活动介绍

利用Kubernetes构建现代数据平台与数据湖

立即解锁
发布时间: 2025-08-30 00:12:51 阅读量: 5 订阅数: 19 AIGC
### 利用Kubernetes构建现代数据平台与数据湖 #### 1. 引言 在当今的数据驱动时代,企业需要处理和分析海量的数据。Kubernetes作为一种强大的容器编排工具,为构建现代数据平台提供了有力支持。同时,数据湖的概念也逐渐成为企业存储和管理大量不同类型数据的重要解决方案。本文将介绍如何利用Kubernetes与相关技术,实现数据的处理、存储和分析,并构建数据湖。 #### 2. JupyterLab与Kubernetes及相关技术集成 JupyterLab是一个用于交互式计算的集成开发环境,与Kubernetes结合可以为数据科学活动提供强大的支持。通过JupyterHub,可以方便地在Kubernetes上部署和管理JupyterLab环境。 ##### 2.1 Kubernetes API交互 - **CLI方式**:默认的JupyterLab环境包含命令行界面(CLI)终端,定制的JupyterLab提供了kubectl工具。通过自定义服务账户和基于角色的访问控制(RBAC)配置,kubectl可以与Kubernetes API通信,例如获取当前命名空间中运行的Pod列表。 ```shell # 在JupyterLab终端运行kubectl获取Pod列表 kubectl get pods ``` - **Python代码方式**:使用Kubernetes的官方Python客户端库,在基于Python的Jupyter Notebook中可以与Kubernetes API进行通信。扩展JupyterLab Pod使用的服务账户权限后,Python可以执行任何Kubernetes API操作,如创建与数据科学、分析或ETL活动相关的Pod、Jobs、CronJobs或Deployments。 ```python # 示例代码,使用Python客户端库与Kubernetes API通信 from kubernetes import client, config # 加载配置 config.load_kube_config() # 创建API客户端 v1 = client.CoreV1Api() # 获取Pod列表 pod_list = v1.list_namespaced_pod("default") for pod in pod_list.items: print(f"Pod名称: {pod.metadata.name}") ``` ##### 2.2 Kafka数据交互 Kafka是一个强大的消息队列系统,用于在服务之间传递事件和数据。在基于Python的Jupyter Notebook中,只需几行代码就可以向Kafka主题发布模拟设备传感器数据。 ```python # 示例代码,使用Python向Kafka主题发布数据 from kafka import KafkaProducer import json # 创建Kafka生产者 producer = KafkaProducer( bootstrap_servers=['kafka-headless:9092'], value_serializer=lambda v: json.dumps(v).encode('utf-8') ) # 模拟数据 data = {'sensor_id': 1, 'value': 25.5} # 发送数据到Kafka主题 producer.send('metrics', value=data) producer.flush() ``` ##### 2.3 Elasticsearch数据查询 Elasticsearch是一个分布式搜索和分析引擎,可用于存储和检索大量数据。在Jupyter Notebook中,可以使用Python编写简单的查询,对以`apk8s-metrics-`开头的Elasticsearch索引进行匹配查询。 ```python # 示例代码,使用Python查询Elasticsearch from elasticsearch import Elasticsearch # 创建Elasticsearch客户端 es = Elasticsearch(['http://elasticsearch:9200']) # 执行查询 query = { "query": { "match_all": {} } } result = es.search(index="apk8s-metrics-*", body=query) # 打印查询结果 for hit in result['hits']['hits']: print(hit['_source']) ``` ##### 2.4 Mosquitto MQTT数据消费 MQTT是一种轻量级的消息传输协议,常用于物联网通信和指标收集。在Jupyter Notebook中,只需几行代码就可以从MQTT主题消费事件。 ```python # 示例代码,使用Python消费MQTT主题数据 import paho.mqtt.client as mqtt # 定义回调函数 def on_connect(client, userdata, flags, rc): print("Connected with result code "+str(rc)) client.subscribe("dev/apk8s/lightbulb") def on_message(client, userdata, msg): print(msg.topic+" "+str(msg.payload)) # 创建MQTT客户端 client = mqtt.Client() client.on_connect = on_connect client.on_message = on_message # 连接到MQTT代理 client.connect("mqtt", 1883, 60) # 开始循环处理网络流量 client.loop_forever() ``` #### 3. 数据湖概念与Kubernetes优势 随着大数据技术的发展,企业需要处理和存储越来越多的数据。数据湖的概念应运而生,它允许企业以原始格式存储各种类型的数据,以便后续分析。传统的大数据解决方案,如Apache Hadoop及其生态系统,在容器和容器编排技术兴起之前就已经存在,通常需要专门的集群和团队来操作和维护。 Kubernetes虽然不是大数据技术,但它具有高度分布式工作负载、容错和自我修复等能力,并且拥有更广泛和快速发展的生态系统。许多Hadoop的功能在Kubernetes中也可以实现,利用Kubernetes可以统一静态数据和事务性数据的控制平面,以及各种类型的工作负载。 #### 4. 数据处理与管理环境搭建 为了构建数据湖和进行数据处理,需要搭建相应的开发环境。这里使用MinIO进行对象存储,Apache Cassandra作为键值存储用于对象元数据、原始数据仓库和处理后的数据存储。 ##### 4.1 开发环境资源 | 资源 | 组织路径 | | ---- | ---- | | Ingress | 000-cluster/00-ingress-nginx | | Cert Manager | 000-cluster/10-cert-manager | | Storage | 000-cluster/20-rook-ceph | | Monitoring | 000-cluster/30-monitoring | | Namespace | 003-data/000-namespace | | Zookeeper | 003-data/010-zookeeper | | Kafka | 003-data/020-kafka | | Mosqu
corwn 最低0.47元/天 解锁专栏
赠100次下载
继续阅读 点击查看下一篇
profit 400次 会员资源下载次数
profit 300万+ 优质博客文章
profit 1000万+ 优质下载资源
profit 1000万+ 优质文库回答
复制全文

相关推荐

SW_孙维

开发技术专家
知名科技公司工程师,开发技术领域拥有丰富的工作经验和专业知识。曾负责设计和开发多个复杂的软件系统,涉及到大规模数据处理、分布式系统和高性能计算等方面。
最低0.47元/天 解锁专栏
赠100次下载
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
千万级 优质文库回答免费看
立即解锁

专栏目录

最新推荐

具有多重时滞和不确定参数的CRDNNs的无源性与同步性研究

# 具有多重时滞和不确定参数的 CRDNNs 的无源性与同步性研究 ## 1. 引言 在神经网络的研究领域中,具有多重时滞和不确定参数的连续反应扩散神经网络(CRDNNs)的无源性和同步性是重要的研究课题。无源性能够保证系统的稳定性和能量特性,而同步性则在信息处理、通信等领域有着广泛的应用。本文将深入探讨 CRDNNs 的无源性和同步性相关问题,包括理论分析和数值验证。 ## 2. 无源性判据 ### 2.1 输出严格无源性条件 当满足以下矩阵不等式时,网络(9.17)具有输出严格无源性: \[ \begin{bmatrix} W_6 & \Xi_2 \\ \Xi_2^T & W_7 \e

自适应复杂网络结构中的同步现象解析

# 自适应复杂网络结构中的同步现象解析 ## 1. 引言 在复杂的动力学网络中,同步现象一直是研究的重点。我们将主稳定性方法拓展到由 $N$ 个扩散且自适应耦合的振荡器组成的复杂网络中。通过对自适应耦合相位振荡器这一典型模型的研究,我们发现了由于稳定性岛屿的存在而导致的多簇现象的出现。接下来,我们将深入探讨相关内容。 ## 2. 自适应耦合振荡器网络模型 考虑一个由 $N$ 个扩散且自适应耦合的振荡器组成的网络,其形式如下: \(\dot{x}_i = f (x_i(t)) - \sigma \sum_{j = 1}^{N} a_{ij} \kappa_{ij} G(x_i - x_j)\

HNPU-V1:自适应DNN训练处理器的技术解析与性能评估

### HNPU-V1:自适应DNN训练处理器的技术解析与性能评估 在深度学习领域,DNN(深度神经网络)训练处理器的性能对于提高训练效率和降低能耗至关重要。今天我们要介绍的HNPU - V1就是一款具有创新性的自适应DNN训练处理器,它采用了多种先进技术来提升性能。 #### 1. 稀疏性利用技术 在DNN训练过程中,会出现输入或输出稀疏性的情况。传统的输出零预测方法虽然可以同时利用输入和输出稀疏性,但会带来面积和能量开销。而HNPU - V1采用了独特的稀疏性利用技术。 ##### 1.1 切片级输入跳过(Slice - Level Input Skipping) - **原理**:

OpenVX:跨平台高效编程的秘诀

### OpenVX:跨平台高效编程的秘诀 #### 1. OpenCL 互操作性扩展 OpenCL 互操作性扩展为 OpenVX 内的应用程序和用户算法提供了高效实现的支持,具备以下六个关键特性: - 共享一个通用的 `cl_context` 对象,供 OpenVX 和 OpenCL 应用程序使用。 - 共享一组有序的 `cl_command_queue` 对象,用于 OpenVX 和 OpenCL 应用程序/用户内核之间的协调。 - 允许 OpenCL 应用程序将 `cl_mem` 缓冲区导出到 OpenVX。 - 允许 OpenCL 应用程序从 OpenVX 收回导出的 `cl_mem

语音情感识别:预加重滤波器与清音影响分析

### 语音情感识别:预加重滤波器与清音影响分析 在语音情感识别领域,多种因素会影响识别的准确性和性能。本文将深入探讨预加重滤波器、清音去除等因素对语音情感分类的影响,并通过一系列实验来揭示不同特征向量大小、帧大小等参数在不同数据库中的表现。 #### 1. 清音去除 在语音情感识别中,通常会使用浊音和清音进行情感识别。然而,清音往往与语音信号记录中的噪声或静音区域具有相似的时间和频谱特征。为了探索去除清音后分类阶段的性能,我们使用自相关函数来去除每一帧中的清音。 具体步骤如下: 1. **自相关函数定义**:对于信号 $x(n)$ 从样本 $n$ 开始的一帧,其短时自相关函数定义为 $

网络数据上的无监督机器学习

### 网络数据上的无监督机器学习 在处理图数据时,机器学习(ML)并非必需,但它能带来很大的帮助。不过,ML的定义较为模糊,例如社区检测算法虽能自动识别网络中的社区,可被视为无监督ML,但NetworkX提供的一些方法虽类似却未得到数据科学界同等关注,因为它们未被明确称为图ML。 #### 1. 网络科学方法 在处理图数据时,有很多已掌握的方法可避免使用所谓的图ML: - **社区识别**:可以使用Louvain算法或直接查看连通分量。 - **枢纽节点识别**:使用PageRank算法,无需嵌入。 - **孤立节点识别**:使用`k_corona(0)`,无需ML。 - **训练数据创

言语节奏与大脑定时模式:探索神经机制与应用

# 言语节奏与大脑定时模式:探索神经机制与应用 ## 1. 大脑的预测性与时间维度 人类大脑是一个具有建设性的器官,它能够生成预测以调节自身功能,并持续适应动态环境。在这个过程中,运动和非运动行为的时间维度正逐渐被视为预测性偏差的关键组成部分。然而,编码、解码和评估时间信息以产生时间感和控制感觉运动定时的神经机制之间的复杂相互作用,仍然大部分是未知的。 ### 1.1 事件的时间与类型维度 个体和环境中的所有状态变化都会产生由类型(“是什么”)和时间(“何时”)定义的事件。为了成功地与不断变化的环境进行交互,人们需要不断适应这些事件的“是什么”和“何时”维度。人类不仅会对事件做出反应,还会

计算机视觉中的概率图模型:不完整数据下的贝叶斯网络学习

# 计算机视觉中的概率图模型:不完整数据下的贝叶斯网络学习 在计算机视觉领域,概率图模型是一种强大的工具,可用于处理复杂的概率关系。当数据不完整时,贝叶斯网络(BN)的参数学习和结构学习变得更具挑战性。本文将介绍不完整数据下BN参数学习和结构学习的方法。 ## 1. 不完整数据下的BN参数学习 在不完整数据中,变量 $Z_m$ 可能随机缺失或始终缺失。与完整数据情况类似,不完整数据下的BN参数学习也可通过最大似然法或贝叶斯法实现。 ### 1.1 最大似然估计 最大似然估计(ML)需要通过最大化边际似然来找到BN参数 $\theta = \{\theta_n\}_{n=1}^N$: $$

利用大数据进行高效机器学习

### 利用大数据进行高效机器学习 #### 1. 集群管理与并行计算基础 在处理大数据时,集群的使用至关重要。当集群任务完成后,终止其派生的进程能释放每个节点占用的资源,使用如下命令: ```R stopCluster(cl1) ``` 对于大规模的大数据问题,还可以进行更复杂的`snow`配置,例如配置Beowulf集群(由多个消费级机器组成的网络)。在学术和行业研究中,若有专用计算集群,`snow`可借助`Rmpi`包访问高性能消息传递接口(MPI)服务器,但这需要网络配置和计算硬件方面的知识。 #### 2. 使用`foreach`和`doParallel`实现并行计算 `fore

SSH连接与操作全解析

# SSH 连接与操作全解析 ## 1. SSH 主机密钥概述 当 SSH 客户端首次连接到远程主机时,双方会交换临时公钥,以此对后续通信进行加密,防止信息泄露。客户端在披露更多信息之前,需要确认远程服务器的身份。这是合理的,因为若连接到的是黑客软件,我们肯定不希望泄露用户名和密码。 ### 1.1 公钥基础设施的问题 构建公钥基础设施是解决互联网机器身份验证的一种方法。首先要确定证书颁发机构,将其公钥列表安装到所有浏览器和 SSL 客户端中,然后付费让这些机构验证身份并签署 SSL 证书,最后将证书安装到 Web 服务器上。但从 SSH 的角度看,这种方法存在诸多问题。虽然可以创建内部公