可区分混淆与仿射行列式程序的密码分析
立即解锁
发布时间: 2025-08-31 01:42:00 阅读量: 3 订阅数: 13 AIGC 

### 可区分混淆与仿射行列式程序的密码分析
#### 1. 实验结果概述
在相关研究中,对基本RMFE(Residue Multiplication Field Element,剩余乘法域元素)和复合RMFE的FIMD(Field Instruction Multiple Data,域指令多数据)与FHE(Fully Homomorphic Encryption,全同态加密)乘法性能进行了对比。
##### 1.1 基本RMFE
以下是基本RMFE的FIMD和FHE乘法性能对比表:
| P Set | k | r | Max # rFIMD Mult | Max # FHE Mult | rFIMD Mult (sec) | FHE Mult (sec) | Speedup v.s. k FHE Mult |
| --- | --- | --- | --- | --- | --- | --- | --- |
| 3 - P | 4 1 | 3 | 6 | 7.84 | 0.0170 | 0.00868× |
| | 2 | 4 | 5 | 4.54 | 0.0337 | 0.0297× |
| | 4 | 4 | 5 | 1.75 | 0.0369 | 0.0845× |
| | 4⋆ | 4 | 5 | 0.0475 | 0.0370 | 3.12× |
| 3 - E | 7 1 | 3 | 6 | 7.16 | 0.0180 | 0.0176× |
| | 2 | 4 | 6 | 4.58 | 0.0276 | 0.0421× |
| | 4 | 4 | 5 | 1.70 | 0.0478 | 0.197× |
| | 4⋆ | 4 | 5 | 0.0469 | 0.0373 | 5.57× |
| 3 - H | 28 1 | 3 | 5 | 3.59 | 0.0245 | 0.191× |
| | 2 | 4 | 5 | 2.31 | 0.0355 | 0.431× |
| | 4 | 4 | 5 | 0.900 | 0.0400 | 1.24× |
| | 4⋆ | 4 | 5 | 0.0541 | 0.0389 | 20.1× |
| 7 - P | 8 1 | 3 | 5 | 3.74 | 0.0242 | 0.0516× |
| | 2 | 4 | 5 | 2.40 | 0.0359 | 0.120× |
| | 4 | 4 | 5 | 1.16 | 0.0378 | 0.261× |
| | 4⋆ | 4 | 5 | 0.0431 | 0.0404 | 11.0× |
| 7 - E | 13 1 | 3 | 5 | 3.71 | 0.0244 | 0.0853× |
| | 2 | 4 | 5 | 2.31 | 0.0359 | 0.202× |
| | 4 | 4 | 5 | 0.931 | 0.0384 | 0.536× |
| | 4⋆ | 4 | 5 | 0.0478 | 0.0404 | 20.1× |
| 7 - H | 214 1 | 3 | 5 | 1.83 | 0.0238 | 2.79× |
| 17 - P | 18 1 | 2 | 5 | 1.16 | 0.0245 | 0.380× |
| | 2 | 4 | 5 | 1.12 | 0.0348 | 0.558× |
| | 4 | 4 | 5 | 0.428 | 0.0381 | 1.61× |
| 17 - E | 26 1 | 2 | 5 | 1.16 | 0.0252 | 0.565× |
| | 2 | 4 | 5 | 0.961 | 0.0434 | 1.17× |
| | 4 | 4 | 5 | 0.421 | 0.0389 | 2.40× |
| 31 - P | 32 1 | 2 | 4 | 0.579 | 0.0231 | 1.28× |
| | 32 | 2 | 3 | 4 | 0.384 | 0.0259 | 2.16× |
| | 16 | 4 | 3 | 4 | 0.0262 | 0.0254 | 15.5× |
| 31 - E | 43 1 | 2 | 4 | 0.578 | 0.0236 | 1.76× |
| | 43 | 2 | 3 | 4 | 0.382 | 0.0251 | 2.82× |
| | 14 | 4 | 3 | 4 | 0.0258 | 0.0263 | 14.3× |
从这个表格中我们可以看出,不同的P Set、k和r组合下,FIMD和FHE的乘法性能有明显差异。例如,在某些情况下,FIMD的乘法速度相对于FHE有显著的提升,如3 - P集合中4⋆情况,速度提升达到3.12倍。
##### 1.2 复合RMFE
复合RMFE的FIMD和FHE乘法性能对比表如下,这里采用了三阶段重编码过程:
| P Set (kin, rin)q | (kout, rout)qd′ | Max rFIMD Mult | Max FHE Mult | rFIMD Mult (sec) | FHE Mult (sec) | Speedup v.s. FHE Mult |
| --- | --- | --- | --- | --- | --- | --- |
| C3 - P | (2, 2, 3)3 | (28, 3, 55)38 | 3 | 6 | 0.7074590 | 0.0174873 | 1.384240 |
| | (4, 1, 7)3 | (64, 2, 127)38 | 2 | 5 | 1.6718600 | 0.0129312 | 1.980060 |
| | (4, 1, 7)3 | (128, 1, 255)38 | 1 | 5 | 1.7500500 | 0.0124286 | 3.636160 |
| | (4, 2, 7)3 | (64, 1, 127)316 | 2 | 5 | 1.1955500 | 0.0126123 | 2.700630 |
| | (4, 3, 7)3 | (16, 2, 31)332 | 3 | 5 | 0.1890470 | 0.0350566 | 11.86810 |
| | (4, 3, 7)3 | (32, 1, 63)332 | 2 | 5 | 0.2501270 | 0.0248627 | 12.72320 |
| | (4, 4, 7)3 | (8, 2, 15)364 | 3 | 5 | 0.0966742 | 0.0340547 | 11.272400 |
| | (4, 4, 7)3 | (16, 1, 31)364 | 2 | 5 | 0.1409130 | 0.0233469 | 10.603700 |
| | (4, 6, 7)3 | (2, 2, 3)3256 | 4 | 5 | 0.0882771 | 0.0365346 | 3.310900 |
| | (4, 6, 7)3 | (4, 1, 7)3256 | 3 | 6 | 0.1059930 | 0.0175280 | 2.645920 |
| C3 - E | (2, 2, 7)3 | (32, 2, 63)316 | 3 | 6 | 0.8984420 | 0.0170243 | 1.212720 |
| | (2, 2, 7)3 | (64, 1, 127)316 | 2 | 5 | 1.4284200 | 0.0127079 | 1.138740 |
| | (6, 1, 15)3 | (32, 2, 63)316 | 2 | 5 | 1.3726500 | 0.0147678 | 2.065650 |
| | (6, 1, 15)3 | (64, 1, 127)316 | 2 | 6 | 2.4344100 | 0.0123901 | 1.954400 |
| | (6, 2, 15)3 | (16, 2, 31)332 | 3 | 5 | 0.8059610 | 0.0338111 | 4.027320 |
| | (6, 2, 15)3 | (32, 1, 63)332 | 2 | 5 | 1.0435400 | 0.0129588 | 2.384290 |
| | (6, 3, 15)3 | (8, 2, 15)364 | 3 | 6 | 0.5079130 | 0.0164912 | 1.558490 |
| | (6, 3, 15)3 | (16, 1, 31)364 | 2 | 6 | 0.1632760
0
0
复制全文
相关推荐







