金融领域的深度学习应用
立即解锁
发布时间: 2025-08-30 01:10:54 阅读量: 2 订阅数: 19 AIGC 

### 金融领域的深度学习应用
#### 1. 金融数据的词嵌入模型训练
首先,我们使用以下代码将 GloVe 模型拟合到语料库:
```python
model = GloVeModel(embedding_size=300, context_size=1)
model.fit_to_corpus(corpus)
model.train(num_epochs=100)
```
训练好带有嵌入的模型后,我们需要开始推理以创建实体之间的关系。为此,我们要在数学空间中表示金融市场中的事件,这里将使用一种之前未见过的人工神经网络——神经张量网络(Neural Tensor Network,NTN)。
#### 2. 用于事件嵌入的神经张量网络(NTN)
神经张量网络(NTN)是一种新型的神经网络,它的工作方式类似于标准的前馈网络,但包含一个称为张量层的结构,而非标准的隐藏层。该网络最初是为了通过连接未连接的实体来完善知识库而开发的。例如,如果有实体 Google 和 YouTube,网络会帮助连接这两个实体,形成 Google -> Owns -> YouTube 的关系。它通过将不同的关系对作为张量传递通过网络,而不是通过单个向量,张量的每个切片代表两个实体之间不同的关系变体。
在事件驱动的交易领域,我们对 NTN 感兴趣是因为它能够关联实体。以下是构建 NTN 的详细步骤:
1. **定义 NTN 函数**
```python
def NTN(batch_placeholders, corrupt_placeholder, init_word_embeds,
entity_to_wordvec, num_entities, num_relations, slice_size, batch_size, is_eval,
label_placeholders):
d = 100
k = slice_size
ten_k = tf.constant([k])
num_words = len(init_word_embeds)
E = tf.Variable(init_word_embeds)
W = [tf.Variable(tf.truncated_normal([d, d, k])) for r in range(num_relations)]
V = [tf.Variable(tf.zeros([k, 2 * d])) for r in range(num_relations)]
b = [tf.Variable(tf.zeros([k, 1])) for r in range(num_relations)]
U = [tf.Variable(tf.ones([1, k])) for r in range(num_relations)]
ent2word = [tf.constant(entity_i) - 1 for entity_i in entity_to_wordvec]
entEmbed = tf.pack([tf.reduce_mean(tf.gather(E, entword), 0) for entword in ent2word])
predictions = list()
for r in range(num_relations):
e1, e2, e3 = tf.split(1, 3, tf.cast(batch_placeholders[r], tf.int32))
e1v = tf.transpose(tf.squeeze(tf.gather(entEmbed, e1, name='e1v' + str(r)), [1]))
e2v = tf.transpose(tf.squeeze(tf.gather(entEmbed, e2, name='e2v' + str(r)), [1]))
e3v = tf.transpose(tf.squeeze(tf.gather(entEmbed, e3, name='e3v' + str(r)), [1]))
e1v_pos = e1v
e2v_pos = e2v
e1v_neg = e1v
e2v_neg = e3v
num_rel_r = tf.expand_dims(tf.shape(e1v_pos)[1], 0)
preactivation_pos = list()
preactivation_neg = list()
for slice in range(k):
preactivation_pos.append(tf.reduce_sum(e1v_pos * tf.matmul(W[r][:, :, slice], e2v_pos), 0))
preactivation_neg.append(tf.reduce_sum(e1v_neg * tf.matmul(W[r][:, :, slice], e2v_neg), 0))
preactivation_pos = tf.pack(preactivation_pos)
preactivation_neg = tf.pack(preactivation_neg)
temp2_pos = tf.matmul(V[r], tf.concat(0, [e1v_pos, e2v_pos]))
temp2_neg = tf.matmul(V[r], tf.concat(0, [e1v_neg, e2v_neg]))
preactivation_pos = preactivation_pos + temp2_pos + b[r]
preactivation_neg = preactivation_neg + temp2_neg + b[r]
activation_pos = tf.tanh(preactivation_pos)
activation_neg = tf.tanh(preactivation_neg)
score_pos = tf.reshape(tf.matmul(U[r], activation_pos), num_rel_r)
score_neg = tf.reshape(tf.matmul(U[r], activation_neg), num_rel_r)
if not is_eval:
predictions.append(tf.pack([score_pos, score_neg]))
else:
predictions.append(tf.pack([score_pos, tf.reshape(label_placeholders[r], num_rel_r)]))
predictions = tf.concat(1, predictions)
return predictions
```
2. **定义损失函数**
```python
def loss(predictions, regularization):
temp1 = tf.maximum(tf.sub(predictions[1, :], predictions[0, :]) + 1, 0)
temp1 = tf.reduce_sum(temp1)
temp2 = tf.sqrt(sum([tf.reduce_sum(tf.square(var)) for var in tf.trainable_variables()]))
temp = temp1 + (regularization * temp2)
return temp
```
3. **定义训练算法**
```python
def training(loss, learningRate):
return tf.train.AdagradOptimizer(learningRate).minimize(loss)
```
4. **定义评估函数**
```python
def eval(predictions):
print("predictions " + str(predictions.get_shape()))
inference, labels = tf.split(0, 2, predictions)
return inference, labels
```
#### 3. 使用卷积神经网络(CNN)预测事件
有了嵌入结构后,我们可以使用 CNN 基于该结构进行预测。通常,我们想到 CNN 时,会联想到计算机视觉任务,如识别图像中的物体。虽然 CNN 最初是为此设计的,但它也非常擅长检测文本中的特征。
在自然语言处理(NLP)中使用 CNN 时,我们用单词嵌入替换标准的像素输入。在典型的计算机视觉任务中,我们在图像的小区域上使用 CNN 的过滤器,而在 NLP 任务中,我们在嵌入矩阵的行上使用相同的滑动窗口。滑动窗口的宽度就是输入矩阵的宽度,通常这个窗口会同时查看大约两到五个单词(在我们的例子中是动作对)的嵌入。由于其压缩性质,这比使用循环神经网络(RNN)完成相同任务更高效。
以下是构建用于预测股票价格涨跌的 CNN 的步骤:
1. **导入必要的库并定义 CNN 类**
```python
import tensorflow as tf
import numpy as np
class StockCNN(object):
def __init__(
self, sequence_length, num_classes, vocab_size,
embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0):
self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x")
self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y")
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout")
l2_loss = tf.constant(0.0)
with tf.device('/cpu:0'), tf.name_scope("embedding"):
self.W = tf.Variable(
tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
name="W")
self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x)
self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
pooled_outputs = []
for i, filter_size in enumerate(filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
filter_shape = [filter_size, embedding_size, 1, num_filters]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b")
conv = tf.nn.conv2d(
self.embedded_chars_expanded,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
pooled = tf.nn.max_pool(
h,
ksize=[1, sequence_length - filter_size + 1, 1, 1],
strides=[1, 1, 1, 1],
padding='VALID',
name="pooling-layer")
pooled_outputs.append(pooled)
num_filters_total = num_filters * len(filter_sizes)
self.h_pool = tf.concat(pooled_outputs, 3)
self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])
with tf.name_scope("dropout"):
self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)
with tf.name_scope("output"):
W = tf.get_variable(
"W",
shape=[num_filters_total, num_classes],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.c
```
0
0
复制全文