe-uninitialized endif ifeq ($(call cc-option-yn, -Wheader-guard),y) EXTRA_CFLAGS += -Wheader-guard endif obj-m += regulator/ obj-m += lens/ obj-m += flashlight/v4l2/ obj-m += thermal/ 还有如下Makefile # SPDX-License-Identifier: GPL-2.0-only # Copyright (C) 2018-2022 Oplus. All rights reserved. ifneq ($(wildcard $(KERNEL_SRC)/android/abi_gki_aarch64.stg),) BOOT_MIXED_BUILD=true endif KBUILD_OPTIONS+= DFT_ROOT=$(KERNEL_SRC)/$(M) KBUILD_OPTIONS += MODNAME?=dft_dlkm ifneq ($(wildcard $(KERNEL_SRC)/$(DEVICE_MODULES_REL_DIR)/Makefile.include),) include $(KERNEL_SRC)/$(DEVICE_MODULES_REL_DIR)/Makefile.include endif all: EXTRA_SYMBOLS += $(extra_symbols) all: $(MAKE) -C $(KERNEL_SRC) M=$(M) modules $(KBUILD_OPTIONS) KBUILD_EXTRA_SYMBOLS="$(EXTRA_SYMBOLS)" modules_install: $(MAKE) INSTALL_MOD_STRIP=1 -C $(KERNEL_SRC) M=$(M) modules_install %: $(MAKE) -C $(KERNEL_SRC) M=$(M) $@ $(KBUILD_OPTIONS) clean: rm -f *.o *.ko *.mod.c *.mod.o *~ .*.cmd Module.symvers rm -rf .tmp_versions 向我逐行解释这两个文件

// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2024 MediaTek Inc. /* * virtio transport for vsock * * Copyright (C) 2013-2015 Red Hat, Inc. * Author: Asias He <[email protected]> * Stefan Hajnoczi <[email protected]> * * Some of the code is take from Gerd Hoffmann <[email protected]>'s * early virtio-vsock proof-of-concept bits. */ #include #include #include #include #include #include #include #include #include #include <net/sock.h> #include #include <net/af_vsock.h> #include #include <uapi/linux/sched/types.h> #include #include static struct workqueue_struct *virtio_vsock_workqueue; static struct virtio_vsock __rcu *the_virtio_vsock; static DEFINE_MUTEX(the_virtio_vsock_mutex); /* protects the_virtio_vsock */ static struct virtio_transport virtio_transport; /* forward declaration */ struct virtio_vsock { struct virtio_device *vdev; struct virtqueue *vqs[VSOCK_VQ_MAX]; /* Virtqueue processing is deferred to a workqueue */ struct work_struct tx_work; struct work_struct rx_work; struct work_struct event_work; /* The following fields are protected by tx_lock. vqs[VSOCK_VQ_TX] * must be accessed with tx_lock held. */ struct mutex tx_lock; bool tx_run; struct work_struct send_pkt_work; spinlock_t send_pkt_list_lock; struct list_head send_pkt_list; atomic_t queued_replies; /* The following fields are protected by rx_lock. vqs[VSOCK_VQ_RX] * must be accessed with rx_lock held. */ struct mutex rx_lock; bool rx_run; int rx_buf_nr; int rx_buf_max_nr; /* The following fields are protected by event_lock. * vqs[VSOCK_VQ_EVENT] must be accessed with event_lock held. */ struct mutex event_lock; bool event_run; struct virtio_vsock_event event_list[8]; u32 guest_cid; bool seqpacket_allow; int num_hwirq_vq; int kick_irq[VSOCK_VQ_MAX]; int notify_irq[VSOCK_VQ_MAX]; }; #include #define SMC_FC_NBL_VHM_REQ 0xB4000100 #define SMC_HYP_SECURE_ID 1 /* SMC call for hypervisor */ static void virtio_vsock_hw_irq_notify(uint32_t irq) { struct arm_smccc_res res; unsigned long r7 = SMC_HYP_SECURE_ID << 16; arm_smccc_smc(SMC_FC_NBL_VHM_REQ, 0, irq, 0, 0, 0, 0, r7, &res); } static void virtio_vsock_notify(struct virtio_vsock *vsock, int qidx) { struct virtqueue *vq = vsock->vqs[qidx]; int notify_irq = vsock->notify_irq[qidx]; if (notify_irq) { if (virtqueue_kick_prepare(vq)) virtio_vsock_hw_irq_notify(notify_irq); } else { virtqueue_kick(vq); } } static u32 virtio_transport_get_local_cid(void) { struct virtio_vsock *vsock; u32 ret; rcu_read_lock(); vsock = rcu_dereference(the_virtio_vsock); if (!vsock) { ret = VMADDR_CID_ANY; goto out_rcu; } ret = vsock->guest_cid; out_rcu: rcu_read_unlock(); return ret; } static void virtio_transport_send_pkt_work(struct work_struct *work) { struct virtio_vsock *vsock = container_of(work, struct virtio_vsock, send_pkt_work); struct virtqueue *vq; bool added = false; bool restart_rx = false; mutex_lock(&vsock->tx_lock); if (!vsock->tx_run) goto out; vq = vsock->vqs[VSOCK_VQ_TX]; for (;;) { struct virtio_vsock_pkt *pkt; struct scatterlist hdr, buf, *sgs[2]; int ret, in_sg = 0, out_sg = 0; bool reply; spin_lock_bh(&vsock->send_pkt_list_lock); if (list_empty(&vsock->send_pkt_list)) { spin_unlock_bh(&vsock->send_pkt_list_lock); break; } pkt = list_first_entry(&vsock->send_pkt_list, struct virtio_vsock_pkt, list); list_del_init(&pkt->list); spin_unlock_bh(&vsock->send_pkt_list_lock); virtio_transport_deliver_tap_pkt(pkt); reply = pkt->reply; sg_init_one(&hdr, &pkt->hdr, sizeof(pkt->hdr)); sgs[out_sg++] = &hdr; if (pkt->buf) { sg_init_one(&buf, pkt->buf, pkt->len); sgs[out_sg++] = &buf; } ret = virtqueue_add_sgs(vq, sgs, out_sg, in_sg, pkt, GFP_KERNEL); /* Usually this means that there is no more space available in * the vq */ if (ret < 0) { spin_lock_bh(&vsock->send_pkt_list_lock); list_add(&pkt->list, &vsock->send_pkt_list); spin_unlock_bh(&vsock->send_pkt_list_lock); break; } if (reply) { struct virtqueue *rx_vq = vsock->vqs[VSOCK_VQ_RX]; int val; val = atomic_dec_return(&vsock->queued_replies); /* Do we now have resources to resume rx processing? */ if (val + 1 == virtqueue_get_vring_size(rx_vq)) restart_rx = true; } added = true; } if (added) virtio_vsock_notify(vsock, VSOCK_VQ_TX); out: mutex_unlock(&vsock->tx_lock); if (restart_rx) queue_work(virtio_vsock_workqueue, &vsock->rx_work); } static int virtio_transport_send_pkt(struct virtio_vsock_pkt *pkt) { struct virtio_vsock *vsock; int len = pkt->len; rcu_read_lock(); vsock = rcu_dereference(the_virtio_vsock); if (!vsock) { virtio_transport_free_pkt(pkt); len = -ENODEV; goto out_rcu; } if (le64_to_cpu(pkt->hdr.dst_cid) == vsock->guest_cid) { virtio_transport_free_pkt(pkt); len = -ENODEV; goto out_rcu; } if (pkt->reply) atomic_inc(&vsock->queued_replies); spin_lock_bh(&vsock->send_pkt_list_lock); list_add_tail(&pkt->list, &vsock->send_pkt_list); spin_unlock_bh(&vsock->send_pkt_list_lock); queue_work(virtio_vsock_workqueue, &vsock->send_pkt_work); out_rcu: rcu_read_unlock(); return len; } static int virtio_transport_cancel_pkt(struct vsock_sock *vsk) { struct virtio_vsock *vsock; struct virtio_vsock_pkt *pkt, *n; int cnt = 0, ret; LIST_HEAD(freeme); rcu_read_lock(); vsock = rcu_dereference(the_virtio_vsock); if (!vsock) { ret = -ENODEV; goto out_rcu; } spin_lock_bh(&vsock->send_pkt_list_lock); list_for_each_entry_safe(pkt, n, &vsock->send_pkt_list, list) { if (pkt->vsk != vsk) continue; list_move(&pkt->list, &freeme); } spin_unlock_bh(&vsock->send_pkt_list_lock); list_for_each_entry_safe(pkt, n, &freeme, list) { if (pkt->reply) cnt++; list_del(&pkt->list); virtio_transport_free_pkt(pkt); } if (cnt) { struct virtqueue *rx_vq = vsock->vqs[VSOCK_VQ_RX]; int new_cnt; new_cnt = atomic_sub_return(cnt, &vsock->queued_replies); if (new_cnt + cnt >= virtqueue_get_vring_size(rx_vq) && new_cnt < virtqueue_get_vring_size(rx_vq)) queue_work(virtio_vsock_workqueue, &vsock->rx_work); } ret = 0; out_rcu: rcu_read_unlock(); return ret; } static void virtio_vsock_rx_fill(struct virtio_vsock *vsock) { int buf_len = VIRTIO_VSOCK_DEFAULT_RX_BUF_SIZE; struct virtio_vsock_pkt *pkt; struct scatterlist hdr, buf, *sgs[2]; struct virtqueue *vq; int ret; vq = vsock->vqs[VSOCK_VQ_RX]; do { pkt = kzalloc(sizeof(*pkt), GFP_KERNEL); if (!pkt) break; pkt->buf = kmalloc(buf_len, GFP_KERNEL); if (!pkt->buf) { virtio_transport_free_pkt(pkt); break; } pkt->buf_len = buf_len; pkt->len = buf_len; sg_init_one(&hdr, &pkt->hdr, sizeof(pkt->hdr)); sgs[0] = &hdr; sg_init_one(&buf, pkt->buf, buf_len); sgs[1] = &buf; ret = virtqueue_add_sgs(vq, sgs, 0, 2, pkt, GFP_KERNEL); if (ret) { virtio_transport_free_pkt(pkt); break; } vsock->rx_buf_nr++; } while (vq->num_free); if (vsock->rx_buf_nr > vsock->rx_buf_max_nr) vsock->rx_buf_max_nr = vsock->rx_buf_nr; virtio_vsock_notify(vsock, VSOCK_VQ_RX); } static void virtio_transport_tx_work(struct work_struct *work) { struct virtio_vsock *vsock = container_of(work, struct virtio_vsock, tx_work); struct virtqueue *vq; bool added = false; vq = vsock->vqs[VSOCK_VQ_TX]; mutex_lock(&vsock->tx_lock); if (!vsock->tx_run) goto out; do { struct virtio_vsock_pkt *pkt; unsigned int len; virtqueue_disable_cb(vq); while ((pkt = virtqueue_get_buf(vq, &len)) != NULL) { virtio_transport_free_pkt(pkt); added = true; } } while (!virtqueue_enable_cb(vq)); out: mutex_unlock(&vsock->tx_lock); if (added) queue_work(virtio_vsock_workqueue, &vsock->send_pkt_work); } /* Is there space left for replies to rx packets? */ static bool virtio_transport_more_replies(struct virtio_vsock *vsock) { struct virtqueue *vq = vsock->vqs[VSOCK_VQ_RX]; int val; smp_rmb(); /* paired with atomic_inc() and atomic_dec_return() */ val = atomic_read(&vsock->queued_replies); return val < virtqueue_get_vring_size(vq); } /* event_lock must be held */ static int virtio_vsock_event_fill_one(struct virtio_vsock *vsock, struct virtio_vsock_event *event) { struct scatterlist sg; struct virtqueue *vq; vq = vsock->vqs[VSOCK_VQ_EVENT]; sg_init_one(&sg, event, sizeof(*event)); return virtqueue_add_inbuf(vq, &sg, 1, event, GFP_KERNEL); } /* event_lock must be held */ static void virtio_vsock_event_fill(struct virtio_vsock *vsock) { size_t i; for (i = 0; i < ARRAY_SIZE(vsock->event_list); i++) { struct virtio_vsock_event *event = &vsock->event_list[i]; virtio_vsock_event_fill_one(vsock, event); } virtio_vsock_notify(vsock, VSOCK_VQ_EVENT); } static void virtio_vsock_reset_sock(struct sock *sk) { /* vmci_transport.c doesn't take sk_lock here either. At least we're * under vsock_table_lock so the sock cannot disappear while we're * executing. */ sk->sk_state = TCP_CLOSE; sk->sk_err = ECONNRESET; sk_error_report(sk); } static void virtio_vsock_update_guest_cid(struct virtio_vsock *vsock) { struct virtio_device *vdev = vsock->vdev; __le64 guest_cid; vdev->config->get(vdev, offsetof(struct virtio_vsock_config, guest_cid), &guest_cid, sizeof(guest_cid)); vsock->guest_cid = le64_to_cpu(guest_cid); } /* event_lock must be held */ static void virtio_vsock_event_handle(struct virtio_vsock *vsock, struct virtio_vsock_event *event) { switch (le32_to_cpu(event->id)) { case VIRTIO_VSOCK_EVENT_TRANSPORT_RESET: virtio_vsock_update_guest_cid(vsock); vsock_for_each_connected_socket(&virtio_transport.transport, virtio_vsock_reset_sock); break; } } static void virtio_transport_event_work(struct work_struct *work) { struct virtio_vsock *vsock = container_of(work, struct virtio_vsock, event_work); struct virtqueue *vq; vq = vsock->vqs[VSOCK_VQ_EVENT]; mutex_lock(&vsock->event_lock); if (!vsock->event_run) goto out; do { struct virtio_vsock_event *event; unsigned int len; virtqueue_disable_cb(vq); while ((event = virtqueue_get_buf(vq, &len)) != NULL) { if (len == sizeof(*event)) virtio_vsock_event_handle(vsock, event); virtio_vsock_event_fill_one(vsock, event); } } while (!virtqueue_enable_cb(vq)); virtio_vsock_notify(vsock, VSOCK_VQ_EVENT); out: mutex_unlock(&vsock->event_lock); } static void virtio_vsock_event_done(struct virtqueue *vq) { struct virtio_vsock *vsock = vq->vdev->priv; if (!vsock) return; queue_work(virtio_vsock_workqueue, &vsock->event_work); } static void virtio_vsock_tx_done(struct virtqueue *vq) { struct virtio_vsock *vsock = vq->vdev->priv; if (!vsock) return; queue_work(virtio_vsock_workqueue, &vsock->tx_work); } static void virtio_vsock_rx_done(struct virtqueue *vq) { struct virtio_vsock *vsock = vq->vdev->priv; if (!vsock) return; queue_work(virtio_vsock_workqueue, &vsock->rx_work); } static bool virtio_transport_seqpacket_allow(u32 remote_cid); static struct virtio_transport virtio_transport = { .transport = { .module = THIS_MODULE, .get_local_cid = virtio_transport_get_local_cid, .init = virtio_transport_do_socket_init, .destruct = virtio_transport_destruct, .release = virtio_transport_release, .connect = virtio_transport_connect, .shutdown = virtio_transport_shutdown, .cancel_pkt = virtio_transport_cancel_pkt, .dgram_bind = virtio_transport_dgram_bind, .dgram_dequeue = virtio_transport_dgram_dequeue, .dgram_enqueue = virtio_transport_dgram_enqueue, .dgram_allow = virtio_transport_dgram_allow, .stream_dequeue = virtio_transport_stream_dequeue, .stream_enqueue = virtio_transport_stream_enqueue, .stream_has_data = virtio_transport_stream_has_data, .stream_has_space = virtio_transport_stream_has_space, .stream_rcvhiwat = virtio_transport_stream_rcvhiwat, .stream_is_active = virtio_transport_stream_is_active, .stream_allow = virtio_transport_stream_allow, .seqpacket_dequeue = virtio_transport_seqpacket_dequeue, .seqpacket_enqueue = virtio_transport_seqpacket_enqueue, .seqpacket_allow = virtio_transport_seqpacket_allow, .seqpacket_has_data = virtio_transport_seqpacket_has_data, .notify_poll_in = virtio_transport_notify_poll_in, .notify_poll_out = virtio_transport_notify_poll_out, .notify_recv_init = virtio_transport_notify_recv_init, .notify_recv_pre_block = virtio_transport_notify_recv_pre_block, .notify_recv_pre_dequeue = virtio_transport_notify_recv_pre_dequeue, .notify_recv_post_dequeue = virtio_transport_notify_recv_post_dequeue, .notify_send_init = virtio_transport_notify_send_init, .notify_send_pre_block = virtio_transport_notify_send_pre_block, .notify_send_pre_enqueue = virtio_transport_notify_send_pre_enqueue, .notify_send_post_enqueue = virtio_transport_notify_send_post_enqueue, .notify_buffer_size = virtio_transport_notify_buffer_size, }, .send_pkt = virtio_transport_send_pkt, }; static bool virtio_transport_seqpacket_allow(u32 remote_cid) { struct virtio_vsock *vsock; bool seqpacket_allow; seqpacket_allow = false; rcu_read_lock(); vsock = rcu_dereference(the_virtio_vsock); if (vsock) seqpacket_allow = vsock->seqpacket_allow; rcu_read_unlock(); return seqpacket_allow; } static void virtio_transport_rx_work(struct work_struct *work) { struct virtio_vsock *vsock = container_of(work, struct virtio_vsock, rx_work); struct virtqueue *vq; vq = vsock->vqs[VSOCK_VQ_RX]; mutex_lock(&vsock->rx_lock); if (!vsock->rx_run) goto out; do { virtqueue_disable_cb(vq); for (;;) { struct virtio_vsock_pkt *pkt; unsigned int len; if (!virtio_transport_more_replies(vsock)) { /* Stop rx until the device processes already * pending replies. Leave rx virtqueue * callbacks disabled. */ goto out; } pkt = virtqueue_get_buf(vq, &len); if (!pkt) { break; } vsock->rx_buf_nr--; /* Drop short/long packets */ if (unlikely(len < sizeof(pkt->hdr) || len > sizeof(pkt->hdr) + pkt->len)) { virtio_transport_free_pkt(pkt); continue; } pkt->len = len - sizeof(pkt->hdr); virtio_transport_deliver_tap_pkt(pkt); virtio_transport_recv_pkt(&virtio_transport, pkt); } } while (!virtqueue_enable_cb(vq)); out: if (vsock->rx_buf_nr < vsock->rx_buf_max_nr / 2) virtio_vsock_rx_fill(vsock); mutex_unlock(&vsock->rx_lock); } typedef irqreturn_t (*irq_handler_t)(int irq, void *data); static irqreturn_t virtio_vsock_tx_irq_handler(int irq, void *data) { struct virtio_vsock *vsock = data; queue_work(virtio_vsock_workqueue, &vsock->tx_work); return IRQ_HANDLED; } static irqreturn_t virtio_vsock_rx_irq_handler(int irq, void *data) { struct virtio_vsock *vsock = data; queue_work(virtio_vsock_workqueue, &vsock->rx_work); return IRQ_HANDLED; } static irqreturn_t virtio_vsock_event_irq_handler(int irq, void *data) { struct virtio_vsock *vsock = data; queue_work(virtio_vsock_workqueue, &vsock->event_work); return IRQ_HANDLED; } static void virtio_vsock_init_hw_irq(struct virtio_vsock *vsock, irq_handler_t handlers[], size_t num_vq) { struct device_node *irq_node; struct irq_desc *desc; int irq; int ret; int vq_idx; cpumask_t mask; cpumask_clear(&mask); cpumask_set_cpu(5, &mask); irq_node = of_find_compatible_node(NULL, NULL, "nbl,virtio_vsock_irq"); if (irq_node == NULL) { return; } vsock->num_hwirq_vq = num_vq; for (vq_idx = 0; vq_idx < num_vq; vq_idx++) { irq = of_irq_get(irq_node, vq_idx * 2 + 1); BUG_ON(irq == 0); ret = request_irq(irq, handlers[vq_idx], IRQF_TRIGGER_HIGH | IRQF_NO_SUSPEND, "vritio-vsock", vsock); BUG_ON(ret != 0); vsock->kick_irq[vq_idx] = ret; irq_set_affinity_hint(irq, &mask); irq = of_irq_get(irq_node, vq_idx * 2); BUG_ON(irq == 0); desc = irq_to_desc(irq); BUG_ON(desc == NULL); vsock->notify_irq[vq_idx] = desc->irq_data.hwirq; } } static void virtio_vsock_release_hw_irq(struct virtio_vsock *vsock) { int vq_idx; for (vq_idx = 0; vq_idx < vsock->num_hwirq_vq; vq_idx++) { free_irq(vsock->kick_irq[vq_idx], vsock); } } static int virtio_vsock_vqs_init(struct virtio_vsock *vsock) { struct virtio_device *vdev = vsock->vdev; static const char * const names[] = { "rx", "tx", "event", }; vq_callback_t *callbacks[] = { virtio_vsock_rx_done, virtio_vsock_tx_done, virtio_vsock_event_done, }; irq_handler_t hwirq_vq_handlers[] = { virtio_vsock_rx_irq_handler, virtio_vsock_tx_irq_handler, virtio_vsock_event_irq_handler, }; int ret; ret = virtio_find_vqs(vdev, VSOCK_VQ_MAX, vsock->vqs, callbacks, names, NULL); if (ret < 0) return ret; virtio_vsock_update_guest_cid(vsock); virtio_vsock_init_hw_irq(vsock, hwirq_vq_handlers, /*num_vq=*/2); virtio_device_ready(vdev); return 0; } static void virtio_vsock_vqs_start(struct virtio_vsock *vsock) { mutex_lock(&vsock->tx_lock); vsock->tx_run = true; mutex_unlock(&vsock->tx_lock); mutex_lock(&vsock->rx_lock); virtio_vsock_rx_fill(vsock); vsock->rx_run = true; mutex_unlock(&vsock->rx_lock); mutex_lock(&vsock->event_lock); virtio_vsock_event_fill(vsock); vsock->event_run = true; mutex_unlock(&vsock->event_lock); /* virtio_transport_send_pkt() can queue packets once * the_virtio_vsock is set, but they won't be processed until * vsock->tx_run is set to true. We queue vsock->send_pkt_work * when initialization finishes to send those packets queued * earlier. * We don't need to queue the other workers (rx, event) because * as long as we don't fill the queues with empty buffers, the * host can't send us any notification. */ queue_work(virtio_vsock_workqueue, &vsock->send_pkt_work); } static void virtio_vsock_vqs_del(struct virtio_vsock *vsock) { struct virtio_device *vdev = vsock->vdev; struct virtio_vsock_pkt *pkt; /* Reset all connected sockets when the VQs disappear */ vsock_for_each_connected_socket(&virtio_transport.transport, virtio_vsock_reset_sock); /* Stop all work handlers to make sure no one is accessing the device, * so we can safely call virtio_reset_device(). */ mutex_lock(&vsock->rx_lock); vsock->rx_run = false; mutex_unlock(&vsock->rx_lock); mutex_lock(&vsock->tx_lock); vsock->tx_run = false; mutex_unlock(&vsock->tx_lock); mutex_lock(&vsock->event_lock); vsock->event_run = false; mutex_unlock(&vsock->event_lock); /* Flush all device writes and interrupts, device will not use any * more buffers. */ virtio_reset_device(vdev); mutex_lock(&vsock->rx_lock); while ((pkt = virtqueue_detach_unused_buf(vsock->vqs[VSOCK_VQ_RX]))) virtio_transport_free_pkt(pkt); mutex_unlock(&vsock->rx_lock); mutex_lock(&vsock->tx_lock); while ((pkt = virtqueue_detach_unused_buf(vsock->vqs[VSOCK_VQ_TX]))) virtio_transport_free_pkt(pkt); mutex_unlock(&vsock->tx_lock); spin_lock_bh(&vsock->send_pkt_list_lock); while (!list_empty(&vsock->send_pkt_list)) { pkt = list_first_entry(&vsock->send_pkt_list, struct virtio_vsock_pkt, list); list_del(&pkt->list); virtio_transport_free_pkt(pkt); } spin_unlock_bh(&vsock->send_pkt_list_lock); virtio_vsock_release_hw_irq(vsock); /* Delete virtqueues and flush outstanding callbacks if any */ vdev->config->del_vqs(vdev); } static int virtio_vsock_probe(struct virtio_device *vdev) { struct virtio_vsock *vsock = NULL; int ret; ret = mutex_lock_interruptible(&the_virtio_vsock_mutex); if (ret) return ret; /* Only one virtio-vsock device per guest is supported */ if (rcu_dereference_protected(the_virtio_vsock, lockdep_is_held(&the_virtio_vsock_mutex))) { ret = -EBUSY; goto out; } vsock = kzalloc(sizeof(*vsock), GFP_KERNEL); if (!vsock) { ret = -ENOMEM; goto out; } vsock->vdev = vdev; vsock->rx_buf_nr = 0; vsock->rx_buf_max_nr = 0; atomic_set(&vsock->queued_replies, 0); mutex_init(&vsock->tx_lock); mutex_init(&vsock->rx_lock); mutex_init(&vsock->event_lock); spin_lock_init(&vsock->send_pkt_list_lock); INIT_LIST_HEAD(&vsock->send_pkt_list); INIT_WORK(&vsock->rx_work, virtio_transport_rx_work); INIT_WORK(&vsock->tx_work, virtio_transport_tx_work); INIT_WORK(&vsock->event_work, virtio_transport_event_work); INIT_WORK(&vsock->send_pkt_work, virtio_transport_send_pkt_work); if (virtio_has_feature(vdev, VIRTIO_VSOCK_F_SEQPACKET)) vsock->seqpacket_allow = true; vdev->priv = vsock; ret = virtio_vsock_vqs_init(vsock); if (ret < 0) goto out; rcu_assign_pointer(the_virtio_vsock, vsock); virtio_vsock_vqs_start(vsock); mutex_unlock(&the_virtio_vsock_mutex); return 0; out: kfree(vsock); mutex_unlock(&the_virtio_vsock_mutex); return ret; } static void virtio_vsock_remove(struct virtio_device *vdev) { struct virtio_vsock *vsock = vdev->priv; mutex_lock(&the_virtio_vsock_mutex); vdev->priv = NULL; rcu_assign_pointer(the_virtio_vsock, NULL); synchronize_rcu(); virtio_vsock_vqs_del(vsock); /* Other works can be queued before 'config->del_vqs()', so we flush * all works before to free the vsock object to avoid use after free. */ flush_work(&vsock->rx_work); flush_work(&vsock->tx_work); flush_work(&vsock->event_work); flush_work(&vsock->send_pkt_work); mutex_unlock(&the_virtio_vsock_mutex); kfree(vsock); } #define CONFIG_PM_SLEEP 1 #ifdef CONFIG_PM_SLEEP static int virtio_vsock_freeze(struct virtio_device *vdev) { struct virtio_vsock *vsock = vdev->priv; mutex_lock(&the_virtio_vsock_mutex); rcu_assign_pointer(the_virtio_vsock, NULL); synchronize_rcu(); virtio_vsock_vqs_del(vsock); //add by konggc struct virtio_vsock *vsock = virtio_get_drvdata(vdev); struct virtio_vsock_pkt *pkt, *tmp; unsigned long flags; vsock->suspended = true; cancel_work_sync(&vsock->rx_fill_work); // 取消未执行的工作 // 释放所有pkt和缓冲区 spin_lock_irqsave(&vsock->rx_lock, flags); list_for_each_entry_safe(pkt, tmp, &vsock->rx_pkts, list) { list_del(&pkt->list); virtqueue_detach_unused_buf(vsock->vqs[VSOCK_VQ_RX], pkt); kfree(pkt->buf); kfree(pkt); } vsock->rx_buf_nr = 0; spin_unlock_irqrestore(&vsock->rx_lock, flags); //end of add by konggc mutex_unlock(&the_virtio_vsock_mutex); return 0; } static int virtio_vsock_restore(struct virtio_device *vdev) { struct virtio_vsock *vsock = vdev->priv; int ret; mutex_lock(&the_virtio_vsock_mutex); /* Only one virtio-vsock device per guest is supported */ if (rcu_dereference_protected(the_virtio_vsock, lockdep_is_held(&the_virtio_vsock_mutex))) { ret = -EBUSY; goto out; } ret = virtio_vsock_vqs_init(vsock); if (ret < 0) goto out; rcu_assign_pointer(the_virtio_vsock, vsock); virtio_vsock_vqs_start(vsock); out: mutex_unlock(&the_virtio_vsock_mutex); return ret; } #endif /* CONFIG_PM_SLEEP */ static struct virtio_device_id id_table[] = { { VIRTIO_ID_VSOCK, VIRTIO_DEV_ANY_ID }, { 0 }, }; static unsigned int features[] = { VIRTIO_VSOCK_F_SEQPACKET }; static struct virtio_driver virtio_vsock_driver = { .feature_table = features, .feature_table_size = ARRAY_SIZE(features), .driver.name = KBUILD_MODNAME, .driver.owner = THIS_MODULE, .id_table = id_table, .probe = virtio_vsock_probe, .remove = virtio_vsock_remove, #ifdef CONFIG_PM_SLEEP .freeze = virtio_vsock_freeze, .restore = virtio_vsock_restore, #endif }; static int __init virtio_vsock_init(void) { int ret; virtio_vsock_workqueue = alloc_workqueue("virtio_vsock", 0, 0); if (!virtio_vsock_workqueue) return -ENOMEM; ret = vsock_core_register(&virtio_transport.transport, VSOCK_TRANSPORT_F_G2H); if (ret) goto out_wq; ret = register_virtio_driver(&virtio_vsock_driver); if (ret) goto out_vci; return 0; out_vci: vsock_core_unregister(&virtio_transport.transport); out_wq: destroy_workqueue(virtio_vsock_workqueue); return ret; } static void __exit virtio_vsock_exit(void) { unregister_virtio_driver(&virtio_vsock_driver); vsock_core_unregister(&virtio_transport.transport); destroy_workqueue(virtio_vsock_workqueue); } module_init(virtio_vsock_init); module_exit(virtio_vsock_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Asias He"); MODULE_DESCRIPTION("virtio transport for vsock"); MODULE_DEVICE_TABLE(virtio, id_table); 上述是原来的代码,下面是做了优先通过工作队列将分配逻辑延迟到进程上下文,保留GFP_KERNEL的高效分配;强化休眠 / 唤醒阶段的资源管理(提前释放、延迟分配),降低内存竞争风险的相关代码#include #include #include #include #include #include // 扩展VSOCK数据包结构体,添加链表成员用于资源跟踪 struct virtio_vsock_pkt { struct virtio_vsock_hdr hdr; void *buf; size_t buf_len; size_t len; struct list_head list; // 用于链表跟踪所有分配的pkt }; // 扩展VSOCK设备结构体,添加工作队列和资源管理成员 struct virtio_vsock { struct virtqueue *vqs[VSOCK_VQ_NUM]; unsigned int rx_buf_nr; unsigned int rx_buf_max_nr; struct list_head rx_pkts; // 跟踪所有分配的pkt spinlock_t rx_lock; // 保护rx_pkts的自旋锁 struct work_struct rx_fill_work; // 工作队列项(延迟分配) bool suspended; // 标记设备是否处于休眠状态 }; // 工作队列处理函数(运行在进程上下文) static void virtio_vsock_rx_fill_work(struct work_struct *work) { struct virtio_vsock *vsock = container_of(work, struct virtio_vsock, rx_fill_work); // 仅在非休眠状态下执行分配 if (!vsock->suspended) { virtio_vsock_rx_fill(vsock); } } // 改进后的接收缓冲区填充函数(在进程上下文执行) static void virtio_vsock_rx_fill(struct virtio_vsock *vsock) { int buf_len = VIRTIO_VSOCK_DEFAULT_RX_BUF_SIZE; struct virtio_vsock_pkt *pkt; struct scatterlist hdr, buf, *sgs[2]; struct virtqueue *vq; int ret; vq = vsock->vqs[VSOCK_VQ_RX]; if (!vq) return; do { // 1. 分配pkt结构体(进程上下文,安全使用GFP_KERNEL) pkt = kzalloc(sizeof(*pkt), GFP_KERNEL); if (!pkt) break; // 2. 分配数据缓冲区 pkt->buf = kmalloc(buf_len, GFP_KERNEL); if (!pkt->buf) { kfree(pkt); break; } // 3. 初始化pkt元信息 pkt->buf_len = buf_len; pkt->len = buf_len; INIT_LIST_HEAD(&pkt->list); // 4. 初始化scatterlist并添加到虚拟队列 sg_init_one(&hdr, &pkt->hdr, sizeof(pkt->hdr)); sgs[0] = &hdr; sg_init_one(&buf, pkt->buf, buf_len); sgs[1] = &buf; ret = virtqueue_add_sgs(vq, sgs, 0, 2, pkt, GFP_KERNEL); if (ret) { kfree(pkt->buf); kfree(pkt); break; } // 5. 将pkt加入跟踪链表(带锁保护) spin_lock(&vsock->rx_lock); list_add(&pkt->list, &vsock->rx_pkts); vsock->rx_buf_nr++; spin_unlock(&vsock->rx_lock); } while (vq->num_free > 0); // 更新最大缓冲区计数 if (vsock->rx_buf_nr > vsock->rx_buf_max_nr) vsock->rx_buf_max_nr = vsock->rx_buf_nr; // 通知设备接收队列已准备好 virtio_vsock_notify(vsock, VSOCK_VQ_RX); } // 休眠回调:释放所有资源 static int virtio_vsock_suspend(struct device *dev) { struct virtio_device *vdev = container_of(dev, struct virtio_device, dev); struct virtio_vsock *vsock = virtio_get_drvdata(vdev); struct virtio_vsock_pkt *pkt, *tmp; unsigned long flags; vsock->suspended = true; cancel_work_sync(&vsock->rx_fill_work); // 取消未执行的工作 // 释放所有pkt和缓冲区 spin_lock_irqsave(&vsock->rx_lock, flags); list_for_each_entry_safe(pkt, tmp, &vsock->rx_pkts, list) { list_del(&pkt->list); virtqueue_detach_unused_buf(vsock->vqs[VSOCK_VQ_RX], pkt); kfree(pkt->buf); kfree(pkt); } vsock->rx_buf_nr = 0; spin_unlock_irqrestore(&vsock->rx_lock, flags); return 0; } // 唤醒回调:调度工作队列重建缓冲区 static int virtio_vsock_resume(struct device *dev) { struct virtio_device *vdev = container_of(dev, struct virtio_device, dev); struct virtio_vsock *vsock = virtio_get_drvdata(vdev); vsock->suspended = false; // 调度工作队列在进程上下文重建缓冲区 if (!work_pending(&vsock->rx_fill_work)) { queue_work(system_wq, &vsock->rx_fill_work); } return 0; } // 电源管理操作结构体 static const struct dev_pm_ops virtio_vsock_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(virtio_vsock_suspend, virtio_vsock_resume) }; // 设备初始化函数 static int virtio_vsock_probe(struct virtio_device *vdev) { struct virtio_vsock *vsock; int ret; vsock = kzalloc(sizeof(*vsock), GFP_KERNEL); if (!vsock) return -ENOMEM; // 初始化虚拟队列(原有逻辑) ret = virtio_vsock_init_vqs(vdev, vsock); if (ret) { kfree(vsock); return ret; } // 初始化资源跟踪与工作队列 INIT_LIST_HEAD(&vsock->rx_pkts); spin_lock_init(&vsock->rx_lock); INIT_WORK(&vsock->rx_fill_work, virtio_vsock_rx_fill_work); vsock->suspended = false; virtio_set_drvdata(vdev, vsock); return 0; } // 设备移除函数 static void virtio_vsock_remove(struct virtio_device *vdev) { struct virtio_vsock *vsock = virtio_get_drvdata(vdev); // 清理逻辑(释放资源等) cancel_work_sync(&vsock->rx_fill_work); virtio_vsock_cleanup_vqs(vsock); kfree(vsock); } // VSOCK设备驱动结构体 static struct virtio_driver virtio_vsock_driver = { .driver = { .name = "virtio-vsock", .owner = THIS_MODULE, .pm = &virtio_vsock_pm_ops, }, .probe = virtio_vsock_probe, .remove = virtio_vsock_remove, // 其他驱动回调(如feature_table等) }; module_virtio_driver(virtio_vsock_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("VirtIO VSOCK driver with suspend/resume optimization"); 现在需要将两份代码进行合并

// // Copyright (C) 2020 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // package { default_applicable_licenses: [ "Android-Apache-2.0", "vendor_unbundled_google_modules_WifiGooglePrebuilt_license", ], } license { name: "vendor_unbundled_google_modules_WifiGooglePrebuilt_license", visibility: [":__subpackages__"], license_kinds: [ "SPDX-license-identifier-Apache-2.0", "SPDX-license-identifier-BSD", "SPDX-license-identifier-MIT", "SPDX-license-identifier-Unicode-DFS", ], } blueprint_package_includes { match_all: ["com.android.mainline"], } apex_set { name: "com.google.android.wifi", apex_name: "com.android.wifi", owner: "google", overrides: ["com.android.wifi"], filename: "com.google.android.wifi.apex", set: "com.google.android.wifi.apks", prefer: true, use_source_config_var: { config_namespace: "wifi_module", var_name: "source_build", }, exported_bootclasspath_fragments: ["com.android.wifi-bootclasspath-fragment"], exported_systemserverclasspath_fragments: ["com.android.wifi-systemserverclasspath-fragment"], } apex_set { name: "com.google.android.wifi_compressed", apex_name: "com.android.wifi", owner: "google", overrides: ["com.android.wifi"], // filename: "com.google.android.wifi.capex", set: "com.google.android.wifi_compressed.apks", prefer: true, use_source_config_var: { config_namespace: "wifi_module", var_name: "source_build", }, exported_bootclasspath_fragments: ["com.android.wifi-bootclasspath-fragment"], exported_systemserverclasspath_fragments: ["com.android.wifi-systemserverclasspath-fragment"], }

最新推荐

recommend-type

中国移动CM-IMS(SIP)技术规范_第3部分:SIP的基本流程

UE发起一个SIP注册请求(REGISTER),携带用户的URI(Uniform Resource Identifier)和TTL(Time To Live)值。服务器收到后,验证身份并记录UE的位置信息。注销流程则相反,UE通过发送一个注册请求但不携带TTL值,...
recommend-type

perl-Sys-CPU-0.61-14.el8.tar.gz

# 适用操作系统:Centos8 #Step1、解压 tar -zxvf xxx.el8.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm
recommend-type

基于C和WPF开发的五子棋网络对战服务器系统-支持双客户端连接自动开始游戏随机决定先手落子顺序实现完整五子棋规则包括胜利判断和落子转发功能提供详细通信协议设计含帧头帧尾校验码及多.zip

基于C和WPF开发的五子棋网络对战服务器系统_支持双客户端连接自动开始游戏随机决定先手落子顺序实现完整五子棋规则包括胜利判断和落子转发功能提供详细通信协议设计含帧头帧尾校验码及多.zip竞赛、考证案例详解
recommend-type

HTML时间格式化工具及测试页面介绍

标题 "BoolStudio.github.io" 暗示这是一个与GitHub相关的在线资源,具体来说是与BoolStudio相关的网页地址。GitHub是一个著名的代码托管平台,它支持Git版本控制系统,允许用户在云端存储和共享代码。BoolStudio可能是GitHub上的一个用户或组织账户名称,而该页面可能是他们托管的项目或个人页面的入口。 描述中的信息包含了HTML元素和JavaScript代码片段。这段描述展示了一个测试页文件的部分代码,涉及到HTML的标题(title)和内嵌框架(iframe)的使用,以及JavaScript中Date对象的扩展功能。 从描述中我们可以分析出以下知识点: 1. HTML标题(Title): 在HTML中,`<title>`标签用于定义网页的标题,它会显示在浏览器的标题栏或页面的标签上。在描述中出现了`<title>现在时间</title>`,这表明网页的标题被设置为了“现在时间”。 2. 微软时间: 这可能指的是在网页中嵌入微软产品的日期和时间显示。尽管这部分内容在描述中被删除了,但微软时间通常与Windows操作系统的日期和时间显示相关联。 3. iframe元素: `<iframe>`标签定义了一个内嵌框架,可以在网页中嵌入另一个文档。在描述中出现的是`<iframe src"></iframe>`,这表示创建了一个空的iframe元素,其src属性为空,实际上没有嵌入任何内容。通常src属性会被设置为另一个HTML文档的URL,用来在当前页面中显示外部页面的内容。 4. JavaScript日期格式化: 描述中包含了一段JavaScript代码,这段代码扩展了Date对象的功能,允许它根据提供的格式字符串(fmt)返回格式化的日期和时间。例如,如果fmt是'y年M月d日 h时m分s秒',则该函数会按照这个格式返回当前日期和时间。 具体到代码实现,以下步骤展示了如何在JavaScript中扩展Date对象并格式化日期: - 首先创建了一个对象o,该对象包含日期和时间的不同部分,例如年(y)、月(M)、日(d)、时(h)、分(m)、秒(s)。 - 使用正则表达式检查格式字符串fmt中是否包含年份的占位符(y+),如果存在则将其替换为四位数的年份,不足部分用0补齐。 - 使用for...in循环遍历对象o中的每一个键值对,并使用正则表达式测试这些键(如年、月、日等)是否在格式字符串中存在。如果存在,则替换为相应的日期时间值。 这个知识点展示了在JavaScript中如何自定义对象的方法,以及如何使用正则表达式进行字符串的搜索和替换。 标签 "HTML" 表明这个文件主要涉及到超文本标记语言(HTML),这是构建网页内容的标准标记语言,它允许开发者使用标签来定义网页的结构和内容。HTML文件通常包含各种元素,如段落、链接、图片、表格和表单等。 压缩包子文件的文件名称列表中的 "BoolStudio.github.io-main" 可能指的是一个包含 "BoolStudio.github.io" 网站主要文件的压缩包。通常,网站项目会包含多个文件和资源,为了便于管理和分发,开发者会将这些文件打包成一个压缩文件。在本例中,"main" 可能表示该压缩包包含了网站的主要文件和代码。 通过对给定文件信息的分析,我们可以了解到网页设计和开发的相关知识点,特别是HTML文档结构、JavaScript对象和函数扩展以及如何在网站项目中组织文件。这些知识对于前端开发者来说是非常重要的,能够帮助他们创建更加动态和功能丰富的网页应用。
recommend-type

Elixir测试:从用例执行到覆盖率分析

### Elixir 测试:从用例执行到覆盖率分析 #### 1. 测试用例执行 在测试中,以 `Test` 结尾且包含 `use ExUnit` 的模块被视为测试用例。测试用例本质上是设置回调和测试的集合。测试用例的执行方式有两种:并发执行或顺序执行。使用 `async: true` 选项的测试用例将并发执行,其余的则按定义顺序(默认随机)顺序执行。 测试用例的执行流程如下: 1. 执行所有 `setup_all` 回调。 2. 执行所有测试及其特定的设置和拆卸回调。 `setup_all` 回调按定义顺序在同一进程中执行。在运行任何测试之前,测试用例将生成一个进程,在该进程中运行所有
recommend-type

Android Studio 时间延时

<think> 我们参考多个引用,总结在Android Studio中实现时间延时的方法。根据引用[1]和[2],我们知道有几种常见的延时方法,包括使用Handler的postDelayed方法、使用Timer和TimerTask以及使用Thread.sleep。引用[3]和[5]则展示了具体代码示例。 具体方法如下: 1. **使用Handler的postDelayed方法**(推荐在主线程中使用,避免直接操作UI线程的问题): ```java new Handler().postDelayed(new Runnable() { @Override
recommend-type

IMS Open Corpus Workbench:打造高效大型文本语料库管理工具

IMS Open Corpus Workbench(以下简称CWB)是一个强大的开源工具集,它专门用于管理和查询大型的、带有语言注释的文本语料库。这项工具有着广泛的应用领域,包括语言学研究、自然语言处理、人文科学研究等。 ### 标题知识点: #### 大型文本语料库的索引和查询工具 大型文本语料库指的是含有大量文本数据的数据库,其中包含的文本量通常以百万计。这些数据可能是书面文本、口语录音文字转写等形式。对于如此庞大的数据集,索引是必要的,它可以帮助研究者快速定位到感兴趣的片段,而查询工具则提供了从这些大量数据中提取特定信息的能力。 #### 开源 CWB作为一个开源工具,意味着其源代码对所有人开放,并且可以免费使用和修改。开源项目通常是由社区驱动,有着活跃的开发者和用户群体,不断对工具进行改进和拓展。这种模式促进了创新,并且有利于长期维护和升级。 ### 描述知识点: #### 管理和查询带有语言注释的文本 在语料库中,文本数据经常会被加上各种形式的语言注释,比如句法结构、词性标注、语义角色等。CWB支持管理这类富含语言信息的语料库,使其不仅仅保存原始文本信息,还整合了深层的语言知识。此外,CWB提供了多种查询语言注释数据的方式,使得用户可以针对特定的注释信息进行精确查询。 #### 核心组件:CQP(Corpus Query Processor) CQP是CWB中的核心组件,是一个高度灵活和高效的查询处理器。它支持在终端会话中交互式地使用,这为熟悉命令行界面的用户提供了一个强大的工具。同时,CQP也可以嵌入到其他程序中,比如Perl脚本,从而提供编程式的语料库访问方式。这为高级用户提供了一个强大的平台,可以编写复杂的查询,并将查询结果集成到其他程序中。 #### 基于Web的GUI CQPweb 除了命令行界面外,CWB还提供了一个基于Web的图形用户界面CQPweb,使得不熟悉命令行的用户也能够方便地使用CWB的强大功能。CQPweb通常允许用户通过网页直接构建查询,并展示查询结果,极大地降低了使用门槛。 ### 标签知识点: #### 开源软件 CWB作为开源软件,其主要特点和优势包括: - **社区支持**:开放源代码鼓励了全球开发者共同参与,提供错误修正、功能增强、新特性开发等。 - **定制化**:用户可以根据自己的需求对源代码进行修改,从而实现定制化的功能。 - **透明性**:源代码的开放确保了软件工作的透明性,用户可以清楚了解软件的工作原理和数据处理方式。 - **可靠性**:由于代码的公开性,很多用户和开发者可以共同审查代码,提高了软件的可靠性和安全性。 - **成本效益**:开源软件通常不需要支付昂贵的许可费用,对预算有限的个人和机构特别友好。 ### 压缩包子文件的文件名称列表知识点: #### cwb-3.0.0-osx-10.5-universal 这个文件名提供了关于该软件包的重要信息: - **cwb**:表示这是IMS Open Corpus Workbench的软件包。 - **3.0.0**:表示这个包的版本号,了解版本信息对于获取支持、查看更新日志、了解新特性等方面很重要。 - **osx**:表示这个软件包是为Mac OS X操作系统设计的。 - **10.5**:这个数字指明了这个软件包支持的操作系统版本至少是Mac OS X 10.5。 - **universal**:表明这个软件包是为不同架构的处理器(比如32位和64位)设计的通用二进制文件,提高了软件包的兼容性和可移植性。 综上所述,IMS Open Corpus Workbench是一个为处理带有语言注释的大型文本语料库而设计的开源工具集,它以高效且灵活的查询处理器CQP为核心,提供了命令行和基于Web的两种交互方式,极大地促进了语言学和语言技术领域的研究与应用。由于其开源特性,CWB得到了广泛的使用和不断的改进。
recommend-type

基于属性测试的深入解析与策略探讨

### 基于属性测试的深入解析与策略探讨 #### 1. 基于属性测试中的收缩机制 在基于属性的测试中,当测试失败时,像 `stream_data` 这样的框架会执行收缩(Shrinking)操作。收缩的目的是简化导致测试失败的输入,同时确保简化后的输入仍然会使测试失败,这样能更方便地定位问题。 为了说明这一点,我们来看一个简单的排序函数测试示例。我们实现了一个糟糕的排序函数,实际上就是恒等函数,它只是原封不动地返回输入列表: ```elixir defmodule BadSortTest do use ExUnit.Case use ExUnitProperties pro
recommend-type

ssh-keygen -t rsa -f /etc/ssh/ssh_host_rsa_key && \

<think> 根据用户的问题要求,我需要详细解释命令`ssh-keygen -t rsa -f /etc/ssh/ssh_host_rsa_key`的含义、后续操作、常见问题及解决办法。同时,我需要参考提供的引用内容,并遵循系统级指令(如LaTeX格式、中文回答、生成相关问题等)。 首先,分析命令的组成部分: - `ssh-keygen`:生成、管理和转换SSH密钥的工具。 - `-t rsa`:指定密钥类型为RSA算法。 - `-f /etc/ssh/ssh_host_rsa_key`:指定生成的私钥文件路径为`/etc/ssh/ssh_host_rsa_key`。对应的公钥文件会在同一
recommend-type

挑战性开源平台游戏YAGAC:无故事忍者冒险

Y.A.G.A.C(Yet Another Great Arcade Classic),是一款免费的开源伪2D平台游戏,它在传统平台游戏的基础上融入了3D游戏元素,让玩家在一个拥有2D精灵的3D环境中进行操作。YAGAC游戏以其高挑战性和上瘾性而著称,吸引了众多游戏爱好者和编程高手的关注。 首先,让我们深入了解这款游戏的核心玩法。YAGAC的最大特点是在一个基本的2D平面内,玩家可以控制角色进行运动,但游戏环境却是3D制作的。这种设计为玩家带来了全新的视觉体验和操作感受。在YAGAC中,玩家扮演的是一个身手敏捷的忍者,任务是在错综复杂的地牢中生存下来,地牢充满了各种陷阱和敌人,如机器人等。为了逃生,玩家需要在各种关卡中寻找隐藏的彩球,这些彩球决定了玩家能够到达的区域范围。 在游戏过程中,收集到的彩球会改变对应颜色平台的属性,使原本脆弱的平台变得牢固,从而为玩家打开新的道路。这样的设计不仅考验玩家的反应和速度,还考验他们的策略和记忆能力。YAGAC的游戏关卡设计非常巧妙,经常需要玩家反复尝试,每一次尝试都可能发现新的线索和策略,这样的设计增加了游戏的重复可玩性。 YAGAC使用的引擎在游戏流畅性方面表现出色,这也是游戏的一大强项。一款游戏引擎的强大与否直接关系到游戏体验的好坏,YAGAC的开发团队选择或者开发了一个能够高效处理3D图形和2D动作的引擎,确保了游戏在各种配置的计算机上都能保持良好的运行状态和响应速度。 接下来,我们来探讨YAGAC的开源属性。由于YAGAC是开源的,这意味着游戏的源代码是开放的,任何个人或组织都可以访问、修改并重新分发该软件。开源软件通常由社区维护,并且鼓励用户贡献代码,共同改进游戏。对于像YAGAC这样的游戏来说,开源可以吸引更多的开发者参与进来,共同完善游戏体验。玩家和开发者可以对游戏进行本地化、修改游戏机制,甚至是增加新的内容和关卡。 开源平台游戏的概念不仅限于提供免费的游戏体验,它还鼓励创新和协作。开源文化促进知识共享和技术进步,这在软件开发领域尤为重要。同时,玩家也可以从中学到编程知识,因为游戏的开源性质允许用户查看和学习游戏背后的代码。 最后,关于YAGAC的文件名称“yagac”,这很可能是游戏的主程序文件名或者主目录名。当玩家在计算机上进行下载和安装时,可能会遇到这样的文件名,识别这一点有助于玩家快速定位和管理游戏文件。 总的来说,Y.A.G.A.C.作为一款开源平台游戏,在游戏玩法设计、开源文化和3D游戏引擎的流畅性等方面,都显示出其独特的优势。游戏的挑战性和上瘾性,以及社区驱动的开发模式,都为游戏爱好者和开源爱好者提供了一个理想的游戏和学习平台。对于对游戏开发感兴趣的玩家来说,YAGAC无疑是一个研究和实践的良好起点。