遗传算法与强化学习在物联网中的应用
立即解锁
发布时间: 2025-08-30 00:51:08 阅读量: 4 订阅数: 9 AIGC 

### 遗传算法与强化学习在物联网中的应用
#### 1. 遗传算法优化LSTM网络
遗传算法是一种受自然进化过程启发的优化算法,可用于解决各种复杂的优化问题。在本节中,我们将使用遗传算法来寻找LSTM网络的最优超参数,以降低模型的均方根误差(RMSE)。
##### 1.1 代码实现步骤
- **导入必要的模块**:使用Keras实现LSTM模型,同时导入其他必要的库。
```python
import numpy as np
import pandas as pd
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split as split
from keras.layers import LSTM, Input, Dense
from keras.models import Model
from deap import base, creator, tools, algorithms
from scipy.stats import bernoulli
from bitstring import BitArray
np.random.seed(1120)
```
- **加载数据集**:使用Kaggle上的风力发电预测数据作为时间序列数据。
```python
data = pd.read_csv('train.csv')
data = np.reshape(np.array(data['wp1']),(len(data['wp1']),1))
train_data = data[0:17257]
test_data = data[17257:]
```
- **定义数据准备函数**:根据选择的窗口大小准备数据集。
```python
def prepare_dataset(data, window_size):
X, Y = np.empty((0,window_size)), np.empty((0))
for i in range(len(data)-window_size-1):
X = np.vstack([X,data[i:(i + window_size),0]])
Y = np.append(Y,data[i + window_size,0])
X = np.reshape(X,(len(X),window_size,1))
Y = np.reshape(Y,(len(Y),1))
return X, Y
```
- **定义训练评估函数**:为给定的个体创建LSTM网络,并返回其RMSE值作为适应度函数。
```python
def train_evaluate(ga_individual_solution):
# Decode genetic algorithm solution to integer for window_size and num_units
window_size_bits = BitArray(ga_individual_solution[0:6])
num_units_bits = BitArray(ga_individual_solution[6:])
window_size = window_size_bits.uint
num_units = num_units_bits.uint
print('\nWindow Size: ', window_size, ', Num of Units: ', num_units)
# Return fitness score of 100 if window_size or num_unit is zero
if window_size == 0 or num_units == 0:
return 100,
# Segment the train_data based on new window_size; split into train and validation (80/20)
X,Y = prepare_dataset(train_data,window_size)
X_train, X_val, y_train, y_val = split(X, Y, test_size = 0.20, random_state = 1120)
# Train LSTM model and predict on validation set
inputs = Input(shape=(window_size,1))
x = LSTM(num_units, input_shape=(window_size,1))(inputs)
predictions = Dense(1, activation='linear')(x)
model = Model(inputs=inputs, outputs=predictions)
model.compile(optimizer='adam',loss='mean_squared_error')
model.fit(X_train, y_train, epochs=5, batch_size=10,shuffle=True)
y_pred = model.predict(X_val)
# Calculate the RMSE score as fitness score for GA
rmse = np.sqrt(mean_squared_error(y_val, y_pred))
print('Validation RMSE: ', rmse,'\n')
return rmse,
```
- **使用DEAP工具定义个体、创建种群、进行交叉、变异和选择操作**:
```python
population_size = 4
num_generations = 4
gene_length = 10
# As we are trying to minimize the RMSE score, that's why using -1.0.
# In case, when you want to maximize accuracy for instance, use 1.0
creator.create('FitnessMax', base.Fitness, weights = (-1.0,))
creator.create('Individual',
```
0
0
复制全文
相关推荐










