file-type

探索QAM与OFDM信号调制技术在OptiSystem和Matlab中的应用

版权申诉

ZIP文件

2KB | 更新于2024-10-10 | 47 浏览量 | 3 评论 | 0 下载量 举报 收藏
download 限时特惠:#14.90
资源中详细介绍了如何实现OFDM信号的QAM调制以及相应的解调过程,是数字通信领域内的重要知识点。" 知识点: 1. QAM调制技术: QAM(Quadrature Amplitude Modulation)即正交幅度调制,是一种调制方式,它可以将数字数据映射到一个信号的振幅和相位上。QAM结合了幅度调制和相位调制的优点,能够以更高的数据速率传输信息。在资源标题中提到的QAM4可能指的是16-QAM,即将数据映射到16个不同的符号点上,每种符号点代表一个四比特的二进制值。 2. OFDM技术: OFDM(Orthogonal Frequency Division Multiplexing)即正交频分复用,是一种多载波传输技术。它将高速的数据流分成多个低速的子数据流,并在多个并行的子载波上进行传输,这些子载波在频域内是正交的。OFDM技术在无线通信领域具有广泛的应用,如Wi-Fi和LTE技术都使用OFDM作为其调制技术。 3. OFDM信号的QAM调制: 在OFDM系统中,可以使用QAM技术对每个子载波进行调制。通过将不同的数据比特映射到每个子载波上,OFDM信号可以携带更多的数据。QAM调制的阶数决定了每种符号携带的比特数,例如16-QAM和64-QAM等。高阶的QAM可以在相同带宽内提供更高的数据传输速率,但也需要更高的信噪比来保证传输质量。 4. OFDM信号的解调过程: 解调是调制的逆过程。在OFDM系统中,接收端需要对每个子载波上的信号进行解调,提取出原始的数字信息。这一过程通常涉及到傅里叶变换来分离各个子载波,并对每个子载波应用QAM解调算法来恢复原始数据比特。 5. OptiSystem软件: OptiSystem是一个先进的光纤通信系统设计和仿真软件。它集成了强大的系统级建模与仿真工具,可以模拟从光源到探测器的完整链路,适用于各种传输媒体的系统设计。使用OptiSystem可以进行光学器件的性能分析、复杂光学网络的设计与优化等。 6. Matlab环境: Matlab是一种高性能的数值计算和可视化环境,广泛应用于工程和科学计算领域。Matlab提供了丰富的函数库和工具箱,能够方便地进行算法开发、数据分析、可视化以及算法的模拟和仿真等任务。在通信系统设计中,Matlab可以用来进行信号处理、系统仿真、调制解调算法的开发等。 7. 数字通信领域: 数字通信是指使用数字信号进行信息传输的方式。与模拟通信相比,数字通信具有更高的抗干扰能力和更高的数据传输效率。QAM和OFDM是数字通信中常用的两种技术,分别用于提高频谱利用率和信号的传输速率。 8. 源码的重要性: 在工程实践中,源码是实现特定功能或算法的程序代码。在数字通信系统中,源码的开发需要考虑信号处理的准确性、算法的效率和系统的稳定性。掌握源码可以帮助工程师理解系统的工作原理,也可以根据实际需要对系统进行优化和定制。 资源文件名称中的“_isystem_源码.rar”可能表示这是一个压缩包文件,其中包含了相关的源码文件,这些文件可能是在OptiSystem软件和Matlab环境下开发的,用于QAM调制和OFDM信号处理的设计和仿真。文件可能包括配置文件、仿真脚本、算法实现代码等,这些内容对于学习和研究数字通信系统的设计与实现具有很高的价值。

相关推荐

filetype

function ofdm_step_gui_optimized() % 创建主界面 fig = figure('Name', 'OFDM系统分步仿真(优化版)', 'Position', [100 100 1200 800], ... 'NumberTitle', 'off', 'Resize', 'off'); % 创建控制面板 ctrl_panel = uipanel('Title', '控制面板', 'Position', [0.02 0.02 0.25 0.96]); % 创建结果展示区 results_panel = uipanel('Title', '仿真结果', 'Position', [0.28 0.02 0.7 0.96]); % 初始化参数存储结构 handles = struct(); % 添加参数输入控件 uicontrol(ctrl_panel, 'Style', 'text', 'String', '子载波数量:', ... 'Position', [20 700 100 20], 'HorizontalAlignment', 'left'); handles.num_sc = uicontrol(ctrl_panel, 'Style', 'edit', 'String', '64', ... 'Position', [130 700 80 25]); uicontrol(ctrl_panel, 'Style', 'text', 'String', '调制方式:', ... 'Position', [20 650 100 20], 'HorizontalAlignment', 'left'); handles.mod_type = uicontrol(ctrl_panel, 'Style', 'popupmenu', ... 'String', {'QPSK', '16QAM', 'BPSK'}, ... 'Position', [130 650 80 25], 'Value', 1); uicontrol(ctrl_panel, 'Style', 'text', 'String', '循环前缀长度:', ... 'Position', [20 600 100 20], 'HorizontalAlignment', 'left'); handles.cp_len = uicontrol(ctrl_panel, 'Style', 'edit', 'String', '16', ... 'Position', [130 600 80 25]); uicontrol(ctrl_panel, 'Style', 'text', 'String', '编码类型:', ... 'Position', [20 550 100 20], 'HorizontalAlignment', 'left'); handles.coding_type = uicontrol(ctrl_panel, 'Style', 'popupmenu', ... 'String', {'卷积编码(优化)', 'Turbo编码(推荐)', 'LDPC编码', '无编码'}, ... 'Position', [130 550 80 25], 'Value', 2); uicontrol(ctrl_panel, 'Style', 'text', 'String', '交织深度:', ... 'Position', [20 500 100 20], 'HorizontalAlignment', 'left'); handles.intlvr_depth = uicontrol(ctrl_panel, 'Style', 'edit', 'String', '128', ... 'Position', [130 500 80 25]); uicontrol(ctrl_panel, 'Style', 'text', 'String', 'SNR(dB):', ... 'Position', [20 450 100 20], 'HorizontalAlignment', 'left'); handles.snr = uicontrol(ctrl_panel, 'Style', 'edit', 'String', '20', ... 'Position', [130 450 80 25]); % 信道估计选项 uicontrol(ctrl_panel, 'Style', 'text', 'String', '信道估计:', ... 'Position', [20 400 100 20], 'HorizontalAlignment', 'left'); handles.ch_est_type = uicontrol(ctrl_panel, 'Style', 'popupmenu', ... 'String', {'LS估计', 'MMSE估计(推荐)'}, ... 'Position', [130 400 80 25], 'Value', 2); % 创建步骤按钮 step_buttons = { '生成原始信号', @gen_data; '编码', @encode_data; '交织', @interleave_data; '调制', @modulate_data; 'IFFT变换', @ifft_transform; '加循环前缀', @add_cp; '上变频', @upconvert; '信道传输', @channel_transmission; '接收处理', @receive_process; '解调', @demodulate_data; '解交织', @deinterleave_data; '解码', @decode_data; '误码率分析', @ber_analysis; }; for i = 1:size(step_buttons, 1) uicontrol(ctrl_panel, 'Style', 'pushbutton', ... 'String', step_buttons{i,1}, ... 'Position', [30 350-30*i 180 30], ... 'Callback', step_buttons{i,2}, ... 'Tag', ['btn_' num2str(i)]); end % 创建结果展示区域 ax_positions = { [0.05 0.65 0.3 0.3], '原始信号'; [0.35 0.65 0.3 0.3], '编码后信号'; [0.65 0.65 0.3 0.3], '交织后信号'; [0.05 0.35 0.3 0.3], '调制星座图'; [0.35 0.35 0.3 0.3], 'OFDM时域信号'; [0.65 0.35 0.3 0.3], '加CP后频谱'; [0.05 0.05 0.3 0.3], '天线输出频谱'; [0.35 0.05 0.3 0.3], '接收端星座图'; [0.65 0.05 0.3 0.3], '误码率分析'; }; handles.axes = gobjects(size(ax_positions, 1), 1); for i = 1:size(ax_positions, 1) handles.axes(i) = axes(results_panel, 'Position', ax_positions{i,1}); title(handles.axes(i), ax_positions{i,2}); grid(handles.axes(i), 'on'); end % 添加状态文本 handles.status_text = uicontrol(results_panel, 'Style', 'text', ... 'String', '准备就绪', ... 'Position', [10 730 300 20], ... 'HorizontalAlignment', 'left', ... 'FontSize', 10); % 存储数据供回调使用 handles.data = struct(); % 存储中间数据 guidata(fig, handles); end %% 生成原始信号回调函数 function gen_data(hObject, ~) handles = guidata(hObject); % 更新状态 set(handles.status_text, 'String', '正在生成原始信号...'); drawnow; % 获取参数 N = str2double(get(handles.num_sc, 'String')); % 子载波数量 depth = str2double(get(handles.intlvr_depth, 'String')); % 交织深度 % 生成原始信号 (确保有足够数据) total_bits = max(10000, depth * ceil(10000/depth)); % 确保可被交织深度整除 data = randi([0 1], total_bits, 1); % 存储数据 handles.data.original = data; handles.data.total_bits = total_bits; % 显示结果 axes(handles.axes(1)); stem(data(1:min(40, length(data))), 'filled'); title(['原始二进制信号 (' num2str(length(data)) ' bits)']); ylim([-0.2 1.2]); xlabel('比特序号'); ylabel('幅度'); % 更新状态 set(handles.status_text, 'String', '原始信号已生成'); guidata(hObject, handles); end %% 编码回调函数(优化版) function encode_data(hObject, ~) handles = guidata(hObject); % 检查是否有原始数据 if ~isfield(handles.data, 'original') errordlg('请先生成原始信号!', '步骤错误'); return; end % 更新状态 set(handles.status_text, 'String', '正在进行编码...'); drawnow; % 获取参数 coding_idx = get(handles.coding_type, 'Value'); % 编码类型索引 data = handles.data.original; % 编码 switch coding_idx case 1 % 优化卷积编码 trellis = poly2trellis(9, [561 753]); % 更强的约束长度和生成多项式 coded_data = convenc(data, trellis); title_str = '卷积编码(优化)后'; case 2 % Turbo编码(推荐) % Turbo编码组件 trellis = poly2trellis(4, [13 15], 13); interleaver = randperm(length(data)); data_intlv = data(interleaver); % 分量编码器 coded1 = convenc(data, trellis); coded2 = convenc(data_intlv, trellis); % 生成Turbo码(1/3码率) coded_data = [coded1; coded2]; title_str = 'Turbo编码后'; case 3 % LDPC编码(5G兼容) % 创建LDPC矩阵(简化版) n = 648; % 码长 k = 324; % 信息位长度 H = dvbs2ldpc(1/2); % 1/2码率LDPC矩阵 % 确保数据长度合适 num_blocks = floor(length(data)/k); data_blocks = reshape(data(1:k*num_blocks), k, num_blocks)'; % LDPC编码 coded_blocks = zeros(num_blocks, n); for i = 1:num_blocks coded_blocks(i,:) = mod(data_blocks(i,:) * H, 2); end coded_data = coded_blocks(:); title_str = 'LDPC编码后'; case 4 % 无编码 coded_data = data; title_str = '未编码数据'; end % 存储数据 handles.data.coded = coded_data; handles.data.coding_idx = coding_idx; % 显示结果 axes(handles.axes(2)); stem(coded_data(1:min(80, length(coded_data))), 'filled'); title([title_str ' (' num2str(length(coded_data)) ' bits)']); ylim([-0.2 1.2]); xlabel('比特序号'); ylabel('幅度'); % 更新状态 set(handles.status_text, 'String', '编码已完成'); guidata(hObject, handles); end %% 交织回调函数(优化交织深度) function interleave_data(hObject, ~) handles = guidata(hObject); % 检查是否有编码数据 if ~isfield(handles.data, 'coded') errordlg('请先进行编码!', '步骤错误'); return; end % 更新状态 set(handles.status_text, 'String', '正在进行交织...'); drawnow; % 获取参数 depth = str2double(get(handles.intlvr_depth, 'String')); % 交织深度 coded_data = handles.data.coded; % 自动优化交织深度(如果是默认值) if depth == 128 % 根据调制方式优化交织深度 mod_idx = get(handles.mod_type, 'Value'); mod_orders = [4, 16, 2]; % QPSK, 16QAM, BPSK bits_per_symbol = log2(mod_orders(mod_idx)); N = str2double(get(handles.num_sc, 'String')); % 优化交织深度为OFDM符号长度的整数倍 depth = bits_per_symbol * N; % 每个OFDM符号的比特数 set(handles.intlvr_depth, 'String', num2str(depth)); end % 交织 rows = depth; cols = ceil(length(coded_data)/rows); % 补零使数据完整 padded_data = [coded_data; zeros(rows*cols - length(coded_data), 1)]; interleaved = reshape(reshape(padded_data, rows, cols)', [], 1); % 存储数据 handles.data.interleaved = interleaved; handles.data.intlvr_depth = depth; handles.data.intlvr_rows = rows; handles.data.intlvr_cols = cols; % 显示结果 axes(handles.axes(3)); stem(interleaved(1:min(80, length(interleaved))), 'filled'); title(['交织后 (' num2str(depth) '行交织器)']); ylim([-0.2 1.2]); xlabel('比特序号'); ylabel('幅度'); % 更新状态 set(handles.status_text, 'String', '交织已完成'); guidata(hObject, handles); end %% 调制回调函数(增加自适应调制) function modulate_data(hObject, ~) handles = guidata(hObject); % 检查是否有交织数据 if ~isfield(handles.data, 'interleaved') errordlg('请先进行交织!', '步骤错误'); return; end % 更新状态 set(handles.status_text, 'String', '正在进行调制...'); drawnow; % 获取参数 mod_idx = get(handles.mod_type, 'Value'); % 调制类型索引 N = str2double(get(handles.num_sc, 'String')); % 子载波数量 snr = str2double(get(handles.snr, 'String')); % 信噪比 interleaved = handles.data.interleaved; % 自适应调制选择(根据SNR动态调整) if snr < 10 % 低SNR使用BPSK mod_idx = 3; set(handles.mod_type, 'Value', 3); elseif snr < 18 % 中等SNR使用QPSK mod_idx = 1; set(handles.mod_type, 'Value', 1); else % 高SNR使用16QAM mod_idx = 2; set(handles.mod_type, 'Value', 2); end % 调制参数 mod_names = {'QPSK', '16QAM', 'BPSK'}; mod_orders = [4, 16, 2]; mod_str = mod_names{mod_idx}; M = mod_orders(mod_idx); bits_per_symbol = log2(M); % 串并转换 symbols_per_carrier = floor(length(interleaved)/(bits_per_symbol * N)); total_bits_needed = symbols_per_carrier * bits_per_symbol * N; % 处理多余数据 if length(interleaved) > total_bits_needed interleaved = interleaved(1:total_bits_needed); end % 重塑为并行流 parallel_data = reshape(interleaved, bits_per_symbol, []); parallel_data = parallel_data'; % 调制 symbol_input = bi2de(reshape(parallel_data, [], bits_per_symbol), 'left-msb'); switch mod_idx case 1 % QPSK mod_data = pskmod(symbol_input, M, pi/4, 'gray'); case 2 % 16QAM mod_data = qammod(symbol_input, M, 'gray', 'UnitAveragePower', true); case 3 % BPSK mod_data = pskmod(symbol_input, M, pi/2, 'gray'); end % 重塑为OFDM帧 mod_data = reshape(mod_data, [], N); % 存储数据 handles.data.modulated = mod_data; handles.data.M = M; handles.data.mod_idx = mod_idx; handles.data.bits_per_symbol = bits_per_symbol; handles.data.symbols_per_carrier = symbols_per_carrier; % 显示结果 axes(handles.axes(4)); scatter(real(mod_data(:)), imag(mod_data(:)), 25, 'filled'); title([mod_str ' 调制星座图 (自适应选择)']); axis square; grid on; xlabel('同相分量'); ylabel('正交分量'); % 更新状态 set(handles.status_text, 'String', ['调制已完成: ' mod_str ' (自适应选择)']); guidata(hObject, handles); end %% IFFT变换回调函数 function ifft_transform(hObject, ~) handles = guidata(hObject); % 检查是否有调制数据 if ~isfield(handles.data, 'modulated') errordlg('请先进行调制!', '步骤错误'); return; end % 更新状态 set(handles.status_text, 'String', '正在进行IFFT变换...'); drawnow; % 获取参数 N = str2double(get(handles.num_sc, 'String')); % 子载波数量 mod_data = handles.data.modulated; % IFFT变换 ofdm_symbols = ifft(mod_data, N, 2); % 存储数据 handles.data.ofdm_symbols = ofdm_symbols; % 显示结果 axes(handles.axes(5)); plot(abs(ofdm_symbols(1, :))); title('OFDM符号 (时域)'); xlabel('样点序号'); ylabel('幅度'); % 更新状态 set(handles.status_text, 'String', 'IFFT变换已完成'); guidata(hObject, handles); end %% 加循环前缀回调函数 function add_cp(hObject, ~) handles = guidata(hObject); % 检查是否有OFDM符号数据 if ~isfield(handles.data, 'ofdm_symbols') errordlg('请先进行IFFT变换!', '步骤错误'); return; end % 更新状态 set(handles.status_text, 'String', '正在添加循环前缀...'); drawnow; % 获取参数 cp_length = str2double(get(handles.cp_len, 'String')); % 循环前缀长度 ofdm_symbols = handles.data.ofdm_symbols; % 加循环前缀 cp = ofdm_symbols(:, end-cp_length+1:end); ofdm_cp = [cp, ofdm_symbols]; % 计算频谱 Fs = 1e6; % 采样率1MHz [pxx_base, f_base] = pwelch(ofdm_symbols(:), 512, 256, 512, Fs, 'centered'); [pxx_cp, f_cp] = pwelch(ofdm_cp(:), 512, 256, 512, Fs, 'centered'); % 存储数据 handles.data.ofdm_cp = ofdm_cp; handles.data.Fs = Fs; handles.data.cp_length = cp_length; % 显示结果 axes(handles.axes(6)); plot(f_base/1e6, 10*log10(pxx_base), 'b'); hold on; plot(f_cp/1e6, 10*log10(pxx_cp), 'r'); title('加CP前后频谱对比'); xlabel('频率 (MHz)'); ylabel('功率 (dB)'); legend('无CP', '有CP'); grid on; hold off; % 更新状态 set(handles.status_text, 'String', '循环前缀已添加'); guidata(hObject, handles); end %% 上变频回调函数 function upconvert(hObject, ~) handles = guidata(hObject); % 检查是否有加CP后的数据 if ~isfield(handles.data, 'ofdm_cp') errordlg('请先添加循环前缀!', '步骤错误'); return; end % 更新状态 set(handles.status_text, 'String', '正在进行上变频...'); drawnow; % 获取参数 Fs = handles.data.Fs; ofdm_cp = handles.data.ofdm_cp; % 上变频 carrier_freq = 2e9; % 2GHz载波 t = (0:length(ofdm_cp(:))-1)'/Fs; rf_signal = real(ofdm_cp(:)) .* cos(2*pi*carrier_freq*t) - ... imag(ofdm_cp(:)) .* sin(2*pi*carrier_freq*t); % 存储数据 handles.data.rf_signal = rf_signal; handles.data.carrier_freq = carrier_freq; % 显示频谱 axes(handles.axes(7)); [pxx_rf, f_rf] = pwelch(rf_signal, 1024, 512, 1024, Fs, 'centered'); plot(f_rf/1e6, 10*log10(pxx_rf)); title('天线输出频谱'); xlabel('频率 (MHz)'); ylabel('功率谱密度 (dB/Hz)'); grid on; % 更新状态 set(handles.status_text, 'String', '上变频已完成'); guidata(hObject, handles); end %% 信道传输回调函数(增加多径信道模型) function channel_transmission(hObject, ~) handles = guidata(hObject); % 检查是否有RF信号 if ~isfield(handles.data, 'rf_signal') errordlg('请先进行上变频!', '步骤错误'); return; end % 更新状态 set(handles.status_text, 'String', '正在模拟信道传输...'); drawnow; % 获取参数 snr = str2double(get(handles.snr, 'String')); % SNR rf_signal = handles.data.rf_signal; Fs = handles.data.Fs; % 创建多径信道模型 (3GPP TR38.901 TDL-A模型) sample_rate = Fs; path_delays = [0, 30e-9, 70e-9, 90e-9, 110e-9, 190e-9, 410e-9]; % 路径延迟 path_gains = [0, -1.5, -1.4, -3.6, -0.6, -9.1, -7.0]; % 路径增益(dB) % 转换为线性增益 path_gains_lin = 10.^(path_gains/20); % 创建信道对象 channel = comm.RicianChannel(... 'SampleRate', sample_rate, ... 'PathDelays', path_delays, ... 'AveragePathGains', path_gains_lin, ... 'KFactor', 10, ... % Rician K因子 'MaximumDopplerShift', 30); % 最大多普勒频移(Hz) % 通过多径信道 rx_signal = channel(rf_signal); % 添加AWGN噪声 rx_signal = awgn(rx_signal, snr, 'measured'); % 存储数据 handles.data.rx_signal = rx_signal; handles.data.channel = channel; % 更新状态 set(handles.status_text, 'String', '信道传输已完成(多径+AWGN)'); guidata(hObject, handles); end %% 接收处理回调函数(增加MMSE均衡) function receive_process(hObject, ~) handles = guidata(hObject); % 检查是否有接收信号 if ~isfield(handles.data, 'rx_signal') errordlg('请先进行信道传输!', '步骤错误'); return; end % 更新状态 set(handles.status_text, 'String', '正在进行接收处理...'); drawnow; % 获取参数 Fs = handles.data.Fs; carrier_freq = handles.data.carrier_freq; rx_signal = handles.data.rx_signal; N = str2double(get(handles.num_sc, 'String')); % 子载波数量 cp_length = handles.data.cp_length; % 接收处理 t = (0:length(rx_signal)-1)'/Fs; I = rx_signal .* cos(2*pi*carrier_freq*t) * 2; Q = -rx_signal .* sin(2*pi*carrier_freq*t) * 2; baseband = complex(I, Q); % 低通滤波 cutoff = Fs/2.5; [b, a] = butter(6, cutoff/(Fs/2)); filtered = filtfilt(b, a, baseband); % 移除循环前缀 num_symbols = size(handles.data.ofdm_cp, 1); symbol_length = N + cp_length; rx_symbols = zeros(num_symbols, N); for i = 1:num_symbols start_idx = (i-1)*symbol_length + cp_length + 1; end_idx = start_idx + N - 1; rx_symbols(i,:) = filtered(start_idx:end_idx); end % FFT变换 rx_freq = fft(rx_symbols, N, 2); % 信道估计与均衡 ch_est_type = get(handles.ch_est_type, 'Value'); mod_data = handles.data.modulated; if ch_est_type == 1 % LS估计 H_est = rx_freq(1,:) ./ mod_data(1,:); else % MMSE估计(推荐) % 使用导频符号进行信道估计 pilot_symbols = mod_data(1,:); rx_pilot = rx_freq(1,:); % LS初始估计 H_ls = rx_pilot ./ pilot_symbols; % MMSE估计 snr_linear = 10^(str2double(get(handles.snr, 'String'))/10); R_hh = eye(N); % 信道自相关矩阵(简化) beta = 1; % 假设单位功率信号 H_est = R_hh / (R_hh + (beta/snr_linear)*eye(N)) * H_ls.'; H_est = H_est.'; end % MMSE均衡 H_conj = conj(H_est); H_power = abs(H_est).^2; snr_linear = 10^(str2double(get(handles.snr, 'String'))/10); W_mmse = H_conj ./ (H_power + 1/snr_linear); % 应用均衡 rx_eq = rx_freq .* W_mmse; % 存储数据 handles.data.filtered = rx_eq(:); handles.data.rx_eq = rx_eq; % 显示接收端星座图 axes(handles.axes(8)); scatter(real(rx_eq(:)), imag(rx_eq(:)), 25, 'filled'); title('接收端星座图 (MMSE均衡后)'); axis square; grid on; xlabel('同相分量'); ylabel('正交分量'); % 更新状态 set(handles.status_text, 'String', '接收处理已完成(MMSE均衡)'); guidata(hObject, handles); end %% 解调回调函数 function demodulate_data(hObject, ~) handles = guidata(hObject); % 检查是否有接收数据 if ~isfield(handles.data, 'filtered') errordlg('请先进行接收处理!', '步骤错误'); return; end % 更新状态 set(handles.status_text, 'String', '正在进行解调...'); drawnow; % 获取参数 mod_idx = handles.data.mod_idx; % 调制类型索引 M = handles.data.M; rx_eq = handles.data.rx_eq; mod_data = handles.data.modulated; % 解调 switch mod_idx case 1 % QPSK demod = pskdemod(rx_eq(:), M, pi/4, 'gray'); case 2 % 16QAM demod = qamdemod(rx_eq(:), M, 'gray', 'UnitAveragePower', true); case 3 % BPSK demod = pskdemod(rx_eq(:), M, pi/2, 'gray'); end % 符号到比特 bits_per_symbol = handles.data.bits_per_symbol; rx_bits = de2bi(demod, bits_per_symbol, 'left-msb'); rx_bits = rx_bits(:); % 存储数据 handles.data.demod_bits = rx_bits; % 更新状态 set(handles.status_text, 'String', '解调已完成'); guidata(hObject, handles); end %% 解交织回调函数 function deinterleave_data(hObject, ~) handles = guidata(hObject); % 检查是否有解调数据 if ~isfield(handles.data, 'demod_bits') errordlg('请先进行解调!', '步骤错误'); return; end % 更新状态 set(handles.status_text, 'String', '正在进行解交织...'); drawnow; % 获取参数 depth = handles.data.intlvr_depth; % 交织深度 rows = handles.data.intlvr_rows; cols = handles.data.intlvr_cols; rx_bits = handles.data.demod_bits; % 解交织 padded_rx = [rx_bits; zeros(rows*cols - length(rx_bits), 1)]; deinterleaved = reshape(reshape(padded_rx, cols, rows)', [], 1); % 存储数据 handles.data.deinterleaved = deinterleaved; % 更新状态 set(handles.status_text, 'String', '解交织已完成'); guidata(hObject, handles); end %% 解码回调函数(增加Turbo和LDPC解码) function decode_data(hObject, ~) handles = guidata(hObject); % 检查是否有解交织数据 if ~isfield(handles.data, 'deinterleaved') errordlg('请先进行解交织!', '步骤错误'); return; end % 更新状态 set(handles.status_text, 'String', '正在进行解码...'); drawnow; % 获取参数 coding_idx = handles.data.coding_idx; % 编码类型索引 deinterleaved = handles.data.deinterleaved; % 解码 switch coding_idx case 1 % 优化卷积编码 trellis = poly2trellis(9, [561 753]); decoded = vitdec(deinterleaved, trellis, 7, 'trunc', 'hard'); case 2 % Turbo解码 trellis = poly2trellis(4, [13 15], 13); interleaver = randperm(length(deinterleaved)/2); % Turbo码1/3码率 % Turbo解码(简化迭代) L_a = zeros(length(deinterleaved)/2, 1); num_iter = 5; for iter = 1:num_iter % 第一分量译码器 L_ext1 = vitdec(deinterleaved(1:2:end), trellis, 10, 'trunc', 'unquant', L_a); % 第二分量译码器 L_ext2 = vitdec(deinterleaved(2:2:end), trellis, 10, 'trunc', 'unquant', L_ext1(interleaver)); % 更新先验信息 L_a = L_ext2; end decoded = (L_a < 0); case 3 % LDPC解码 H = dvbs2ldpc(1/2); % 1/2码率LDPC矩阵 n = size(H, 2); k = size(H, 1); num_blocks = length(deinterleaved)/n; % LDPC解码(简化) decoded = zeros(num_blocks*k, 1); for i = 1:num_blocks start_idx = (i-1)*n + 1; end_idx = i*n; block = deinterleaved(start_idx:end_idx); % 硬判决解码(实际应使用置信传播) syndrome = mod(block * H', 2); if sum(syndrome) == 0 decoded((i-1)*k+1:i*k) = block(1:k); else % 简单纠错(实际系统需要更复杂算法) decoded((i-1)*k+1:i*k) = block(1:k); end end case 4 % 无编码 decoded = deinterleaved; end % 存储数据 handles.data.decoded = decoded; % 更新状态 set(handles.status_text, 'String', '解码已完成'); guidata(hObject, handles); end %% 误码率分析回调函数(增强分析) function ber_analysis(hObject, ~) handles = guidata(hObject); % 检查是否有原始数据和解码数据 if ~isfield(handles.data, 'original') || ~isfield(handles.data, 'decoded') errordlg('请先完成所有步骤!', '步骤错误'); return; end % 更新状态 set(handles.status_text, 'String', '正在进行误码率分析...'); drawnow; % 获取数据 original = handles.data.original; decoded = handles.data.decoded; % 确保长度匹配 len = min(length(original), length(decoded)); original = original(1:len); decoded = decoded(1:len); % 计算误码率 errors = sum(original ~= decoded); ber = errors / len; % 显示结果 axes(handles.axes(9)); bar(categorical({'BER'}), ber); ylim([0 max(0.1, ber*2)]); title(['误码率: ' num2str(ber*100, '%.4f') '% (' num2str(errors) '/' num2str(len) '错误)']); ylabel('误码率'); % 显示原始和解码数据对比 figure('Name', '原始与解码数据对比', 'Position', [200 200 800 400]); subplot(2,1,1); stem(original(1:min(50, len)), 'filled'); title('原始数据'); subplot(2,1,2); stem(decoded(1:min(50, len)), 'filled'); title('解码数据'); % 误码位置可视化 figure('Name', '误码位置分析', 'Position', [250 250 800 300]); error_positions = find(original(1:min(200, len)) ~= decoded(1:min(200, len))); stem(error_positions, ones(size(error_positions)), 'r', 'filled'); title(['误码位置分布 (前' num2str(min(200, len)) '比特)']); xlabel('比特位置'); ylabel('误码'); ylim([0 1.5]); % 更新状态 set(handles.status_text, 'String', sprintf('误码率分析完成: BER = %.4f', ber)); guidata(hObject, handles); end给我优化误码率后的完整正确的代码

filetype

function ofdm_system_gui() % 创建主界面 fig = figure('Name', 'OFDM 系统仿真', 'Position', [100 100 1200 800], 'NumberTitle', 'off'); % 创建控制面板 uipanel('Position', [0.05 0.05 0.2 0.9], 'Title', '控制面板'); % 添加控件 uicontrol('Style', 'pushbutton', 'String', '开始仿真', ... 'Position', [30 700 100 30], 'Callback', @run_simulation); uicontrol('Style', 'text', 'String', '子载波数量:', ... 'Position', [30 650 100 20]); num_sc = uicontrol('Style', 'edit', 'String', '64', ... 'Position', [130 650 50 20]); uicontrol('Style', 'text', 'String', '调制方式:', ... 'Position', [30 600 100 20]); mod_type = uicontrol('Style', 'popupmenu', 'String', {'QPSK', '16QAM', 'BPSK'}, ... 'Position', [130 600 70 20], 'Value', 1); uicontrol('Style', 'text', 'String', '循环前缀长度:', ... 'Position', [30 550 100 20]); cp_len = uicontrol('Style', 'edit', 'String', '16', ... 'Position', [130 550 50 20]); uicontrol('Style', 'text', 'String', '编码类型:', ... 'Position', [30 500 100 20]); coding_type = uicontrol('Style', 'popupmenu', 'String', {'卷积编码', '无编码'}, ... 'Position', [130 500 80 20], 'Value', 1); uicontrol('Style', 'text', 'String', '交织深度:', ... 'Position', [30 450 100 20]); intlvr_depth = uicontrol('Style', 'edit', 'String', '100', ... 'Position', [130 450 50 20]); % 创建结果展示区 results_panel = uipanel('Position', [0.27 0.05 0.72 0.9], 'Title', '仿真结果'); % 创建图形区域 ax1 = subplot(3, 3, 1, 'Parent', results_panel); title('原始信号'); ax2 = subplot(3, 3, 2, 'Parent', results_panel); title('编码后'); ax3 = subplot(3, 3, 3, 'Parent', results_panel); title('交织后'); ax4 = subplot(3, 3, 4, 'Parent', results_panel); title('调制星座图'); ax5 = subplot(3, 3, 5, 'Parent', results_panel); title('OFDM时域信号'); ax6 = subplot(3, 3, 6, 'Parent', results_panel); title('加CP后频谱'); ax7 = subplot(3, 3, 7, 'Parent', results_panel); title('天线输出频谱'); ax8 = subplot(3, 3, 8, 'Parent', results_panel); title('接收端星座图'); ax9 = subplot(3, 3, 9, 'Parent', results_panel); title('误码率分析'); % 存储数据供回调使用 handles = struct('ax1', ax1, 'ax2', ax2, 'ax3', ax3, ... 'ax4', ax4, 'ax5', ax5, 'ax6', ax6, ... 'ax7', ax7, 'ax8', ax8, 'ax9', ax9, ... 'num_sc', num_sc, 'mod_type', mod_type, ... 'cp_len', cp_len, 'coding_type', coding_type, ... 'intlvr_depth', intlvr_depth); guidata(fig, handles); end function run_simulation(~, ~) % 获取界面数据 fig = gcf; handles = guidata(fig); % 获取参数 N = str2double(get(handles.num_sc, 'String')); % 子载波数量 mod_idx = get(handles.mod_type, 'Value'); % 调制类型索引 cp_length = str2double(get(handles.cp_len, 'String')); % 循环前缀长度 coding_idx = get(handles.coding_type, 'Value'); % 编码类型索引 depth = str2double(get(handles.intlvr_depth, 'String')); % 交织深度 % 调制参数 mod_names = {'QPSK', '16QAM', 'BPSK'}; mod_orders = [4, 16, 2]; mod_str = mod_names{mod_idx}; M = mod_orders(mod_idx); bits_per_symbol = log2(M); %% 1. 生成原始信号 (保证有足够数据) total_bits = max(10000, depth * ceil(10000/depth)); % 确保可被交织深度整除 data = randi([0 1], total_bits, 1); axes(handles.ax1); stem(data(1:min(40, length(data))), 'filled'); title(['原始二进制信号 (' num2str(length(data)) ' bits)']); ylim([-0.2 1.2]); xlabel('比特序号'); ylabel('幅度'); %% 2. 编码 if coding_idx == 1 % 卷积编码 trellis = poly2trellis(7, [171 133]); coded_data = convenc(data, trellis); code_rate = 1/2; % 编码率 title_str = '卷积编码后'; else % 无编码 coded_data = data; code_rate = 1; title_str = '未编码数据'; end axes(handles.ax2); stem(coded_data(1:min(80, length(coded_data))), 'filled'); title([title_str ' (' num2str(length(coded_data)) ' bits)']); ylim([-0.2 1.2]); xlabel('比特序号'); ylabel('幅度'); %% 3. 交织 rows = depth; cols = ceil(length(coded_data)/rows); % 补零使数据完整 padded_data = [coded_data; zeros(rows*cols - length(coded_data), 1)]; interleaved = reshape(reshape(padded_data, rows, cols)', [], 1); axes(handles.ax3); stem(interleaved(1:min(80, length(interleaved))), 'filled'); title(['交织后 (' num2str(depth) '行交织器)']); ylim([-0.2 1.2]); xlabel('比特序号'); ylabel('幅度'); %% 4. 串并转换 % 计算完整符号数 symbols_per_carrier = floor(length(interleaved)/(bits_per_symbol * N)); total_bits_needed = symbols_per_carrier * bits_per_symbol * N; % 处理多余数据 if length(interleaved) > total_bits_needed interleaved = interleaved(1:total_bits_needed); end % 重塑为并行流 parallel_data = reshape(interleaved, bits_per_symbol, []); parallel_data = parallel_data'; %% 5. 调制 % 将二进制转换为符号索引 symbol_input = bi2de(reshape(parallel_data, [], bits_per_symbol), 'left-msb'); switch mod_idx case 1 % QPSK mod_data = pskmod(symbol_input, M, pi/4, 'gray'); case 2 % 16QAM mod_data = qammod(symbol_input, M, 'gray', 'UnitAveragePower', true); case 3 % BPSK mod_data = pskmod(symbol_input, M, pi/2, 'gray'); end % 重塑为OFDM帧 mod_data = reshape(mod_data, [], N); axes(handles.ax4); scatter(real(mod_data(:)), imag(mod_data(:)), 25, 'filled'); title([mod_str ' 调制星座图']); axis square; grid on; xlabel('同相分量'); ylabel('正交分量'); %% 6. IFFT (时频变换) ofdm_symbols = ifft(mod_data, N, 2); axes(handles.ax5); plot(abs(ofdm_symbols(1, :))); title('OFDM符号 (时域)'); xlabel('样点序号'); ylabel('幅度'); %% 7. 加循环前缀 cp = ofdm_symbols(:, end-cp_length+1:end); ofdm_cp = [cp, ofdm_symbols]; % 计算无CP的频谱 Fs = 1e6; % 采样率1MHz [pxx_base, f_base] = pwelch(ofdm_symbols(:), 512, 256, 512, Fs, 'centered'); % 加CP后频谱 [pxx_cp, f_cp] = pwelch(ofdm_cp(:), 512, 256, 512, Fs, 'centered'); axes(handles.ax6); plot(f_base/1e6, 10*log10(pxx_base), 'b'); hold on; plot(f_cp/1e6, 10*log10(pxx_cp), 'r'); title('加CP前后频谱对比'); xlabel('频率 (MHz)'); ylabel('功率 (dB)'); legend('无CP', '有CP'); grid on; hold off; %% 8. 加天线模拟 (上变频) carrier_freq = 2e9; % 2GHz载波 t = (0:length(ofdm_cp(:))-1)'/Fs; rf_signal = real(ofdm_cp(:)) .* cos(2*pi*carrier_freq*t) - ... imag(ofdm_cp(:)) .* sin(2*pi*carrier_freq*t); %% 9. 信道传输 (简化模型) SNR = 30; % 信噪比(dB) rx_signal = awgn(rf_signal, SNR, 'measured'); %% 10. 接收端处理 (简化解调) % 下变频 I = rx_signal .* cos(2*pi*carrier_freq*t) * 2; Q = -rx_signal .* sin(2*pi*carrier_freq*t) * 2; baseband = complex(I, Q); % 低通滤波 cutoff = Fs/2.5; [b, a] = butter(6, cutoff/(Fs/2)); filtered = filtfilt(b, a, baseband); % 绘制接收端星座图 axes(handles.ax8); scatter(real(filtered(1:length(mod_data(:)))), ... imag(filtered(1:length(mod_data(:)))), 25, 'filled'); title('接收端星座图 (含噪声)'); axis square; grid on; xlabel('同相分量'); ylabel('正交分量'); %% 11. 显示天线输出频谱 axes(handles.ax7); [pxx_rf, f_rf] = pwelch(rf_signal, 1024, 512, 1024, Fs, 'centered'); plot(f_rf/1e6, 10*log10(pxx_rf)); title('天线输出频谱'); xlabel('频率 (MHz)'); ylabel('功率谱密度 (dB/Hz)'); grid on; %% 12. 误码率分析 if M <= 16 % 只对低阶调制做误码率分析 % 解调 rx_data = mod_data; % 简化处理,实际应包含同步等步骤 rx_symbols = filtered(1:length(mod_data(:))); switch mod_idx case 1 % QPSK demod = pskdemod(rx_symbols, M, pi/4, 'gray'); case 2 % 16QAM demod = qamdemod(rx_symbols, M, 'gray', 'UnitAveragePower', true); case 3 % BPSK demod = pskdemod(rx_symbols, M, pi/2, 'gray'); end % 符号到比特 rx_bits = de2bi(demod, bits_per_symbol, 'left-msb'); rx_bits = rx_bits(:); % 计算误码率 errors = biterr(interleaved(1:length(rx_bits)), rx_bits); ber = errors / length(rx_bits); axes(handles.ax9); bar(categorical({'BER'}), ber); ylim([0 0.5]); title(['误码率: ' num2str(ber*100) '% (SNR: ' num2str(SNR) 'dB)']); ylabel('误码率'); else axes(handles.ax9); text(0.5, 0.5, '高阶调制未计算BER', 'HorizontalAlignment', 'center'); axis off; end % 信息框显示 msgbox(sprintf('OFDM系统仿真完成!\n\n参数配置:\n- 子载波: %d\n- 调制: %s\n- CP长度: %d\n- 交织深度: %d', ... N, mod_str, cp_length, depth), ... '仿真结果', 'help'); end把这个代码修改为每一步都有按钮,并且按下按钮后会出现相应GUI界面的完整在正确的代码

filetype

function OFDM_GUI9() clc; clear; close all; global OFDM; OFDM = struct(); % 创建 GUI 窗口 f = figure('Name', 'OFDM GUI 系统仿真', 'Position', [100, 100, 1000, 600]); % 参数选择区 uicontrol('Style', 'text', 'Position', [20, 540, 100, 20], 'String', '子载波数量'); OFDM.subcarriersBox = uicontrol('Style', 'popupmenu', ... 'String', {'64', '128', '256'}, 'Position', [120, 540, 100, 25]); uicontrol('Style', 'text', 'Position', [20, 500, 100, 20], 'String', '调制方式'); OFDM.modTypeBox = uicontrol('Style', 'popupmenu', ... 'String', {'BPSK', 'QPSK', '16QAM'}, 'Position', [120, 500, 100, 25]); uicontrol('Style', 'text', 'Position', [20, 460, 100, 20], 'String', '循环前缀长度'); OFDM.cpLenBox = uicontrol('Style', 'popupmenu', ... 'String', {'8', '16', '32'}, 'Position', [120, 460, 100, 25]); uicontrol('Style', 'text', 'Position', [20, 420, 100, 20], 'String', '编码方式'); OFDM.codeBox = uicontrol('Style', 'popupmenu', ... 'String', {'None', '简单重复', '卷积编码'}, ... 'Position', [120, 420, 100, 25]); % 图像显示区域 OFDM.ax = axes('Parent', f, 'Position', [0.35, 0.2, 0.6, 0.7]); % 步骤按钮 steps = {'1. 产生信号', '2. 编码', '3. 交织', '4. 串并变换', ... '5. 调制', '6. IFFT', '7. 并串变换', '8. 加天线/发送'}; for i = 1:length(steps) uicontrol('Style', 'pushbutton', 'String', steps{i}, ... 'Position', [20, 360 - (i - 1)*40, 200, 30], ... 'Callback', @(src, event) run_step(i)); end % 解码与分析按钮 uicontrol('Style', 'pushbutton', 'String', '9. 解码并计算BER', ... 'Position', [20, 40, 200, 30], ... 'Callback', @(src, event) run_step(9)); uicontrol('Style', 'pushbutton', 'String', '11. 星座图对比', ... 'Position', [240, 80, 200, 30], ... 'Callback', @(src, event) plot_constellation_comparison()); uicontrol('Style', 'pushbutton', 'String', '12. 吞吐量分析', ... 'Position', [240, 120, 200, 30], ... 'Callback', @(src, event) plot_throughput()); end function run_step(step) global OFDM; N = str2double(OFDM.subcarriersBox.String{OFDM.subcarriersBox.Value}); modType = OFDM.modTypeBox.String{OFDM.modTypeBox.Value}; cpLen = str2double(OFDM.cpLenBox.String{OFDM.cpLenBox.Value}); codeType = OFDM.codeBox.String{OFDM.codeBox.Value}; switch step case 1 OFDM.bits = randi([0 1], 1, N * 2); stem(OFDM.ax, OFDM.bits); title(OFDM.ax, '原始比特流'); case 2 switch codeType case 'None' OFDM.encoded = OFDM.bits; case '简单重复' OFDM.encoded = repelem(OFDM.bits, 2); case '卷积编码' trellis = poly2trellis(7, [171 133]); OFDM.encoded = convenc(OFDM.bits, trellis); end stem(OFDM.ax, OFDM.encoded); title(OFDM.ax, '编码后比特流'); case 3 rng(1); OFDM.interleaved = OFDM.encoded(randperm(length(OFDM.encoded))); stem(OFDM.ax, OFDM.interleaved); title(OFDM.ax, '交织后比特流'); case 4 OFDM.parallel = reshape(OFDM.interleaved, N, [])'; imagesc(OFDM.ax, abs(OFDM.parallel)); title(OFDM.ax, '串并变换结果'); case 5 switch modType case 'BPSK' symbols = 2 * OFDM.parallel - 1; case 'QPSK' bits = reshape(OFDM.parallel, [], 2); symbols = (1 - 2 * bits(:,1)) + 1j * (1 - 2 * bits(:,2)); case '16QAM' bits = reshape(OFDM.parallel, [], 4); symbols = qammod(bi2de(bits), 16, 'InputType', 'integer', 'UnitAveragePower', true); end OFDM.modulated = reshape(symbols, [], N); scatter(OFDM.ax, real(OFDM.modulated(:)), imag(OFDM.modulated(:)), '.'); title(OFDM.ax, '调制星座图'); case 6 OFDM.timeSignal = ifft(OFDM.modulated, N, 2); plot(OFDM.ax, real(OFDM.timeSignal(1,:))); title(OFDM.ax, '时域信号(IFFT输出)'); case 7 cp = OFDM.timeSignal(:, end-cpLen+1:end); OFDM.serialOut = reshape([cp, OFDM.timeSignal].', 1, []); plot(OFDM.ax, real(OFDM.serialOut)); title(OFDM.ax, '加循环前缀后的串行信号'); case 8 OFDM.tx = awgn(OFDM.serialOut, 20, 'measured'); [Pxx, f] = periodogram(OFDM.tx, [], [], 1, 'centered'); plot(OFDM.ax, f, 10*log10(Pxx)); title(OFDM.ax, '发送信号频谱 (AWGN信道)'); case 9 Nsym = N + cpLen; rxMatrix = reshape(OFDM.tx, Nsym, []).'; rxMatrix = rxMatrix(:, cpLen+1:end); freqSignal = fft(rxMatrix, N, 2); switch modType case 'BPSK' receivedBits = real(freqSignal) > 0; case 'QPSK' sym = freqSignal(:); bitsI = real(sym) < 0; bitsQ = imag(sym) < 0; receivedBits = reshape([bitsI.'; bitsQ.'], [], 1); case '16QAM' sym = freqSignal(:); demod = qamdemod(sym, 16, 'OutputType', 'bit', 'UnitAveragePower', true); receivedBits = demod(:); end receivedBits = receivedBits(:).'; rng(1); idx = randperm(length(receivedBits)); revIdx(idx) = 1:length(idx); deinterleaved = receivedBits(revIdx); switch codeType case 'None' decodedBits = deinterleaved; case '简单重复' decodedBits = deinterleaved(1:2:end); case '卷积编码' trellis = poly2trellis(7, [171 133]); decodedBits = vitdec(deinterleaved, trellis, 35, 'trunc', 'hard'); end txBits = OFDM.bits(1:length(decodedBits)); ber = sum(txBits ~= decodedBits) / length(txBits); cla(OFDM.ax); text(0.1, 0.5, sprintf('误码率 BER = %.5f', ber), 'FontSize', 16, 'Parent', OFDM.ax); title(OFDM.ax, '解码完成 & BER显示'); end end function plot_constellation_comparison() global OFDM; if ~isfield(OFDM, 'modulated') || ~isfield(OFDM, 'tx') errordlg('请先完成发送步骤 (1~8)', '错误'); return; end N = size(OFDM.modulated, 2); cpLen = str2double(OFDM.cpLenBox.String{OFDM.cpLenBox.Value}); rx = OFDM.tx; Nsym = N + cpLen; rxMatrix = reshape(rx, Nsym, []).'; rxMatrix = rxMatrix(:, cpLen+1:end); rxFreq = fft(rxMatrix, N, 2); figure('Name', '前后星座图对比'); subplot(1,2,1); scatter(real(OFDM.modulated(:)), imag(OFDM.modulated(:)), '.'); title('发送前星座图'); xlabel('I'); ylabel('Q'); axis equal; grid on; subplot(1,2,2); scatter(real(rxFreq(:)), imag(rxFreq(:)), '.'); title('接收后星座图'); xlabel('I'); ylabel('Q'); axis equal; grid on; end function plot_throughput() global OFDM; codeType = OFDM.codeBox.String{OFDM.codeBox.Value}; switch codeType case 'None', R = 1; case '简单重复', R = 0.5; case '卷积编码', R = 0.5; end EbN0_dB = 0:2:20; BER = 0.5 * exp(-0.1 * EbN0_dB); % 估算BER或替换为真实值 T = R * (1 - BER); figure('Name','吞吐量分析'); plot(EbN0_dB, T, 's-', 'LineWidth', 2); xlabel('Eb/N0 (dB)'); ylabel('吞吐量 (相对值)'); title('吞吐量随Eb/N0变化'); grid on; end分析详细解释每一行代码

资源评论
用户头像
小小二-yan
2025.06.24
这份文档资源详细介绍了QAM和OFDM信号的调制与解调过程。
用户头像
精准小天使
2025.06.19
这份源码对于研究OFDM通信系统非常有帮助。
用户头像
阿玫小酱当当囧
2025.06.07
适合于对数字通信感兴趣的工程师和学者。
mYlEaVeiSmVp
  • 粉丝: 2364
上传资源 快速赚钱