import numpy as np import pandas as pd import math import json import os import sys import ast from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt from scipy.stats import pearsonr, spearmanr from IPython.display import display from PIL import Image from matplotlib.path import Path from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler from scipy.spatial import ConvexHull from matplotlib.patches import Patch帮我注释代码

时间: 2025-06-22 21:33:07 AIGC 浏览: 38
<think>嗯,用户让我帮忙注释一段Python代码。首先,我需要仔细看看用户提供的代码里有哪些库和模块,然后逐一解释每个导入的作用。用户可能刚学Python,或者对数据分析和科学计算相关的库不太熟悉,所以需要详细但简洁的注释。 首先,用户导入了numpy和pandas,这两个是数据处理的基础库,应该先说明它们的常用用途,比如数组处理和数据分析。然后是math,这个标准库可能用于数学函数。接下来是json和os、sys,这些是处理JSON文件、操作系统交互和系统相关功能的,需要指出它们的常见用途。 再往下是ast,用来处理抽象语法树,可能用户代码中有需要解析Python代码的情况。matplotlib相关的部分,特别是PdfPages,可能用于生成PDF报告,plt用于绘图。从scipy导入的pearsonr和spearmanr是统计相关的函数,用于计算相关系数。IPython.display的display可能用于在Jupyter中显示图像或数据,PIL的Image用于图像处理。 然后是从sklearn导入的分类器和预处理工具,比如KNN和标准化。ConvexHull来自scipy.spatial,可能用于几何计算。matplotlib.patches的Path可能用于自定义图形,而Patch可能用于图例。 接下来,我需要考虑用户的需求是否只是简单的注释,还是希望了解每个库的典型使用场景。用户可能希望注释能帮助他们理解代码的结构和用途,所以需要简明扼要地说明每个导入的作用,可能用到的常见场景,比如数据处理、可视化、机器学习等。 需要注意的是,用户提供的代码中有一些不太常见的导入,比如matplotlib的Path和Patch,可能需要特别说明它们的用途。同时,要确保注释准确,避免错误,比如区分StandardScaler和KNeighborsClassifier的作用。 另外,用户可能是在进行数据分析或机器学习项目,所以注释应突出这些库在项目中的角色,比如数据预处理、模型训练、结果可视化等。同时,要使用中文,保持注释的清晰和易读,避免技术术语过于复杂。 最后,检查是否有遗漏的库,比如sys和ast,确保每个导入都有注释,并指出它们的常见用途。这样用户在看到代码时,能快速理解每个部分的作用,方便后续的开发和调试。</think>以下是逐行代码注释(按功能模块分类): --- ### 基础科学计算库 ```python import numpy as np # 数值计算核心库,提供高效多维数组对象和数学工具 import pandas as pd # 数据处理分析库,提供DataFrame数据结构 import math # Python标准数学库,提供基础数学函数 ``` ### 文件与系统操作 ```python import json # JSON格式文件读写 import os # 操作系统接口(文件路径、目录操作等) import sys # 系统相关功能(命令行参数、解释器交互等) ``` ### 数据结构与元编程 ```python import ast # 抽象语法树操作(代码解析/转换) ``` ### 数据可视化 ```python from matplotlib.backends.backend_pdf import PdfPages # 创建多页PDF报告 import matplotlib.pyplot as plt # 绘图核心库,提供MATLAB风格接口 from matplotlib.path import Path # 路径对象用于自定义图形绘制 from matplotlib.patches import Patch # 创建自定义图例元素 ``` ### 统计分析 ```python from scipy.stats import pearsonr, spearmanr # 皮尔逊/斯皮尔曼相关系数计算 from scipy.spatial import ConvexHull # 计算凸包(几何分析) ``` ### 机器学习 ```python from sklearn.neighbors import KNeighborsClassifier # K近邻分类算法 from sklearn.preprocessing import StandardScaler # 数据标准化预处理 ``` ### 交互式开发 ```python from IPython.display import display # Jupyter Notebook中的对象显示增强 ``` ### 图像处理 ```python from PIL import Image # 图像处理核心库(打开/操作/保存图像) ``` --- ### 典型使用场景分析 1. **数据预处理**:`pandas` + `numpy` 进行数据清洗 → `StandardScaler` 标准化 2. **特征分析**:通过 `pearsonr`/`spearmanr` 计算特征相关性 3. **机器学习建模**:使用 `KNeighborsClassifier` 构建分类模型 4. **可视化报告**:`matplotlib` 生成图表 → `PdfPages` 整合为PDF报告 5. **图像处理**:`PIL.Image` 处理图像数据 → `ConvexHull` 进行几何分析 是否需要针对某个具体库的深入使用示例?可以补充说明具体需求。
阅读全文

相关推荐

帮我解释代码,并检查有没有问题,import numpy as np import pandas as pd import math # import json # import os import sys import ast # from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt from scipy.stats import pearsonr, spearmanr from IPython.display import display # from PIL import Image # from matplotlib.path import Path import argparse from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler # from scipy.spatial import ConvexHull # from matplotlib.patches import Patch ########## # spotsize = 1.0 ## 画图的点的大小 # sample = "WMQ-584-mHeart" # c2lpropfile = "/data1/zhaoshutao/projectworkspace/cell2location_20240715/heart_eyeball_c2l/heart_eyeball_c2l_max/WMQ-584-mHeart/1000/cell2location_map/st_cell2location_res.csv" # ctfreq_threshold = 0.5 # 细胞丰度的阈值,可以进行细胞丰度过滤(对转换后的实际丰度操作) # # 结果保存位置 # savepath = "/data1/zhaoshutao/projectworkspace/nucleus_recognition/sandiantu_20240716_c2l_card_cyto/20240830_knn_res_n_neighbors/c2l_max_no_problem" ########## ## 命令行传入参数 parser = argparse.ArgumentParser(description='') parser.add_argument('--Sample', '-s', type=str, help='Samplename', required=True) parser.add_argument('--c2lpropfile', '-j', type=str, help='', required=True) parser.add_argument('--Savepath', '-o', type=str, help='savepath', required=True) parser.add_argument('--spotsize', '-r', type=float, default=1.0,help='spotsize') parser.add_argument('--ctfreqthreshold', '-c', type=float, default=0.1,help='rare_ctfreq_threshold') parser.add_argument('--KNN_neighbors', '-k', type=int, default=5,help='KNN_n_neighbors') args = parser.parse_args() sample = args.Sample savepath = args.Savepath spotsize = args.spotsize c2lpropfile = args.c2lpropfile ctfreq_threshold = args.ctfreqthreshold KNN_neighbors = args.KNN_neighbors ##########

%load_ext autoreload %autoreload 2 %matplotlib inline A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "E:\anaconda\lib\runpy.py", line 197, in _run_module_as_main return _run_code(code, main_globals, None, File "E:\anaconda\lib\runpy.py", line 87, in _run_code exec(code, run_globals) File "E:\anaconda\lib\site-packages\ipykernel_launcher.py", line 17, in <module> app.launch_new_instance() File "E:\anaconda\lib\site-packages\traitlets\config\application.py", line 846, in launch_instance app.start() File "E:\anaconda\lib\site-packages\ipykernel\kernelapp.py", line 712, in start self.io_loop.start() File "E:\anaconda\lib\site-packages\tornado\platform\asyncio.py", line 199, in start self.asyncio_loop.run_forever() File "E:\anaconda\lib\asyncio\base_events.py", line 601, in run_forever self._run_once() File "E:\anaconda\lib\asyncio\base_events.py", line 1905, in _run_once handle._run() File "E:\anaconda\lib\asyncio\events.py", line 80, in _run self._context.run(self._callback, *self._args) File "E:\anaconda\lib\site-packages\ipykernel\kernelbase.py", line 510, in dispatch_queue await self.process_one() File "E:\anaconda\lib\site-packages\ipykernel\kernelbase.py", line 499, in process_one await dispatch(*args) File "E:\anaconda\lib\site-packages\ipykernel\kernelbase.py", line 406, in dispatch_shell await result File "E:\anaconda\lib\site-packages\ipykernel\kernelbase.py", line 730, in execute_request reply_content = await reply_content File "E:\anaconda\lib\site-packages\ipykernel\ipkernel.py", line 390, in do_execute res = shell.run_cell(code, store_history=store_history, silent=silent) File "E:\anaconda\lib\site-packages\ipykernel\zmqshell.py", line 528, in run_cell return super().run_cell(*args, **kwargs) File "E:\anaconda\lib\site-packages\IPython\core\interactiveshell.py", line 2914, in run_cell result = self._run_cell( File "E:\anaconda\lib\site-packages\IPython\core\interactiveshell.py", line 2960, in _run_cell return runner(coro) File "E:\anaconda\lib\site-packages\IPython\core\async_helpers.py", line 78, in _pseudo_sync_runner coro.send(None) File "E:\anaconda\lib\site-packages\IPython\core\interactiveshell.py", line 3185, in run_cell_async has_raised = await self.run_ast_nodes(code_ast.body, cell_name, File "E:\anaconda\lib\site-packages\IPython\core\interactiveshell.py", line 3377, in run_ast_nodes if (await self.run_code(code, result, async_=asy)): File "E:\anaconda\lib\site-packages\IPython\core\interactiveshell.py", line 3457, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "C:\Users\John\AppData\Local\Temp\ipykernel_7032\4138125057.py", line 3, in <module> get_ipython().run_line_magic('matplotlib', 'inline') File "E:\anaconda\lib\site-packages\IPython\core\interactiveshell.py", line 2364, in run_line_magic result = fn(*args, **kwargs) File "E:\anaconda\lib\site-packages\decorator.py", line 232, in fun return caller(func, *(extras + args), **kw) File "E:\anaconda\lib\site-packages\IPython\core\magic.py", line 187, in <lambda> call = lambda f, *a, **k: f(*a, **k) File "E:\anaconda\lib\site-packages\IPython\core\magics\pylab.py", line 99, in matplotlib gui, backend = self.shell.enable_matplotlib(args.gui.lower() if isinstance(args.gui, str) else args.gui) File "E:\anaconda\lib\site-packages\IPython\core\interactiveshell.py", line 3533, in enable_matplotlib from matplotlib_inline.backend_inline import configure_inline_support File "E:\anaconda\lib\site-packages\matplotlib_inline\__init__.py", line 1, in <module> from . import backend_inline, config # noqa File "E:\anaconda\lib\site-packages\matplotlib_inline\backend_inline.py", line 6, in <module> import matplotlib File "E:\anaconda\lib\site-packages\matplotlib\__init__.py", line 109, in <module> from . import _api, _version, cbook, docstring, rcsetup File "E:\anaconda\lib\site-packages\matplotlib\rcsetup.py", line 27, in <module> from matplotlib.colors import Colormap, is_color_like File "E:\anaconda\lib\site-packages\matplotlib\colors.py", line 56, in <module> from matplotlib import _api, cbook, scale File "E:\anaconda\lib\site-packages\matplotlib\scale.py", line 23, in <module> from matplotlib.ticker import ( File "E:\anaconda\lib\site-packages\matplotlib\ticker.py", line 136, in <module> from matplotlib import transforms as mtransforms File "E:\anaconda\lib\site-packages\matplotlib\transforms.py", line 46, in <module> from matplotlib._path import ( --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) AttributeError: _ARRAY_API not found --------------------------------------------------------------------------- ImportError Traceback (most recent call last) ~\AppData\Local\Temp\ipykernel_7032\4138125057.py in <module> 1 get_ipython().run_line_magic('load_ext', 'autoreload') 2 get_ipython().run_line_magic('autoreload', '2') ----> 3 get_ipython().run_line_magic('matplotlib', 'inline') E:\anaconda\lib\site-packages\IPython\core\interactiveshell.py in run_line_magic(self, magic_name, line, _stack_depth) 2362 kwargs['local_ns'] = self.get_local_scope(stack_depth) 2363 with self.builtin_trap: -> 2364 result = fn(*args, **kwargs) 2365 return result 2366 E:\anaconda\lib\site-packages\decorator.py in fun(*args, **kw) 230 if not kwsyntax: 231 args, kw = fix(args, kw, sig) --> 232 return caller(func, *(extras + args), **kw) 233 fun.__name__ = func.__name__ 234 fun.__doc__ = func.__doc__ E:\anaconda\lib\site-packages\IPython\core\magic.py in <lambda>(f, *a, **k) 185 # but it's overkill for just that one bit of state. 186 def magic_deco(arg): --> 187 call = lambda f, *a, **k: f(*a, **k) 188 189 if callable(arg): E:\anaconda\lib\site-packages\IPython\core\magics\pylab.py in matplotlib(self, line) 97 print("Available matplotlib backends: %s" % backends_list) 98 else: ---> 99 gui, backend = self.shell.enable_matplotlib(args.gui.lower() if isinstance(args.gui, str) else args.gui) 100 self._show_matplotlib_backend(args.gui, backend) 101 E:\anaconda\lib\site-packages\IPython\core\interactiveshell.py in enable_matplotlib(self, gui) 3531 """ 3532 from IPython.core import pylabtools as pt -> 3533 from matplotlib_inline.backend_inline import configure_inline_support 3534 gui, backend = pt.find_gui_and_backend(gui, self.pylab_gui_select) 3535 E:\anaconda\lib\site-packages\matplotlib_inline\__init__.py in <module> ----> 1 from . import backend_inline, config # noqa 2 __version__ = "0.1.6" # noqa E:\anaconda\lib\site-packages\matplotlib_inline\backend_inline.py in <module> 4 # Distributed under the terms of the BSD 3-Clause License. 5 ----> 6 import matplotlib 7 from matplotlib import colors 8 from matplotlib.backends import backend_agg E:\anaconda\lib\site-packages\matplotlib\__init__.py in <module> 107 # cbook must import matplotlib only within function 108 # definitions, so it is safe to import from it here. --> 109 from . import _api, _version, cbook, docstring, rcsetup 110 from matplotlib.cbook import MatplotlibDeprecationWarning, sanitize_sequence 111 from matplotlib.cbook import mplDeprecation # deprecated E:\anaconda\lib\site-packages\matplotlib\rcsetup.py in <module> 25 from matplotlib import _api, cbook 26 from matplotlib.cbook import ls_mapper ---> 27 from matplotlib.colors import Colormap, is_color_like 28 from matplotlib.fontconfig_pattern import parse_fontconfig_pattern 29 from matplotlib._enums import JoinStyle, CapStyle E:\anaconda\lib\site-packages\matplotlib\colors.py in <module> 54 import matplotlib as mpl 55 import numpy as np ---> 56 from matplotlib import _api, cbook, scale 57 from ._color_data import BASE_COLORS, TABLEAU_COLORS, CSS4_COLORS, XKCD_COLORS 58 E:\anaconda\lib\site-packages\matplotlib\scale.py in <module> 21 import matplotlib as mpl 22 from matplotlib import _api, docstring ---> 23 from matplotlib.ticker import ( 24 NullFormatter, ScalarFormatter, LogFormatterSciNotation, LogitFormatter, 25 NullLocator, LogLocator, AutoLocator, AutoMinorLocator, E:\anaconda\lib\site-packages\matplotlib\ticker.py in <module> 134 import matplotlib as mpl 135 from matplotlib import _api, cbook --> 136 from matplotlib import transforms as mtransforms 137 138 _log = logging.getLogger(__name__) E:\anaconda\lib\site-packages\matplotlib\transforms.py in <module> 44 45 from matplotlib import _api ---> 46 from matplotlib._path import ( 47 affine_transform, count_bboxes_overlapping_bbox, update_path_extents) 48 from .path import Path ImportError: numpy.core.multiarray failed to import

## 20240905 # conda activate torch1.9 import pandas as pd import numpy as np from IPython.display import display from PIL import Image import json import os import sys from matplotlib.path import Path from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler from matplotlib import pyplot as plt # import cv2 from scipy.spatial import ConvexHull import ast from scipy.stats import pearsonr, spearmanr from matplotlib.backends.backend_pdf import PdfPages from matplotlib.patches import Patch import matplotlib.pyplot as plt import argparse parser = argparse.ArgumentParser(description='') parser.add_argument('--Sample', '-s', type=str, help='Samplename', required=True) ## --Countcell可用于统计每个spot的细胞数量并绘图 # 20240905修改,确定了每一个细胞点的位置 parser.add_argument("--Countcell", default=False, action='store_true', help="Counting the number of cells in each spot, default is No") parser.add_argument('--Segjson', '-j', type=str, help='nucleus recognition') parser.add_argument('--lowscaleheight', '-lowheight', type=int, help='') parser.add_argument('--lowscalewidth', '-lowwidth', type=int, help='') parser.add_argument('--offsetx', '-x', type=int, help='') parser.add_argument('--offsety', '-y', type=int, help='') # parser.add_argument('--Savepath', '-o', type=str, help='savepath', required=True) args = parser.parse_args() sample = args.Sample sample_folder = "/data1/chengrui/workspace/zst_st/all_data/" xpath="/data1/zhaoshutao/projectworkspace/cell2location_20240715/heart_eyeball_c2l/heart_eyeball_h5ad_pro/" if sample in ["WMQ-586-mHeart", "WMQ-584-mHeart", "WMQ-644-mHeart"]: tissue_positions_file = "".join([xpath,sample,"/spatial/tissue_positions_list.csv"]) scalefactors_json = "".join([sample_folder, sample, "/outs/spatial/scalefactors_json.json"]) elif sample in ["WMQ-567-mEye", "WMQ-594-mEye", "WMQ-593-mEye"]: tissue_positions_file = "".join([xpath,sample,"/spatial/tissue_positions_list.csv"]) scalefactors_json = "".join([sample_folder, sample, "/outs/spatial/scalefactors_json.json"]) elif sample in ["WMQ-765-mOVA","WMQ-766-mOVA","WMQ-767-mOVA","WMQ-768-mOVA"]: scalefactors_json = "".join(["/data1/zhaoshutao/projectworkspace/rawdata_20241222_ovary_st/", sample, "/outs/spatial/scalefactors_json.json"]) tissue_positions_file = "".join(["/data1/zhaoshutao/projectworkspace/rawdata_20241222_ovary_st/", sample, "/outs/spatial/tissue_positions_list.csv"]) elif sample == "WMQ-606-mSpl": splsample = "WMQ-606-mSpleen" scalefactors_json = "".join([sample_folder, splsample, "/outs/spatial/scalefactors_json.json"]) tissue_positions_file = "".join([sample_folder, splsample, "/outs/spatial/tissue_positions_list.csv"]) elif sample in ["WMQ-648-mLiver","WMQ-678-mLiver","WMQ-629-mLym","WMQ-636-mLung","WMQ-627-mSpl","WMQ-712-mTes","LXZ-009","WMQ-714-mTes"]: if sample == "WMQ-627-mSpl": sample = "WMQ-627-mSpleen" scalefactors_json = "".join([sample_folder, sample, "/spatial/scalefactors_json.json"]) tissue_positions_file = "".join([sample_folder, sample, "/spatial/tissue_positions_list.csv"]) elif sample in ["WMQ-731-mOVA","WMQ-732-mOVA"]: scalefactors_json = "".join([sample_folder, sample, "-bu/spatial/scalefactors_json.json"]) tissue_positions_file = "".join([sample_folder, sample, "-bu/spatial/tissue_positions_list.csv"]) else: scalefactors_json = "".join([sample_folder, sample, "/outs/spatial/scalefactors_json.json"]) tissue_positions_file = "".join([sample_folder, sample, "/outs/spatial/tissue_positions_list.csv"]) cell_count_output = "/data1/zhaoshutao/projectworkspace/nucleus_recognition/sandiantu_20240716_c2l_card_cyto/run_spot_counts_results" all_cell_seg_pic = "".join([cell_count_output, "/",sample, "_all_cell_seg_pic.csv"]) spot_cell_count = "".join([cell_count_output, "/",sample, "_spots_counts.csv"]) point_cell_count = "".join([cell_count_output, "/",sample, "_point_counts.csv"]) 帮我解释代码,注释好,并且帮我看看有没有问题

请更正以下代码的错误:import tkinter as tk from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg import matplotlib.pyplot as plt import numpy as np import pandas as pd class MultiCurveVisualizationApp: def __init__(self, root): self.root = root self.root.title("多曲线数据可视化") # 初始化数据 self.total_points = 1000 self.display_length = 200 self.start_index = 0 # 读取多个数据文件 self.files = [ "data1.csv", "data2.csv" ] self.curves = [] for file in self.files: data = pd.read_csv(file) x = np.linspace(0, 10, len(data)) y = data["value"].values self.curves.append((x, y)) # 创建 Matplotlib 图形 self.fig, self.ax = plt.subplots() self.lines = [] for i, (x, y) in enumerate(self.curves): line, = self.ax.plot([], [], lw=2, label=f"曲线 {i+1}") self.ax.legend() self.ax.set_xlim(0, 10) self.ax.set_ylim(-2, 2) self.ax.set_title("多曲线数据") self.ax.set_xlabel("X") self.ax.set_ylabel("Y") self.ax.grid(True) # 将图形嵌入 Tkinter 窗口 self.canvas = FigureCanvasTkAgg(self.fig, master=root) self.canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=1) # 添加按钮 self.button_frame = tk.Frame(root) self.button_frame.pack(side=tk.BOTTOM) self.move_button = tk.Button(self.button_frame, text="向后移动100点", command=self.move_data) self.move_button.pack(side=tk.LEFT) # 初始绘图 self.update_plot() def update_plot(self): end_index = self.start_index + self.display_length if end_index > self.total_points: end_index = self.total_points for i, (x, y) in enumerate(self.curves): self.lines[i].set_data(x[self.start_index:end_index], y[self.start_index:end_index]) self.ax.set_xlim(self.curves[0][0][self.start_index], self.curves[0][0][end_index - 1]) self.canvas.draw() def move_data(self): self.start_index += 100 if self.start_index >= self.total_points: self.start_index = 0 self.update_plot() if __name__ == "__main__": root = tk.Tk() app = MultiCurveVisualizationApp(root) root.mainloop()

# 导入所需库 import numpy as np import pandas as pd import xarray as xr import matplotlib.pyplot as plt import cartopy.crs as ccrs import cartopy.feature as cfeature from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas # import matplotlib.backends.backend_agg as agg # 更改字体 plt.rcParams['font.sans-serif'] = ['Times New Roman'] plt.rcParams['axes.unicode_minus'] = False # 处理数据 f = xr.open_dataset('D:\\wangnan\\2024sjxm\\shuju\\spei01new.nc') # 读取数据集 spei81_10 = f.spei.loc[f.time.dt.month.isin([8]), 35:38].loc['1991':'2020'] spei11 = f.spei.loc['2021-08', 35:38].squeeze() # 2021年8月数据 x1 = spei81_10.mean('time') # 8月(1990-2020)平均 x2 = spei11 - spei81_10.mean('time') # 2021年1月距平 x3 = spei11 - spei11.mean('lon') # 2021年1月纬偏值 # 绘画气候态 def clim_plot(): fig = plt.figure(figsize=(6, 6), facecolor='w') ax = fig.add_axes([0.2, 0.2, 0.7, 0.7], projection=ccrs.PlateCarree(180)) ax.set_title(' Summer(1991-2020) Ave Spei', loc='left', fontsize=13) # ax.add_feature(cfeature.COASTLINE.with_scale('110m'), linewidth=0.6, edgecolor='k') ax.add_feature(cfeature.BORDERS, lw=0.25) ax.add_feature(cfeature.STATES, lw=0.25) ax.set_xticks(np.arange(104, 107, 1), crs=ccrs.PlateCarree()) ax.set_yticks(np.arange(35, 38, 1), crs=ccrs.PlateCarree()) ax.xaxis.set_major_formatter(LongitudeFormatter()) ax.yaxis.set_major_formatter(LatitudeFormatter()) ax.tick_params(which='major', width=0.5, length=5) ax.set_aspect(1.5) ax.spines['geo'].set_linewidth(0.5) plt.xticks(rotation=45) # ax.scatter(27, 99, color='blue', marker="o", s=5) # plt.text(27+0.001, 99+0.001, "四川", fontsize=20, color="k", horizontalalignment='right', fontproperties="SimHei") m = ax.contourf(f.lon, f.lat.loc[35:38], x1, cmap='seismic_r', levels=np.arange(-1.5, 1.5, 0.2), transform=ccrs.PlateCarree()) cax = fig.add_axes([0.26, 0.1, 0.57, 0.017]) cb = fig.colorbar(m, cax=cax, orientation='horizontal', ticks=np.arange(-1.4, 1.4, 0.2)) cb.outline.set_linewidth(0.1) cb.ax.tick_params(length=0) clim_plot() plt.show()运行以上代码并将错误的地方标出来改正

{ "name": "ImportError", "message": "cannot import name 'backend_agg' from 'matplotlib.backends' (C:\\Users\\游箫箫\\AppData\\Roaming\\Python\\Python39\\site-packages\\matplotlib\\backends\\__init__.py)", "stack": "--------------------------------------------------------------------------- ImportError Traceback (most recent call last) Cell In[9], line 1 ----> 1 get_ipython().run_line_magic('matplotlib', 'inline') 2 import numpy as np 3 import pandas as pd File d:\\Huawei Share\\Huawei Share\\envs\\env_name\\lib\\site-packages\\IPython\\core\\interactiveshell.py:2414, in InteractiveShell.run_line_magic(self, magic_name, line, _stack_depth) 2412 kwargs['local_ns'] = self.get_local_scope(stack_depth) 2413 with self.builtin_trap: -> 2414 result = fn(*args, **kwargs) 2416 # The code below prevents the output from being displayed 2417 # when using magics with decodator @output_can_be_silenced 2418 # when the last Python token in the expression is a ';'. 2419 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False): File d:\\Huawei Share\\Huawei Share\\envs\\env_name\\lib\\site-packages\\IPython\\core\\magics\\pylab.py:99, in PylabMagics.matplotlib(self, line) 97 print(\"Available matplotlib backends: %s\" % backends_list) 98 else: ---> 99 gui, backend = self.shell.enable_matplotlib(args.gui.lower() if isinstance(args.gui, str) else args.gui) 100 self._show_matplotlib_backend(args.gui, backend) File d:\\Huawei Share\\Huawei Share\\envs\\env_name\\lib\\site-packages\\IPython\\core\\interactiveshell.py:3585, in InteractiveShell.enable_matplotlib(self, gui) 3564 def enable_matplotlib(self, gui=None): 3565 \"\"\"Enable interactive matplotlib and inline figure support. 3566 3567 This takes the following steps: (...) 3583 display figures inline. 3584 \"\"\" -> 3585 from matplotlib_inline.backend_inline import configure_inline_support

图片汉字不显示并且===== 数据可视化 ===== D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 26680 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 24515 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 35780 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 20998 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 32500 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 24230 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 24067 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 21475 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 21619 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 29615 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 22659 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 26381 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 21153 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 21475 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 21619 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 29615 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 22659 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 26381 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 21153 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 20540 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 35780 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 20998 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 20540 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 26680 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 24515 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 32500 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 24230 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 24067 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 24066 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 22330 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 28909 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 25104 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 26412 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 25928 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 30410 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 20154 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 22343 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 28040 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 36153 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 20803 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 20154 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 22343 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 28040 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 36153 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 20803 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 28857 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 25968 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 37327 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 28857 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 25968 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 37327 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 24066 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 22330 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 28909 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 25104 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 26412 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 25928 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 30410 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 39184 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 39278 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 25454 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 26512 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 21487 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 35270 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 21270 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 39184 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 39278 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 25454 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 26512 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 21487 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 35270 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 21270 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 21475 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 21619 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 29615 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 22659 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 26381 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 21153 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 35780 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 20998 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 20540 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 26680 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 24515 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 32500 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 24230 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 24067 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 20154 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 22343 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 28040 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 36153 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 20803 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 28857 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 25968 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 37327 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 24066 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 22330 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 28909 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 25104 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 26412 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 25928 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 30410 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 29305 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 24449 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 30456 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 20851 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 24615 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 26512 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 24215 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 38138 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 39184 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 39278 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 25454 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 21487 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 35270 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 21270 missing from current font. font.set_text(s, 0.0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 21475 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 21619 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 29615 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 22659 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 26381 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 21153 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 35780 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 20998 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 20540 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 26680 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 24515 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 32500 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 24230 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 24067 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 20154 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 22343 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 28040 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 36153 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 20803 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 28857 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 25968 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 37327 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 24066 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 22330 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 28909 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 25104 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 26412 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 25928 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 30410 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 29305 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 24449 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 30456 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 20851 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 24615 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 26512 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 24215 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 38138 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 39184 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 39278 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 25454 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 21487 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 35270 missing from current font. font.set_text(s, 0, flags=flags) D:\zhhhhhhh\anaconda\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 21270 missing from current font. font.set_text(s, 0, flags=flags)

import sys import csv from datetime import datetime from PyQt5.QtWidgets import * from PyQt5.QtCore import QTimer from pymodbus.client import ModbusSerialClient import matplotlib.pyplot as plt from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas import numpy as np import pandas as pd class SensorMonitorApp(QMainWindow): def __init__(self): super().__init__() self.setWindowTitle("多传感器监测系统") self.setGeometry(100, 100, 1200, 800) # 初始化Modbus客户端 self.modbus_client = ModbusSerialClient( port='COM3', baudrate=9600, bytesize=8, # 补充其他必要参数,比如 parity、stopbits 等,根据实际需求 parity='N', stopbits=1 ) # 传感器配置 self.sensors = { '光照': {'address': 1, 'reg': 0, 'value': 0, 'unit': 'lux'}, '温度': {'address': 2, 'reg': 1, 'value': 0, 'unit': '°C'}, '湿度': {'address': 3, 'reg': 2, 'value': 0, 'unit': '%'}, 'CO2': {'address': 4, 'reg': 3, 'value': 0, 'unit': 'ppm'}, '风速': {'address': 5, 'reg': 4, 'value': 0, 'unit': 'm/s'} } # 数据存储 self.history_data = [] self.max_data_points = 100 # 图表显示的数据点数 self.init_ui() self.init_plots() self.start_data_acquisition() def init_ui(self): main_widget = QWidget() main_layout = QVBoxLayout() # 实时数据显示区 realtime_group = QGroupBox("实时数据") realtime_layout = QGridLayout() self.realtime_labels = {} row, col = 0, 0 for sensor, info in self.sensors.items(): label = QLabel(f"{sensor}: -- {info['unit']}") realtime_layout.addWidget(label, row, col) self.realtime_labels[sensor] = label col += 1 if col > 2: col = 0 row += 1 realtime_group.setLayout(realtime_layout) main_layout.addWidget(realtime_group) # 图表显示区 chart_group = QGroupBox("数据趋势") chart_layout = QHBoxLayout() self.realtime_canvas = FigureCanvas(plt.figure()) self.history_canvas = FigureCanvas(plt.figure()) chart_layout.addWidget(self.realtime_canvas) chart_layout.addWidget(self.history_canvas) chart_group.setLayout(chart_layout) main_layout.addWidget(chart_group) # 阈值设置区 threshold_group = QGroupBox("阈值设置") threshold_layout = QGridLayout() self.threshold_edits = {} row, col = 0, 0 for sensor in self.sensors: label = QLabel(f"{sensor}阈值:") edit = QLineEdit("50") threshold_layout.addWidget(label, row, col) threshold_layout.addWidget(edit, row, col+1) self.threshold_edits[sensor] = edit col += 2 if col > 4: col = 0 row += 1 threshold_group.setLayout(threshold_layout) main_layout.addWidget(threshold_group) # 控制按钮区 button_layout = QHBoxLayout() self.export_btn = QPushButton("导出历史数据") self.export_btn.clicked.connect(self.export_data) button_layout.addWidget(self.export_btn) main_layout.addLayout(button_layout) main_widget.setLayout(main_layout) self.setCentralWidget(main_widget) def init_plots(self): # 实时图表初始化 self.realtime_fig = self.realtime_canvas.figure self.realtime_ax = self.realtime_fig.add_subplot(111) self.realtime_lines = {} for sensor in self.sensors: line, = self.realtime_ax.plot([], [], label=sensor) self.realtime_lines[sensor] = line self.realtime_ax.set_title("实时传感器数据") self.realtime_ax.set_xlabel("时间 (秒)") self.realtime_ax.set_ylabel("数值") self.realtime_ax.legend() self.realtime_ax.grid(True) # 历史图表初始化 self.history_fig = self.history_canvas.figure self.history_ax = self.history_fig.add_subplot(111) self.history_ax.set_title("历史数据趋势") self.history_ax.set_xlabel("时间") self.history_ax.set_ylabel("数值") self.history_ax.grid(True) # 初始化数据存储 self.time_data = np.arange(-self.max_data_points, 0) self.sensor_data = {sensor: np.zeros(self.max_data_points) for sensor in self.sensors} def start_data_acquisition(self): # 创建定时器读取传感器数据 self.timer = QTimer() self.timer.timeout.connect(self.read_sensors) self.timer.start(1000) # 1秒读取一次 def read_sensors(self): if not self.modbus_client.connect(): print("无法连接到Modbus设备") return current_time = datetime.now() data_record = {'timestamp': current_time} for sensor, info in self.sensors.items(): try: # 读取保持寄存器 response = self.modbus_client.read_holding_registers( info['reg'], count=1, slave=info['address'] ) if not response.isError(): value = response.registers[0] self.sensors[sensor]['value'] = value self.realtime_labels[sensor].setText( f"{sensor}: {value} {info['unit']}" ) data_record[sensor] = value # 更新实时图表数据 self.update_realtime_plot(sensor, value) else: print(f"读取{sensor}传感器错误") except Exception as e: print(f"读取{sensor}传感器异常: {str(e)}") # 存储历史数据 self.history_data.append(data_record) # 更新历史图表 self.update_history_plot() self.modbus_client.close() def update_realtime_plot(self, sensor, value): # 滚动更新数据 self.sensor_data[sensor] = np.roll(self.sensor_data[sensor], -1) self.sensor_data[sensor][-1] = value # 更新图表 self.realtime_lines[sensor].set_data( self.time_data, self.sensor_data[sensor] ) # 自动调整Y轴范围 all_values = np.concatenate([d for d in self.sensor_data.values()]) self.realtime_ax.set_ylim( np.min(all_values) * 0.9, np.max(all_values) * 1.1 ) self.realtime_canvas.draw() def update_history_plot(self): self.history_ax.clear() if len(self.history_data) > 1: timestamps = [d['timestamp'] for d in self.history_data] for sensor in self.sensors: values = [d.get(sensor, 0) for d in self.history_data] self.history_ax.plot(timestamps, values, label=sensor) self.history_ax.set_title("历史数据趋势") self.history_ax.set_xlabel("时间") self.history_ax.set_ylabel("数值") self.history_ax.legend() self.history_ax.grid(True) self.history_ax.xaxis_date() # 将X轴格式化为时间 self.history_canvas.draw() def export_data(self): if not self.history_data: QMessageBox.warning(self, "警告", "没有可导出的历史数据") return file_path, _ = QFileDialog.getSaveFileName( self, "导出数据", "", "Excel Files (*.xlsx);;CSV Files (*.csv)" ) if file_path: try: df = pd.DataFrame(self.history_data) df.set_index('timestamp', inplace=True) if file_path.endswith('.xlsx'): df.to_excel(file_path) else: df.to_csv(file_path) QMessageBox.information(self, "成功", "数据导出完成") except Exception as e: QMessageBox.critical(self, "错误", f"导出失败: {str(e)}") if __name__ == "__main__": app = QApplication(sys.argv) window = SensorMonitorApp() window.show() sys.exit(app.exec_())在这个代码中把传感器的modbus地址改为温湿度传感器 2 光照传感器 1 二氧化氮传感器 3 二氧化碳传感器 4 风速传感器 6 风向传感器 5

import tkinter as tk from tkinter import ttk, filedialog, messagebox import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Dense, Lambda from tensorflow.keras.optimizers import Adam from sklearn.preprocessing import MinMaxScaler import os import time import warnings import matplotlib.dates as mdates warnings.filterwarnings('ignore', category=UserWarning, module='tensorflow') mpl.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'Arial Unicode MS'] mpl.rcParams['axes.unicode_minus'] = False plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False class PINNModel(tf.keras.Model): def __init__(self, num_layers=4, hidden_units=32, dropout_rate=0.1, **kwargs): super(PINNModel, self).__init__(**kwargs) self.dense_layers = [] self.dropout_layers = [] # 创建隐藏层和对应的Dropout层 for _ in range(num_layers): self.dense_layers.append(Dense(hidden_units, activation='tanh')) self.dropout_layers.append(tf.keras.layers.Dropout(dropout_rate)) self.final_layer = Dense(1, activation='linear') # 物理参数 self.k1_raw = tf.Variable(0.1, trainable=True, dtype=tf.float32, name='k1_raw') self.k1 = tf.math.sigmoid(self.k1_raw) * 0.5 self.k2_raw = tf.Variable(0.01, trainable=True, dtype=tf.float32, name='k2_raw') self.k2 = tf.math.sigmoid(self.k2_raw) * 0.1 self.alpha_raw = tf.Variable(0.1, trainable=True, dtype=tf.float32, name='alpha_raw') self.alpha = tf.math.sigmoid(self.alpha_raw) * 1.0 self.beta_raw = tf.Variable(0.05, trainable=True, dtype=tf.float32, name='beta_raw') self.beta = tf.math.sigmoid(self.beta_raw) * 0.2 def call(self, inputs, training=False): # 输入特征重构 year, month_sin, month_cos, day_sin, day_cos, h, dt_norm, log_dt_norm = inputs # 特征组合 x = tf.concat([ year, month_sin, month_cos, day_sin, day_cos, dt_norm, log_dt_norm, h * dt_norm, h * log_dt_norm ], axis=1) # 通过神经网络层 for dense_layer, dropout_layer in zip(self.dense_layers, self.dropout_layers): x = dense_layer(x) x = dropout_layer(x, training=training) return self.final_layer(x) def physics_loss(self, inputs, h_next_pred_scaled, scaler_h, scaler_dt, training=False): """在原始空间计算物理损失""" # 输入解包 year, month_sin, month_cos, day_sin, day_cos, h_current_scaled, dt_norm, log_dt_norm = inputs # 反归一化当前水位 h_current_raw = scaler_h.inverse_transform(h_current_scaled) # 反归一化时间步长 dt_raw = scaler_dt.inverse_transform(dt_norm) # 反归一化预测值 h_next_pred_raw = scaler_h.inverse_transform(h_next_pred_scaled) # 物理参数 k1 = tf.math.sigmoid(self.k1_raw) * 0.5 k2 = tf.math.sigmoid(self.k2_raw) * 0.1 alpha = tf.math.sigmoid(self.alpha_raw) * 1.0 beta = tf.math.sigmoid(self.beta_raw) * 0.2 # 物理方程计算 exponent = - (k1 + k2 * h_current_raw) * dt_raw exponent = tf.clip_by_value(exponent, -50.0, 50.0) decay_term = h_current_raw * tf.exp(exponent) beta_exp = -beta * dt_raw beta_exp = tf.clip_by_value(beta_exp, -50.0, 50.0) external_term = alpha * (1 - tf.exp(beta_exp)) residual = h_next_pred_raw - (decay_term + external_term) return tf.reduce_mean(tf.square(residual)) class DamSeepageModel: def __init__(self, root): self.root = root self.root.title("大坝渗流预测模型(PINNs)") self.root.geometry("1200x800") # 初始化数据和归一化器 self.train_df = None self.test_df = None self.model = None self.evaluation_metrics = {} # 归一化器 self.scaler_year = MinMaxScaler(feature_range=(0, 1)) self.scaler_month = MinMaxScaler(feature_range=(0, 1)) self.scaler_day = MinMaxScaler(feature_range=(0, 1)) self.scaler_dt = MinMaxScaler(feature_range=(0, 1)) self.scaler_log_dt = MinMaxScaler(feature_range=(0, 1)) self.scaler_h = MinMaxScaler(feature_range=(0, 1)) # 创建主界面 self.create_widgets() def create_widgets(self): # 创建主框架 main_frame = ttk.Frame(self.root, padding=10) main_frame.pack(fill=tk.BOTH, expand=True) # 左侧控制面板 control_frame = ttk.LabelFrame(main_frame, text="模型控制", padding=10) control_frame.pack(side=tk.LEFT, fill=tk.Y, padx=5, pady=5) # 文件选择部分 file_frame = ttk.LabelFrame(control_frame, text="数据文件", padding=10) file_frame.pack(fill=tk.X, pady=5) # 训练集选择 ttk.Label(file_frame, text="训练集:").grid(row=0, column=0, sticky=tk.W, pady=5) self.train_file_var = tk.StringVar() ttk.Entry(file_frame, textvariable=self.train_file_var, width=30, state='readonly').grid( row=0, column=1, padx=5) ttk.Button(file_frame, text="选择文件", command=lambda: self.select_file("train")).grid(row=0, column=2) # 测试集选择 ttk.Label(file_frame, text="测试集:").grid(row=1, column=0, sticky=tk.W, pady=5) self.test_file_var = tk.StringVar() ttk.Entry(file_frame, textvariable=self.test_file_var, width=30, state='readonly').grid(row=1, column=1, padx=5) ttk.Button(file_frame, text="选择文件", command=lambda: self.select_file("test")).grid(row=1, column=2) # PINNs参数设置 param_frame = ttk.LabelFrame(control_frame, text="PINNs参数", padding=10) param_frame.pack(fill=tk.X, pady=10) # 验证集切分比例 ttk.Label(param_frame, text="验证集比例:").grid(row=0, column=0, sticky=tk.W, pady=5) self.split_ratio_var = tk.DoubleVar(value=0.2) ttk.Spinbox(param_frame, from_=0, to=1, increment=0.05, textvariable=self.split_ratio_var, width=10).grid(row=0, column=1, padx=5) # 隐藏层数量 ttk.Label(param_frame, text="网络层数:").grid(row=1, column=0, sticky=tk.W, pady=5) self.num_layers_var = tk.IntVar(value=4) ttk.Spinbox(param_frame, from_=2, to=8, increment=1, textvariable=self.num_layers_var, width=10).grid(row=1, column=1, padx=5) # 每层神经元数量 ttk.Label(param_frame, text="神经元数/层:").grid(row=2, column=0, sticky=tk.W, pady=5) self.hidden_units_var = tk.IntVar(value=32) ttk.Spinbox(param_frame, from_=16, to=128, increment=4, textvariable=self.hidden_units_var, width=10).grid(row=2, column=1, padx=5) # 训练轮次 ttk.Label(param_frame, text="训练轮次:").grid(row=3, column=0, sticky=tk.W, pady=5) self.epochs_var = tk.IntVar(value=500) ttk.Spinbox(param_frame, from_=100, to=2000, increment=100, textvariable=self.epochs_var, width=10).grid(row=3, column=1, padx=5) # 物理损失权重 ttk.Label(param_frame, text="物理损失权重:").grid(row=4, column=0, sticky=tk.W, pady=5) self.physics_weight_var = tk.DoubleVar(value=0.5) ttk.Spinbox(param_frame, from_=0.1, to=1.0, increment=0.1, textvariable=self.physics_weight_var, width=10).grid(row=4, column=1, padx=5) # 控制按钮 btn_frame = ttk.Frame(control_frame) btn_frame.pack(fill=tk.X, pady=10) ttk.Button(btn_frame, text="训练模型", command=self.train_model).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="预测结果", command=self.predict).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="保存结果", command=self.save_results).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="重置", command=self.reset).pack(side=tk.RIGHT, padx=5) # 状态栏 self.status_var = tk.StringVar(value="就绪") status_bar = ttk.Label(control_frame, textvariable=self.status_var, relief=tk.SUNKEN, anchor=tk.W) status_bar.pack(fill=tk.X, side=tk.BOTTOM) # 右侧结果显示区域 result_frame = ttk.Frame(main_frame) result_frame.pack(side=tk.RIGHT, fill=tk.BOTH, expand=True, padx=5, pady=5) # 创建标签页 self.notebook = ttk.Notebook(result_frame) self.notebook.pack(fill=tk.BOTH, expand=True) # 损失曲线标签页 self.loss_frame = ttk.Frame(self.notebook) self.notebook.add(self.loss_frame, text="训练损失") # 在预测结果标签页 self.prediction_frame = ttk.Frame(self.notebook) self.notebook.add(self.prediction_frame, text="预测结果") # 指标显示 self.metrics_var = tk.StringVar() metrics_label = ttk.Label( self.prediction_frame, textvariable=self.metrics_var, font=('TkDefaultFont', 10, 'bold'), relief='ridge', padding=5 ) metrics_label.pack(fill=tk.X, padx=5, pady=5) # 创建图表容器Frame chart_frame = ttk.Frame(self.prediction_frame) chart_frame.pack(fill=tk.BOTH, expand=True, padx=5, pady=5) # 初始化绘图区域 self.fig, self.ax = plt.subplots(figsize=(10, 6)) self.canvas = FigureCanvasTkAgg(self.fig, master=chart_frame) self.canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True) # 添加Matplotlib工具栏(缩放、平移等) from matplotlib.backends.backend_tkagg import NavigationToolbar2Tk self.toolbar = NavigationToolbar2Tk(self.canvas, chart_frame) self.toolbar.update() self.canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True) # 损失曲线画布(同样添加工具栏) loss_chart_frame = ttk.Frame(self.loss_frame) loss_chart_frame.pack(fill=tk.BOTH, expand=True, padx=5, pady=5) self.loss_fig, self.loss_ax = plt.subplots(figsize=(10, 4)) self.loss_canvas = FigureCanvasTkAgg(self.loss_fig, master=loss_chart_frame) self.loss_canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True) self.loss_toolbar = NavigationToolbar2Tk(self.loss_canvas, loss_chart_frame) self.loss_toolbar.update() self.loss_canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True) def preprocess_data(self, df, is_training=False): """增强的时间特征处理""" # 创建时间戳 if 'datetime' not in df.columns: time_cols = ['year', 'month', 'day'] for col in ['hour', 'minute', 'second']: if col not in df.columns: df[col] = 0 df['datetime'] = pd.to_datetime(df[time_cols]) df = df.set_index('datetime') # 计算时间步长 if 'dt' not in df.columns: df['dt'] = df.index.to_series().diff().dt.total_seconds() / 86400 df['dt'] = df['dt'].fillna(df['dt'].mean()) # 处理异常时间步长 dt_mean = df['dt'].mean() df.loc[df['dt'] <= 0, 'dt'] = dt_mean df.loc[df['dt'] > 30, 'dt'] = dt_mean # 添加对数变换 df['log_dt'] = np.log1p(df['dt']) # 周期性时间特征 df['year_norm'] = df['year'] df['month_sin'] = np.sin(2 * np.pi * df['month'] / 12) df['month_cos'] = np.cos(2 * np.pi * df['month'] / 12) df['day_sin'] = np.sin(2 * np.pi * df['day'] / 31) df['day_cos'] = np.cos(2 * np.pi * df['day'] / 31) # 归一化处理 if is_training: self.scaler_year.fit(df[['year_norm']]) self.scaler_month.fit(df[['month_sin', 'month_cos']]) self.scaler_day.fit(df[['day_sin', 'day_cos']]) self.scaler_dt.fit(df[['dt']]) self.scaler_log_dt.fit(df[['log_dt']]) self.scaler_h.fit(df[['水位']]) # 应用归一化 df[['year_norm']] = self.scaler_year.transform(df[['year_norm']]) df[['month_sin', 'month_cos']] = self.scaler_month.transform(df[['month_sin', 'month_cos']]) df[['day_sin', 'day_cos']] = self.scaler_day.transform(df[['day_sin', 'day_cos']]) df[['dt_norm']] = self.scaler_dt.transform(df[['dt']]) df[['log_dt_norm']] = self.scaler_log_dt.transform(df[['log_dt']]) df[['水位_norm']] = self.scaler_h.transform(df[['水位']]) return df def select_file(self, file_type): """选择Excel文件并应用预处理""" try: file_path = filedialog.askopenfilename( title=f"选择{file_type}集Excel文件", filetypes=[("Excel文件", "*.xlsx *.xls"), ("所有文件", "*.*")] ) if not file_path: return df = pd.read_excel(file_path) # 验证必需列 required_cols = ['year', 'month', 'day', '水位'] missing_cols = [col for col in required_cols if col not in df.columns] if missing_cols: messagebox.showerror("列名错误", f"缺少必需列: {', '.join(missing_cols)}") return # 应用预处理 is_training = (file_type == "train") df = self.preprocess_data(df, is_training=is_training) # 保存数据 if file_type == "train": self.train_df = df self.train_file_var.set(os.path.basename(file_path)) self.status_var.set(f"已加载训练集: {len(self.train_df)}条数据") else: self.test_df = df self.test_file_var.set(os.path.basename(file_path)) self.status_var.set(f"已加载测试集: {len(self.test_df)}条数据") except Exception as e: error_msg = f"文件读取失败: {str(e)}\n\n请确保:\n1. 文件不是打开状态\n2. 文件格式正确\n3. 包含必需的时间和水位列" messagebox.showerror("文件错误", error_msg) # ... [calculate_metrics 方法保持不变] ... def train_model(self): """训练PINNs模型(带早停机制+训练指标监控)""" if self.train_df is None: messagebox.showwarning("警告", "请先选择训练集文件") return try: self.status_var.set("正在预处理数据...") self.root.update() # 从训练集中切分训练子集和验证子集 split_ratio = 1 - self.split_ratio_var.get() split_idx = int(len(self.train_df) * split_ratio) train_subset = self.train_df.iloc[:split_idx] valid_subset = self.train_df.iloc[split_idx:] # 检查数据量是否足够 if len(train_subset) < 2 or len(valid_subset) < 2: messagebox.showerror("数据错误", "训练集数据量不足(至少需要2个时间步)") return # 准备训练数据 train_inputs = [ train_subset['year_norm'].values[1:].reshape(-1, 1).astype(np.float32), train_subset['month_sin'].values[1:].reshape(-1, 1).astype(np.float32), train_subset['month_cos'].values[1:].reshape(-1, 1).astype(np.float32), train_subset['day_sin'].values[1:].reshape(-1, 1).astype(np.float32), train_subset['day_cos'].values[1:].reshape(-1, 1).astype(np.float32), train_subset['水位_norm'].values[:-1].reshape(-1, 1).astype(np.float32), train_subset['dt_norm'].values[1:].reshape(-1, 1).astype(np.float32), train_subset['log_dt_norm'].values[1:].reshape(-1, 1).astype(np.float32) ] h_next_train_scaled = train_subset['水位_norm'].values[1:].reshape(-1, 1).astype(np.float32) h_next_train_true = train_subset['水位'].values[1:].reshape(-1, 1) # 准备验证数据 valid_inputs = [ valid_subset['year_norm'].values[1:].reshape(-1, 1).astype(np.float32), valid_subset['month_sin'].values[1:].reshape(-1, 1).astype(np.float32), valid_subset['month_cos'].values[1:].reshape(-1, 1).astype(np.float32), valid_subset['day_sin'].values[1:].reshape(-1, 1).astype(np.float32), valid_subset['day_cos'].values[1:].reshape(-1, 1).astype(np.float32), valid_subset['水位_norm'].values[:-1].reshape(-1, 1).astype(np.float32), valid_subset['dt_norm'].values[1:].reshape(-1, 1).astype(np.float32), valid_subset['log_dt_norm'].values[1:].reshape(-1, 1).astype(np.float32) ] h_next_valid_scaled = valid_subset['水位_norm'].values[1:].reshape(-1, 1).astype(np.float32) h_next_valid_true = valid_subset['水位'].values[1:].reshape(-1, 1) # 创建模型和优化器 self.model = PINNModel( num_layers=self.num_layers_var.get(), hidden_units=self.hidden_units_var.get() ) # 创建学习率调度器 initial_lr = 0.001 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=initial_lr, decay_steps=100, decay_rate=0.95, staircase=True ) optimizer = Adam(learning_rate=lr_schedule) # 创建数据集 def create_dataset(inputs, targets): dataset = tf.data.Dataset.from_tensor_slices(( tuple(inputs), targets )) return dataset.shuffle(buffer_size=1024).batch(32) train_dataset = create_dataset(train_inputs, h_next_train_scaled) valid_dataset = create_dataset(valid_inputs, h_next_valid_scaled) # 初始化训练历史记录 train_data_loss_history = [] physics_loss_history = [] valid_data_loss_history = [] train_metrics_history = [] valid_metrics_history = [] # 早停机制参数 patience = int(self.epochs_var.get() / 3) min_delta = 1e-4 best_valid_loss = float('inf') wait = 0 best_epoch = 0 best_weights = None start_time = time.time() # 自定义训练循环 for epoch in range(self.epochs_var.get()): # 获取当前学习率 current_lr = optimizer.learning_rate.numpy() # 计算自适应物理损失权重 current_epoch_ratio = epoch / self.epochs_var.get() physics_weight = self.physics_weight_var.get() * (1 - current_epoch_ratio * 0.5) # 训练阶段 epoch_train_data_loss = [] epoch_physics_loss = [] train_pred_scaled = [] for step, (inputs, h_next_batch) in enumerate(train_dataset): with tf.GradientTape() as tape: # 预测下一时刻水位 h_pred = self.model(inputs, training=True) data_loss = tf.reduce_mean(tf.square(h_next_batch - h_pred)) # 计算物理损失 physics_loss = self.model.physics_loss( inputs, h_pred, self.scaler_h, self.scaler_dt, training=True ) # 总损失 loss = data_loss + physics_weight * physics_loss grads = tape.gradient(loss, self.model.trainable_variables) optimizer.apply_gradients(zip(grads, self.model.trainable_variables)) epoch_train_data_loss.append(data_loss.numpy()) epoch_physics_loss.append(physics_loss.numpy()) train_pred_scaled.append(h_pred.numpy()) # 合并训练预测值 train_pred_scaled = np.concatenate(train_pred_scaled, axis=0) train_pred_true = self.scaler_h.inverse_transform(train_pred_scaled) train_metrics = self.calculate_metrics( h_next_train_true.flatten(), train_pred_true.flatten() ) train_metrics_history.append(train_metrics) # 验证阶段 epoch_valid_data_loss = [] valid_pred_scaled = [] for (inputs, h_next_batch) in valid_dataset: h_pred = self.model(inputs, training=False) valid_data_loss = tf.reduce_mean(tf.square(h_next_batch - h_pred)) epoch_valid_data_loss.append(valid_data_loss.numpy()) valid_pred_scaled.append(h_pred.numpy()) # 合并验证预测值 valid_pred_scaled = np.concatenate(valid_pred_scaled, axis=0) valid_pred_true = self.scaler_h.inverse_transform(valid_pred_scaled) valid_metrics = self.calculate_metrics( h_next_valid_true.flatten(), valid_pred_true.flatten() ) valid_metrics_history.append(valid_metrics) # 计算平均损失 avg_train_data_loss = np.mean(epoch_train_data_loss) avg_physics_loss = np.mean(epoch_physics_loss) avg_valid_data_loss = np.mean(epoch_valid_data_loss) # 记录损失 train_data_loss_history.append(avg_train_data_loss) physics_loss_history.append(avg_physics_loss) valid_data_loss_history.append(avg_valid_data_loss) # 早停机制逻辑 current_valid_loss = avg_valid_data_loss if current_valid_loss < best_valid_loss - min_delta: best_valid_loss = current_valid_loss best_epoch = epoch + 1 wait = 0 best_weights = self.model.get_weights() else: wait += 1 if wait >= patience: self.status_var.set(f"触发早停!最佳轮次: {best_epoch},最佳验证损失: {best_valid_loss:.4f}") if best_weights is not None: self.model.set_weights(best_weights) break # 更新状态 if epoch % 1 == 0: train_rmse = train_metrics['RMSE'] valid_rmse = valid_metrics['RMSE'] train_r2 = train_metrics['R2'] valid_r2 = valid_metrics['R2'] elapsed = time.time() - start_time self.status_var.set( f"训练中 | 轮次: {epoch + 1}/{self.epochs_var.get()} | " f"学习率: {current_lr:.6f} | " f"训练RMSE: {train_rmse:.4f} | 验证RMSE: {valid_rmse:.4f} | " f"训练R²: {train_r2:.4f} | 验证R²: {valid_r2:.4f} | " f"k1: {self.model.k1.numpy():.6f}, k2: {self.model.k2.numpy():.6f} | " f"时间: {elapsed:.1f}秒 | 早停等待: {wait}/{patience}" ) self.root.update() # 绘制损失曲线 self.loss_ax.clear() epochs_range = range(1, len(train_data_loss_history) + 1) self.loss_ax.plot(epochs_range, train_data_loss_history, 'b-', label='训练数据损失') self.loss_ax.plot(epochs_range, physics_loss_history, 'r--', label='物理损失') self.loss_ax.plot(epochs_range, valid_data_loss_history, 'g-.', label='验证数据损失') self.loss_ax.set_title('PINNs训练与验证损失') self.loss_ax.set_xlabel('轮次') self.loss_ax.set_ylabel('损失', rotation=0) self.loss_ax.legend() self.loss_ax.grid(True, alpha=0.3) self.loss_ax.set_yscale('log') self.loss_canvas.draw() # 训练完成提示 elapsed = time.time() - start_time if wait >= patience: completion_msg = ( f"早停触发 | 最佳轮次: {best_epoch} | 最佳验证损失: {best_valid_loss:.4f} | " f"最佳验证RMSE: {valid_metrics_history[best_epoch - 1]['RMSE']:.4f} | " f"总时间: {elapsed:.1f}秒" ) else: completion_msg = ( f"训练完成 | 总轮次: {self.epochs_var.get()} | " f"最终训练RMSE: {train_metrics_history[-1]['RMSE']:.4f} | " f"最终验证RMSE: {valid_metrics_history[-1]['RMSE']:.4f} | " f"最终训练R²: {train_metrics_history[-1]['R2']:.4f} | " f"最终验证R²: {valid_metrics_history[-1]['R2']:.4f} | " f"总时间: {elapsed:.1f}秒" ) # 保存训练历史 self.train_history = { 'train_data_loss': train_data_loss_history, 'physics_loss': physics_loss_history, 'valid_data_loss': valid_data_loss_history, 'train_metrics': train_metrics_history, 'valid_metrics': valid_metrics_history } # 保存学习到的物理参数 self.learned_params = { "k1": self.model.k1.numpy(), "k2": self.model.k2.numpy(), "alpha": self.model.alpha.numpy(), "beta": self.model.beta.numpy() } self.status_var.set(completion_msg) messagebox.showinfo("训练完成", f"PINNs模型训练成功完成!\n{completion_msg}") except Exception as e: messagebox.showerror("训练错误", f"模型训练失败:\n{str(e)}") self.status_var.set("训练失败") import traceback traceback.print_exc() def predict(self): """使用PINNs模型进行递归预测(带Teacher Forcing和蒙特卡洛Dropout)""" if self.model is None: messagebox.showwarning("警告", "请先训练模型") return if self.test_df is None: messagebox.showwarning("警告", "请先选择测试集文件") return try: self.status_var.set("正在生成预测(使用Teacher Forcing和MC Dropout)...") self.root.update() # 准备测试数据 t_test = self.test_df[['year_norm', 'month_sin', 'month_cos', 'day_sin', 'day_cos']].values h_test_scaled = self.test_df['水位_norm'].values.reshape(-1, 1) dt_test = self.test_df[['dt_norm', 'log_dt_norm']].values actual_values = self.test_df['水位'].values.reshape(-1, 1) test_time = self.test_df.index # 改进的递归预测参数 n = len(t_test) mc_iterations = 100 adaptive_forcing = True # 存储蒙特卡洛采样结果 mc_predictions_scaled = np.zeros((mc_iterations, n, 1), dtype=np.float32) # 进行多次蒙特卡洛采样 for mc_iter in range(mc_iterations): predicted_scaled = np.zeros((n, 1), dtype=np.float32) predicted_scaled[0] = h_test_scaled[0] # 第一个点使用真实值 # 递归预测 for i in range(1, n): # 自适应教师强制 if adaptive_forcing: teacher_forcing_prob = 0.7 + 0.2 * min(1.0, i / (0.7 * n)) else: teacher_forcing_prob = 0.7 # 决定使用真实值还是预测值 use_actual = np.random.rand() < teacher_forcing_prob if use_actual and i < n - 1: h_prev = h_test_scaled[i - 1:i] else: h_prev = predicted_scaled[i - 1:i] # 准备输入 inputs = [ t_test[i:i + 1, 0:1], # year_norm t_test[i:i + 1, 1:2], # month_sin t_test[i:i + 1, 2:3], # month_cos t_test[i:i + 1, 3:4], # day_sin t_test[i:i + 1, 4:5], # day_cos h_prev, dt_test[i:i + 1, 0:1], # dt_norm dt_test[i:i + 1, 1:2] # log_dt_norm ] # 预测 h_pred = self.model(inputs, training=True).numpy() # 物理模型预测值 k1 = self.learned_params['k1'] k2 = self.learned_params['k2'] alpha = self.learned_params['alpha'] beta = self.learned_params['beta'] # 反归一化当前水位 h_prev_raw = self.scaler_h.inverse_transform(h_prev) dt_i = self.scaler_dt.inverse_transform(dt_test[i:i + 1, 0:1]) # 物理方程预测 exponent = - (k1 + k2 * h_prev_raw) * dt_i decay_term = h_prev_raw * np.exp(exponent) external_term = alpha * (1 - np.exp(-beta * dt_i)) physics_pred = decay_term + external_term # 反归一化神经网络预测 nn_pred_raw = self.scaler_h.inverse_transform(h_pred) # 混合预测 physics_weight = 0.3 final_pred_raw = physics_weight * physics_pred + (1 - physics_weight) * nn_pred_raw final_pred_scaled = self.scaler_h.transform(final_pred_raw) predicted_scaled[i] = final_pred_scaled mc_predictions_scaled[mc_iter] = predicted_scaled # 计算预测统计量 mean_pred_scaled = np.mean(mc_predictions_scaled, axis=0) std_pred_scaled = np.std(mc_predictions_scaled, axis=0) # 反归一化结果 predictions = self.scaler_h.inverse_transform(mean_pred_scaled) uncertainty = self.scaler_h.inverse_transform(std_pred_scaled) * 1.96 # 95%置信区间 # 绘制结果 self.plot_results(test_time, actual_values, predictions, uncertainty) # 计算评估指标(排除第一个点) eval_actual = actual_values[1:].flatten() eval_pred = predictions[1:].flatten() self.evaluation_metrics = self.calculate_metrics(eval_actual, eval_pred) # 添加不确定性指标 avg_uncertainty = np.mean(uncertainty) max_uncertainty = np.max(uncertainty) self.evaluation_metrics['Avg Uncertainty'] = avg_uncertainty self.evaluation_metrics['Max Uncertainty'] = max_uncertainty # 显示指标 self.display_metrics(teacher_forcing_prob) # 保存预测结果 self.predictions = predictions self.uncertainty = uncertainty self.actual_values = actual_values self.test_time = test_time self.mc_predictions = mc_predictions_scaled self.status_var.set(f"预测完成(MC Dropout采样{mc_iterations}次)") except Exception as e: messagebox.showerror("预测错误", f"预测失败:\n{str(e)}") self.status_var.set("预测失败") import traceback traceback.print_exc() def plot_results(self, test_time, actual_values, predictions, uncertainty): """绘制预测结果""" self.ax.clear() # 计算y轴范围 median_val = np.median(actual_values) data_range = np.std(actual_values) * 4 y_half_range = max(data_range, 10) y_min_adjusted = median_val - y_half_range y_max_adjusted = median_val + y_half_range if y_max_adjusted - y_min_adjusted < 1: y_min_adjusted -= 5 y_max_adjusted += 5 # 绘制结果 self.ax.plot(test_time, actual_values, 'b-', label='真实值', linewidth=2) self.ax.plot(test_time, predictions, 'r--', label='预测均值', linewidth=2) self.ax.fill_between( test_time, (predictions - uncertainty).flatten(), (predictions + uncertainty).flatten(), color='orange', alpha=0.3, label='95%置信区间' ) # 设置坐标轴 self.ax.set_ylim(y_min_adjusted, y_max_adjusted) self.ax.set_title('大坝渗流水位预测(PINNs with MC Dropout)') self.ax.set_xlabel('时间') self.ax.set_ylabel('测压管水位', rotation=0) self.ax.legend(loc='best') # 优化时间轴 self.ax.xaxis.set_major_locator(mdates.YearLocator()) self.ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y')) self.ax.xaxis.set_minor_locator(mdates.MonthLocator(interval=2)) self.ax.grid(which='minor', axis='x', linestyle=':', color='gray', alpha=0.3) self.ax.grid(which='major', axis='y', linestyle='-', color='lightgray', alpha=0.5) # 更新画布 self.canvas.draw() def display_metrics(self, teacher_forcing_prob): """显示评估指标""" metrics_text = ( f"MSE: {self.evaluation_metrics['MSE']:.4f} | " f"RMSE: {self.evaluation_metrics['RMSE']:.4f} | " f"MAE: {self.evaluation_metrics['MAE']:.4f} | " f"MAPE: {self.evaluation_metrics['MAPE']:.2f}% | " f"R²: {self.evaluation_metrics['R2']:.4f}\n" f"平均不确定性: {self.evaluation_metrics['Avg Uncertainty']:.4f} | " f"最大不确定性: {self.evaluation_metrics['Max Uncertainty']:.4f}" ) self.metrics_var.set(metrics_text) # 在图表上添加指标 self.ax.text( 0.5, 1.05, metrics_text, transform=self.ax.transAxes, ha='center', fontsize=8, bbox=dict(facecolor='white', alpha=0.8) ) params_text = ( f"物理参数: k1={self.learned_params['k1']:.4f}, " f"k2={self.learned_params['k2']:.4f}, " f"alpha={self.learned_params['alpha']:.4f}, " f"beta={self.learned_params['beta']:.4f} | " f"Teacher Forcing概率: {teacher_forcing_prob:.2f}" ) self.ax.text( 0.5, 1.12, params_text, transform=self.ax.transAxes, ha='center', fontsize=8, bbox=dict(facecolor='white', alpha=0.8) ) # 调整布局 plt.tight_layout(pad=2.0) # ... [save_results 和 reset 方法保持不变] ... if __name__ == "__main__": root = tk.Tk() app = DamSeepageModel(root) root.mainloop() 检查错误

最新推荐

recommend-type

tock-nlp-admin-server-22.3.0-sources.jar

tock-nlp-admin-server-22.3.0-sources.jar
recommend-type

tock-bot-connector-teams-22.9.2.jar

tock-bot-connector-teams-22.9.2.jar
recommend-type

【scratch2.0少儿编程-游戏原型-动画-项目源码】接女孩.zip

资源说明: 1:本资料仅用作交流学习参考,请切勿用于商业用途。更多精品资源请访问 https://blog.csdn.net/ashyyyy/article/details/146464041 2:一套精品实用scratch2.0少儿编程游戏、动画源码资源,无论是入门练手还是项目复用都超实用,省去重复开发时间,让开发少走弯路!
recommend-type

cybrid-api-bank-java-v0.75.3.jar

cybrid-api-bank-java-v0.75.3.jar
recommend-type

mutable-utils-1.0.4-javadoc.jar

mutable-utils-1.0.4-javadoc.jar
recommend-type

Node.js构建的运动咖啡馆RESTful API介绍

标题《sportscafeold:体育咖啡馆》指出了项目名称为“体育咖啡馆”,这个名字暗示了该项目可能是一个结合了运动和休闲主题的咖啡馆相关的网络服务平台。该项目运用了多种技术栈,核心的开发语言为JavaScript,这从标签中可以得到明确的信息。 从描述中可以提取以下知识点: 1. **Node.js**:体育咖啡馆项目使用了Node.js作为服务器端运行环境。Node.js是一个基于Chrome V8引擎的JavaScript运行环境,它能够使得JavaScript应用于服务器端开发。Node.js的事件驱动、非阻塞I/O模型使其适合处理大量并发连接,这对于RESTFUL API的构建尤为重要。 2. **Express Framework**:项目中使用了Express框架来创建RESTFUL API。Express是基于Node.js平台,快速、灵活且极简的Web应用开发框架。它提供了构建Web和移动应用的强大功能,是目前最流行的Node.js Web应用框架之一。RESTFUL API是一组遵循REST原则的应用架构,其设计宗旨是让Web服务通过HTTP协议进行通信,并且可以使用各种语言和技术实现。 3. **Mongoose ORM**:这个项目利用了Mongoose作为操作MongoDB数据库的接口。Mongoose是一个对象文档映射器(ODM),它为Node.js提供了MongoDB数据库的驱动。通过Mongoose可以定义数据模型,进行数据库操作和查询,从而简化了对MongoDB数据库的操作。 4. **Passport.js**:项目中采用了Passport.js库来实现身份验证系统。Passport是一个灵活的Node.js身份验证中间件,它支持多种验证策略,例如用户名和密码、OAuth等。它提供了标准化的方法来为用户登录提供认证,是用户认证功能的常用解决方案。 5. **版权信息**:项目的版权声明表明了Sportscafe 2015是版权所有者,这表明项目或其相关内容最早发布于2015年或之前。这可能表明该API背后有商业实体的支持或授权使用。 从【压缩包子文件的文件名称列表】中我们可以了解到,该文件的版本控制仓库使用的是“master”分支。在Git版本控制系统中,“master”分支通常用于存放当前可部署的稳定版本代码。在“master”分支上进行的更改通常都是经过测试且准备发布到生产环境的。 综上所述,我们可以知道体育咖啡馆项目是一个利用现代JavaScript技术栈搭建的后端服务。它包含了处理HTTP请求的Express框架、连接MongoDB数据库的Mongoose库和实现用户身份验证的Passport.js中间件。该项目可用于构建提供体育信息、咖啡馆菜单信息、预约服务等的Web应用或API服务,这为体育咖啡馆的营销、用户体验和数据管理提供了可能。 考虑到文档资料的提及,该项目的安装和API文档应该包含在项目资料中,可能在项目的README文件或其他说明文档中。对于项目的使用者或者开发者而言,这部分文档非常重要,因为它们可以提供详细的信息和指导,帮助用户快速部署和使用该API。 总结来说,这是一套针对体育咖啡馆相关业务的后端解决方案,它使用了流行的开源技术栈,可以灵活地应用于体育咖啡馆的网络服务中,如信息发布、在线预约、会员管理等。
recommend-type

【LNR优化与用户体验】:一文看透互操作优化如何提升用户感知

# 摘要 LNR(邻区关系优化)是提升移动通信网络性能与用户体验的关键技术。本文系统阐述了LNR优化的基本概念、理论基础与技术实现路径,构建了包括信道质量评估、干扰建模及关键性能指标分析在内的数学模型,并探讨了参数配置、邻区管理及AI与大数据在LNR优化中的应用。通过量化用户感知指标,分析了LNR优化对视频流畅度、页面加载速度及切换性能的实际改善效果,并结合典型场景验证了其优化成效。本文进一步展望了LNR技术在5G及未来网络中的发展趋势与技术挑战。
recommend-type

Java1.8 的编程语言、使用场景、版本号、厂商、是否开源、发行日期、终止日期、可替代产品、推荐产品是什么

以下是关于 **Java 1.8** 的全面信息汇总,涵盖其编程语言特性、使用场景、版本号、厂商、是否开源、发行日期、终止支持日期、可替代产品和推荐产品。 --- ## ✅ Java 1.8 综合信息表 | 项目 | 内容 | |------|------| | **编程语言** | Java | | **版本号** | Java 1.8(也称为 Java 8) | | **厂商** | Oracle、Adoptium、Amazon(Corretto)、Azul(Zulu)、Red Hat、IBM 等 | | **是否开源** | ✅ 是(OpenJDK 1.8 是开源的,Oracle
recommend-type

Java开发的教区牧民支持系统介绍

根据给定文件信息,下面将详细阐述相关知识点: ### 标题知识点 #### catecumenus-java: 教区牧民支持系统 - **Java技术栈应用**:标题提到的“catecumenus-java”表明这是一个使用Java语言开发的系统。Java是目前最流行的编程语言之一,广泛应用于企业级应用、Web开发、移动应用等,尤其是在需要跨平台运行的应用中。Java被设计为具有尽可能少的实现依赖,所以它可以在多种处理器上运行。 - **教区牧民支持系统**:从标题来看,这个系统可能面向的是教会管理或教区管理,用来支持牧民(教会领导者或牧师)的日常管理工作。具体功能可能包括教友信息管理、教区活动安排、宗教教育资料库、财务管理、教堂资源调配等。 ### 描述知识点 #### 儿茶类 - **儿茶素(Catechin)**:描述中提到的“儿茶类”可能与“catecumenus”(新信徒、教徒)有关联,暗示这个系统可能与教会或宗教教育相关。儿茶素是一类天然的多酚类化合物,常见于茶、巧克力等植物中,具有抗氧化、抗炎等多种生物活性,但在系统标题中可能并无直接关联。 - **系统版本号**:“0.0.1”表示这是一个非常初期的版本,意味着该系统可能刚刚开始开发,功能尚不完善。 ### 标签知识点 #### Java - **Java语言特点**:标签中明确提到了“Java”,这暗示了整个系统都是用Java编程语言开发的。Java的特点包括面向对象、跨平台(即一次编写,到处运行)、安全性、多线程处理能力等。系统使用Java进行开发,可能看重了这些特点,尤其是在构建可扩展、稳定的后台服务。 - **Java应用领域**:Java广泛应用于企业级应用开发中,包括Web应用程序、大型系统后台、桌面应用以及移动应用(Android)。所以,此系统可能也会涉及这些技术层面。 ### 压缩包子文件的文件名称列表知识点 #### catecumenus-java-master - **Git项目结构**:文件名称中的“master”表明了这是Git版本控制系统中的一个主分支。在Git中,“master”分支通常被用作项目的主干,是默认的开发分支,所有开发工作都是基于此分支进行的。 - **项目目录结构**:在Git项目中,“catecumenus-java”文件夹应该包含了系统的源代码、资源文件、构建脚本、文档等。文件夹可能包含各种子文件夹和文件,比如src目录存放Java源代码,lib目录存放相关依赖库,以及可能的build.xml文件用于构建过程(如Ant或Maven构建脚本)。 ### 结合以上信息的知识点整合 综合以上信息,我们可以推断“catecumenus-java: 教区牧民支持系统”是一个使用Java语言开发的系统,可能正处于初级开发阶段。这个系统可能是为了支持教会内部管理,提供信息管理、资源调度等功能。其使用Java语言的目的可能是希望利用Java的多线程处理能力、跨平台特性和强大的企业级应用支持能力,以实现一个稳定和可扩展的系统。项目结构遵循了Git版本控制的规范,并且可能采用了模块化的开发方式,各个功能模块的代码和资源文件都有序地组织在不同的子文件夹内。 该系统可能采取敏捷开发模式,随着版本号的增加,系统功能将逐步完善和丰富。由于是面向教会的内部支持系统,对系统的用户界面友好性、安全性和数据保护可能会有较高的要求。此外,考虑到宗教性质的敏感性,系统的开发和使用可能还需要遵守特定的隐私和法律法规。
recommend-type

LNR切换成功率提升秘籍:参数配置到网络策略的全面指南

# 摘要 LNR(LTE to NR)切换技术是5G网络部署中的关键环节,直接影