幂伽马分布与多元幂伽马分布的解析
立即解锁
发布时间: 2025-08-23 01:52:57 阅读量: 1 订阅数: 3 

### 幂伽马分布与多元幂伽马分布的解析
#### 1. 幂伽马分布的基本性质
幂伽马分布的概率密度函数(pdf)具有一系列独特的性质。设 \(Y \sim \text{Power - }\Gamma(\alpha, \beta, \gamma)\),以下是其相关性质:
- **矩的计算**:
- **\(k\)阶矩**:
\[E(Y^k) = \frac{\Gamma\{\alpha + (k/\gamma)\}}{\Gamma(\alpha)\beta^{k/\gamma}}, \quad 0 < \alpha + (k/\gamma)\]
其中 \(k\) 为实值,且满足 \(0 < \alpha + (k/\gamma)\)。
- **一阶矩(期望)**:
\[E(Y) = \frac{\Gamma\{\alpha + (1/\gamma)\}}{\Gamma(\alpha)\beta^{1/\gamma}}\]
- **二阶中心矩(方差)**:
\[var(Y) = \frac{1}{\beta^{2/\gamma}}\left(\frac{\Gamma\{\alpha + (2/\gamma)\}}{\Gamma(\alpha)} - \frac{\Gamma^2\{\alpha + (1/\gamma)\}}{\Gamma^2(\alpha)}\right)\]
- **偏度 \(sk(Y)\)**:
\[sk(Y) = \left(\frac{\Gamma\{\alpha + (3/\gamma)\}}{\Gamma(\alpha)} - \frac{3\Gamma\{\alpha + (2/\gamma)\}\Gamma\{\alpha + (1/\gamma)\}}{\Gamma^2(\alpha)} + \frac{2\Gamma^3\{\alpha + (1/\gamma)\}}{\Gamma^3(\alpha)}\right) \times \left(\frac{\Gamma\{\alpha + (2/\gamma)\}}{\Gamma(\alpha)} - \frac{\Gamma^2\{\alpha + (1/\gamma)\}}{\Gamma^2(\alpha)}\right)^{-3/2}\]
- **峰度 \(kt(Y)\)**:
\[kt(Y) = \left(\frac{\Gamma\{\alpha + (4/\gamma)\}}{\Gamma(\alpha)} - \frac{4\Gamma\{\alpha + (3/\gamma)\}\Gamma\{\alpha + (1/\gamma)\}}{\Gamma^2(\alpha)} + \frac{6\Gamma\{\alpha + (2/\gamma)\}\Gamma^2\{\alpha + (1/\gamma)\}}{\Gamma^3(\alpha)} - \frac{3\Gamma^4\{\alpha + (1/\gamma)\}}{\Gamma^4(\alpha)}\right) \times \left(\frac{\Gamma\{\alpha + (2/\gamma)\}}{\Gamma(\alpha)} - \frac{\Gamma^2\{\alpha + (1/\gamma)\}}{\Gamma^2(\alpha)}\right)^{-2} - 3\]
- **矩生成函数(mgf)**:
\[M_Y(t) = E\{\exp(tY)\} = \sum_{j = 0}^{\infty}\frac{t^j\Gamma\{\alpha + (j/\gamma)\}}{\Gamma(\alpha)\beta^{j/\gamma}j!} = \sum_{j = 0}^{\infty}\frac{(\alpha)_j(t/\beta^{1/\gamma})^j}{j!}\frac{\Gamma\{\alpha + (j/\gamma)\}}{\Gamma(\alpha + j)} = {}_1F_0W\left(\alpha; ; t/\beta^{1/\gamma}; \frac{\Gamma\{\alpha + (j/\gamma)\}}{\Gamma(\alpha + j)}, j = 0, 1, \cdots\right)\]
其中 \((\alpha)_j = \frac{\Gamma(\alpha + j)}{\Gamma(\alpha)} = \alpha(\alpha + 1)\cdots(\alpha + j - 1)\)(\(j = 1, 2, \cdots; \alpha > 0\)),\((\cdot)_0 = 1\) 是使用 Pochhammer 符号的上升阶乘,\({}_1F_0W(c; ; z; w_j, j = 0, 1, \cdots) = \sum_{j = 0}^{\infty}\frac{(c)_jz^jw_j}{j!}\) 是加权超几何函数。当 \(\gamma = 1\) 时,为未变换的伽马分布,其 mgf 为 \(\{1 - (t/\beta)\}^{-\alpha}\)。当 \(\gamma < 0\) 时,mgf 不存在,例如逆伽马分布(\(\gamma = -1\))的情况。
#### 2. 特殊情况分析
- **\(\gamma = 1/m\)(\(m\) 为正整数)**:此时 \(Y \sim \text{Power - }\Gamma(\alpha, \beta, \gamma)\) 的分布可简化为 \(Y = X^m\),其中 \(X \sim \Gamma(\alpha, \beta)\)。
- **\(k\) 阶矩**:
\[E(Y^k|\gamma = 1/m) = \frac{\Gamma(\alpha + km)}{\Gamma(\alpha)\beta^{km}} = \frac{(\alpha)_{km}}{\beta^{km}}, \quad k = 1, 2, \cdots; m = 1, 2, \cdots\]
- **期望**:
\[E(Y|\gamma = 1/m) = \frac{(\alpha)_m}{\beta^m}\]
- **方差**:
\[var(Y|\gamma = 1/m) = \frac{1}{\beta^{2m}}\{(\alpha)_{2m} - (\alpha)_m^2\}\]
- **偏度**:
\[sk(Y|\gamma = 1/m) = \frac{(\alpha)_{3m} - 3(\alpha)_{2m}(\alpha)_m + 2(\alpha)_m^3}{((\alpha)_{2m} - (\alpha)_m^2)^{3/2}}\]
- **峰度**:
\[kt(Y|\gamma = 1/m) = \frac{(\alpha)_{4m} - 4(\alpha)_{3m}(\alpha)_m + 6(\alpha)_{2m}(\alpha)_m^2 - 3(\alpha)_m^4}{((\alpha)_{2m} - (\alpha)_m^2)^2} - 3\]
当 \(m = 1\) 时,即为通常的伽马分布,其结果为:
\[E(Y|\gamma = 1) = \frac{\alpha}{\beta}, \quad var(Y|\gamma = 1) = \frac{\alpha}{\beta^2}, \quad sk(Y|\gamma = 1) = \frac{2}{\sqrt{\alpha}}, \quad kt(Y|\gamma = 1) = \frac{6}{\alpha}\]
这些结果也可通过累积生成函数(cgf)得到,\(\kappa_j(Y|\gamma = 1) = \frac{(j - 1)!\alpha}{\beta^j}, \quad j = 1, 2, \cdots\)。
- **\(m\) 为正实数**:定义 \((\alpha)_m = \frac{\Gamma(\alpha + m)}{\Gamma(\alpha)}\),上述结果依然成立。
- **\(\gamma\) 为负实数(\(m\) 为负实数)**:只要满足 \(0 < \alpha + (k/\gamma) = \alpha + km\),\(E(Y^k) = \frac{\Gamma(\alpha + km)}{\Gamma(\alpha)\beta^{km}}\) 成立。当 \(k\) 和 \(m\) 都为负时,\(E(Y^k) = E\{(X^m)^k\} = E(X^{km}) = E(X^{|km|}) = \frac{\Gamma(\alpha + km)}{\Gamma(\alpha)\beta^{km}}\),可归结为 \(k\) 和 \(m\) 都为正的情况。当 \(m = \gamma = -1\) 时,为逆伽马分布,\(k\) 为正整数时,\(E(Y^k|m = \gamma = -1) = \frac{\beta^k}{(\alpha - 1)(\alpha - 2)\cdots(\alpha - k)}, \quad k < \alpha\)。
#### 3. 多元幂伽马分布(FA 类型)
- **定义**:设 \(Y^* = (Y_1^{\gamma_1}, \cdots, Y_p^{\gamma_p})^T = \boldsymbol{\Lambda}F = (\boldsymbol{\Lambda}_0 \ I_p)F\),其中 \(\boldsymbol{\Lambda}_0\) 是 \(p \times q\)(\(1 \leq q \leq 2^p - p - 1\))的 \(0 - 1\) 矩阵,\(F = (F_1, \cdots, F_{p + q})^T\) 是随机向量,其 \(p + q\) 个元素独立服从 \(\Gamma(\alpha_i, \beta)\) 分布(\(i = 1, \cdots, p + q\)),\(\alpha_i\) 和 \(\beta\) 分别为形状和速率参数,\(I_p\) 是 \(p \times p\) 单位矩阵,且假设 \(\boldsymbol{\Lambda}_0\) 的每列至少有两个 \(1\)。则 \(Y = (Y_1, \cdots, Y_p)^T\) 具有“FA 类型”的多元幂伽马分布,记为 \(Y \sim \text{Power - }\Gamma_p(\boldsymbol{\alpha}, \beta, \boldsymbol{\gamma}) = \text{Power - }\Gamma_p\{\boldsymbol{\Lambda}(\alpha_1, \cdots, \alpha_{p + q})^T, \beta, (\gamma_1, \cdots, \gamma_p)^T\}\)。
- **矩生成函数(mgf)**:
- 设 \(\lambda_{\cdot j} = (\lambda_{1j}, \cdots, \lambda_{pj})^T\) 为 \(\boldsymbol{\Lamb
0
0
复制全文
相关推荐










