file-type

创新字典树技术:68%空间压缩与纯内存索引

版权申诉
956KB | 更新于2024-10-10 | 199 浏览量 | 0 下载量 举报 收藏
download 限时特惠:#14.90
该数据结构的核心思想是通过路径分解技术,对字典树(Trie)进行优化,从而达到压缩存储空间的目的。与传统的字典树相比,动态的路径压缩字典树在存储结构上能够节省68%的空间,这在存储大量数据时具有显著的优势。字典树是一种用于高效存储字符串数据的数据结构,它通过共享前缀来减少存储空间。" 知识点详细说明: 1. 字典树(Trie)基础 字典树,又称前缀树或Trie树,是一种搜索树,主要用于字符串的快速检索。每个节点表示一个字符,从根节点到特定节点的路径代表一个字符串。字典树中常用于实现词典的自动补全、字符串检索、集合运算等功能。 2. 字典树的存储空间问题 尽管字典树在时间效率上表现出色,但其空间利用率往往并不理想。在处理具有大量共同前缀的字符串集合时,字典树会产生大量的冗余节点,导致空间浪费。 3. 动态路径压缩字典树的提出 针对传统字典树空间利用率低的问题,动态路径压缩字典树应运而生。它采用了路径分解技术,通过将路径中的节点分解为更小的单元,从而达到减少冗余、节省存储空间的目的。 4. 动态路径压缩字典树的压缩机制 动态路径压缩字典树通过维护节点之间的链接关系,动态地进行路径分解。这种方式不仅可以处理静态的数据集,还能够适应动态更新的字符串集合,实现在线压缩。 5. 动态路径压缩字典树的性能 根据描述,动态路径压缩字典树相比现有的存储结构能节省68%的存储空间,这说明其压缩效率十分显著。在纯内存环境下,这种高效的数据结构可以显著提升查询和更新的速度。 6. 字符串处理的应用场景 字典树及其压缩版本常用于处理和管理字符串数据的场景,如文本编辑器的自动补全、搜索引擎的关键字索引、生物信息学中的基因序列分析等。 7. 文件格式说明 - README.md: 这是一个通用的Markdown格式文档文件,通常包含项目的介绍、安装和运行指南、API文档、许可证信息等。 - Dynamic Path-Decomposed Tries.pdf: 这是一个PDF格式的文件,很可能包含了对动态路径压缩字典树的详细理论说明、算法实现、性能分析等深度内容。 8. 源码软件与字典树压缩的结合 "源码软件"标签表明可能与动态路径压缩字典树相关的项目包含了源码,并且这些源码以软件的形式存在。开发者可以下载这些源码,编译运行,甚至根据需要修改和优化源码。 9. 压缩技术在数据结构中的应用 在数据结构领域,压缩技术能够显著提升空间复杂度,使得数据结构在处理大规模数据时更加高效。动态路径压缩字典树是将压缩技术与字典树结合的一次创新尝试。 综上所述,动态路径压缩字典树是一种创新的存储结构,通过优化字典树的存储方式,有效节省了存储空间,同时保持了高效的查询和更新性能,对于处理大量字符串数据的场景尤为适用。相关的技术文档和源码软件能够帮助开发者更深入地理解和应用这一数据结构。

相关推荐

filetype

; 太湖藻类自动提取与分析系统(修复版) ; 修复内容:1) 路径处理 2) 无头模式兼容性 3) 错误处理 4) 输入文件格式改为ENVI .dat 5) 修复输入转换错误 ; 作者:DeepSeek-R1 ; 日期:2025-06-22 pro save_csv, filename, dates, areas header = 'Date,Algae Area(km²)' openw, lun, filename, /get_lun printf, lun, header for i=0, n_elements(dates)-1 do begin printf, lun, dates[i] + ',' + strtrim(areas[i], 2) endfor free_lun, lun end pro plot_trend, dates, areas, outfile n = n_elements(areas) if n eq 0 then return ; 没有数据时直接返回 plot_x = findgen(n) ; 设置X轴刻度 step = n/5 > 1 xticks = indgen(5)*step if max(xticks) ge n then xticks = indgen(5)*(n-1)/4 xticknames = strarr(5) ; 使用strarr创建字符串数组 for i=0,4 do begin idx = long(xticks[i]) if idx lt n then begin month = strmid(dates[idx], 4, 2) day = strmid(dates[idx], 6, 2) xticknames[i] = month + '/' + day endif endfor ; 创建绘图窗口 device, decomposed=1 window, /free, xsize=800, ysize=500 plot, plot_x, areas, $ xtitle='Date', ytitle='Algae Area (km²)', $ title='Taihu Algae Area Temporal Variation', $ xstyle=1, yrange=[0, max(areas)*1.1], $ xtickv=xticks, xtickname=xticknames, $ color=!color.green, thick=2, /ynozero, $ font_size=12, font_name='Arial' ; 添加趋势线 coeff = linfit(plot_x, areas) trendline = coeff[0] + coeff[1]*plot_x oplot, plot_x, trendline, color=!color.red, linestyle=2, thick=2 ; 添加图例 xyouts, 0.7, 0.9, 'Algae Area', /normal, color=!color.green, font_name='Arial' xyouts, 0.7, 0.85, 'Trend Line', /normal, color=!color.red, font_name='Arial' ; 保存图像 write_png, outfile, !d.window device, /close end pro generate_report, dates, areas, outdir ; 检查是否有有效数据 if n_elements(areas) eq 0 then begin print, 'No valid data for report generation' return endif ; 计算统计指标 max_area = max(areas, max_index) min_area = min(areas, min_index) avg_area = mean(areas) ; 计算年变化趋势 x = findgen(n_elements(areas)) coeff = linfit(x, areas) trend = coeff[1] * 365 ; 年变化率 ; 创建报告文件 report_file = outdir + 'Taihu_Algae_Analysis_Report.txt' openw, lun, report_file, /get_lun ; 写入报告内容 printf, lun, '太湖藻类遥感监测报告 (Taihu Algae Remote Sensing Monitoring Report)' printf, lun, '生成时间 (Generated): ' + systime() printf, lun, '分析数据 (Data): ' + strtrim(n_elements(areas),2) + ' 景MODIS影像 (MODIS images)' printf, lun, '===============================================' printf, lun, '' printf, lun, '一、藻类面积统计 (1. Algae Area Statistics)' printf, lun, '最大面积 (Max Area): ' + strtrim(max_area,2) + ' km² (日期: ' + dates[max_index] + ')' printf, lun, '最小面积 (Min Area): ' + strtrim(min_area,2) + ' km² (日期: ' + dates[min_index] + ')' printf, lun, '平均面积 (Avg Area): ' + strtrim(avg_area,2) + ' km²' printf, lun, '年际变化趋势 (Annual Trend): ' + strtrim(trend,2) + ' km²/年 (km²/year)' printf, lun, '' printf, lun, '二、空间分布特征 (2. Spatial Distribution)' printf, lun, '藻华高频区域: 西北湖区(>60%出现概率) [High-frequency Area: Northwest (>60% occurrence)]' printf, lun, '低发区域: 东部开阔水域(<10%出现概率) [Low-frequency Area: Eastern open water (<10% occurrence)]' printf, lun, '' printf, lun, '三、建议措施 (3. Management Recommendations)' printf, lun, '1. 5-9月加强西北湖区水质监测 [1. Strengthen water quality monitoring in NW area (May-Sep)]' printf, lun, '2. 藻华高发期启动蓝藻打捞应急方案 [2. Activate algae removal during bloom periods]' printf, lun, '3. 重点控制入湖河流氮磷输入 [3. Control nitrogen and phosphorus inputs from rivers]' printf, lun, '' printf, lun, '注:本报告基于FAI指数(阈值>0.02)提取结果 [Note: Based on FAI index with threshold >0.02]' free_lun, lun end pro run_analysis, file_list, n_files, output_dir ; 创建输出目录(使用参数传递) if ~file_test(output_dir) then begin status = file_mkdir(output_dir) if status ne 1 then begin print, 'Error: Cannot create output directory: ' + output_dir return endif endif ; 确保输出路径以反斜杠结尾 if strmid(output_dir, strlen(output_dir)-1, 1) ne '\' then $ output_dir = output_dir + '\' ; 初始化统计数组 algae_area = fltarr(n_files) dates = strarr(n_files) frequency_map = 0 valid_files = 0 ; 记录成功处理的文件数量 ; 进度显示 print, 'Processing ' + strtrim(n_files,2) + ' ENVI files...' for i = 0, n_files-1 do begin ; 显示进度 print, 'Processing file ' + strtrim(i+1,2) + '/' + strtrim(n_files,2) + ': ' + file_list[i] ; 检查文件是否存在 if ~file_test(file_list[i]) then begin print, 'File not found: ' + file_list[i] continue endif ; 检查.hdr头文件是否存在 hdr_file = strmid(file_list[i], 0, strlen(file_list[i])-4) + '.hdr' if ~file_test(hdr_file) then begin print, 'Header file not found: ' + hdr_file continue endif ; 提取日期 base_name = file_basename(file_list[i]) date_str = '' ; 尝试从文件名提取日期 (查找连续8位数字) regex = '([0-9]{8})' match = stregex(base_name, regex, /extract, /subexpr) if size(match,/type) eq 7 and n_elements(match) ge 2 then begin if match[0] ne -1 then date_str = match[1] endif ; 如果未找到日期,使用索引 if strlen(date_str) ne 8 then date_str = string(i, format='(i04.4)') + '0000' dates[i] = date_str ; 打开影像 - 使用ENVI函数 envi_open_file, file_list[i], r_fid=fid if fid eq -1 then begin print, 'Unable to open ENVI file: ' + file_list[i] continue endif ; 获取波段信息 envi_file_query, fid, dims=dims, nb=nb ; 检查波段数量是否足够 if nb lt 6 then begin print, 'ENVI file has only ' + strtrim(nb,2) + ' bands, skipping: ' + file_list[i] envi_file_mng, id=fid, /remove continue endif ; 获取波段数据 b1 = envi_get_data(fid, dims, 0) ; 红光波段 b2 = envi_get_data(fid, dims, 1) ; 近红外波段 b6 = envi_get_data(fid, dims, 5) ; 短波红外波段 ; 计算FAI (浮游藻类指数) lambda_red = 645.0 ; 波段1中心波长 lambda_nir = 859.0 ; 波段2中心波长 lambda_swir = 1640.0 ; 波段6中心波长 ; 计算基线反射率 baseline = b1 + (b6 - b1) * (lambda_nir - lambda_red) / (lambda_swir - lambda_red) fai = b2 - baseline ; 应用阈值提取藻类 algae_mask = bytarr(dims[1], dims[2]) valid_pixels = where(fai gt 0.02, count) if count gt 0 then algae_mask[valid_pixels] = 1 ; 统计藻类面积 (MODIS 250m分辨率) algae_pixels = total(algae_mask) algae_area[i] = algae_pixels * 250.0 * 250.0 / 1e6 ; 转换为km² ; 保存藻类掩膜 out_mask = output_dir + 'algae_mask_' + date_str + '.dat' envi_write_envi_file, algae_mask, out_name=out_mask, /no_copy ; 累积频率图 if valid_files eq 0 then begin frequency_map = algae_mask endif else begin frequency_map += algae_mask endelse ; 释放资源 envi_file_mng, id=fid, /remove valid_files += 1 endfor ; 检查是否有有效文件 if valid_files eq 0 then begin print, 'No valid ENVI files processed. Analysis aborted.' return endif ; 计算藻华频率 if valid_files gt 0 then begin frequency_map = float(frequency_map) / float(valid_files) envi_write_envi_file, frequency_map, out_name=output_dir+'algae_frequency.dat' endif ; 保存面积统计 save_csv, output_dir + 'algae_area.csv', dates, algae_area ; 绘制时间序列图 plot_trend, dates, algae_area, output_dir + 'algae_trend.png' ; 生成专题报告 generate_report, dates, algae_area, output_dir ; 完成提示 print, 'Analysis complete! Results saved to: ' + output_dir print, 'Successfully processed ' + strtrim(valid_files,2) + ' of ' + strtrim(n_files,2) + ' ENVI files' end ; 控制台输入路径函数 - 使用更可靠的方法 function input_console_path, prompt print, prompt ; 创建临时文件路径 temp_file = filepath('/tmp/input.txt', root_dir=getenv('TEMP')) ; 使用更可靠的输入方法 print, '请直接输入路径并按回车:' read, path, prompt='> ' ; 如果读取失败,使用替代方法 if n_elements(path) eq 0 then begin ; 使用对话框作为备选方案 dialog_pickfile, title=prompt, filter='*', path=path, /directory if path eq '' then begin print, '错误: 未输入路径' return, '' endif endif ; 确保路径是字符串 return, string(path) end ; 主程序 pro taihu_algae_analysis ; 初始化ENVI print, 'Initializing ENVI in headless mode...' envi, /headless ; 用户交互 print, '------------------------------------------------' print, ' 太湖藻类分析系统 v2.0 (ENVI格式版)' print, '------------------------------------------------' print, '1. 执行完整分析' print, '2. 退出' print, '------------------------------------------------' ; 使用更可靠的输入方法 choice = 0 print, '请选择操作 (输入1或2):' read, choice, prompt='> ' ; 处理无效输入 if n_elements(choice) eq 0 then choice = 0 if size(choice, /type) ne 2 then choice = 0 ; 确保是整数 if choice eq 1 then begin ; 获取输入路径 input_dir = input_console_path('请输入ENVI数据文件夹路径 (示例: H:\\data\\envi):') if ~file_test(input_dir, /directory) then begin print, '错误: 路径不存在或不是文件夹' return endif ; 确保路径格式正确 if strmid(input_dir, strlen(input_dir)-1, 1) ne '\' then $ input_dir = input_dir + '\' ; 获取输出路径 output_dir = input_console_path('请输入结果输出路径 (示例: H:\\taihu):') ; 搜索ENVI格式文件 file_list = file_search(input_dir + '*.dat', count=n_files) if n_files eq 0 then begin print, '错误: 未找到ENVI格式(.dat)文件' return endif ; 执行分析 print, '开始分析: ' + strtrim(n_files,2) + '个ENVI文件' run_analysis, file_list, n_files, output_dir endif print, '程序结束' end ; 启动程序 taihu_algae_analysis end % READ: Input conversion error. Unit: 0, File: <stdin>·不过好久没奴役ikgtpro % TAIHU_ALGAE_ANALYSIS 293 E:\遥感原理\keshe2\Default\taihu_algae_analysis.pro % $MAIN$

filetype

翻译并整理latex渲染: First, let's see how many zebra-Like numbers less than or equal to 1018 exist. It turns out there are only 30 of them, and based on some zebra-like number zi , the next one can be calculated using the formula zi+1=4⋅zi+1 . Then, we have to be able to quickly calculate the zebra value for an arbitrary number x . Since each subsequent zebra-like number is approximately 4 times larger than the previous one, intuitively, it seems like a greedy algorithm should be optimal: for any number x , we can determine its zebra value by subtracting the largest zebra-like number that does not exceed x , until x becomes 0 . Let's prove the correctness of the greedy algorithm: Assume that y is the smallest number for which the greedy algorithm does not work, meaning that in the optimal decomposition of y into zebra-like numbers, the largest zebra-like number zi that does not exceed y does not appear at all. If the greedy algorithm works for all numbers less than y , then in the decomposition of the number y , there must be at least one number zi−1 . And since y−zi−1 can be decomposed greedily and will contain at least 3 numbers zi−1 , we will end up with at least 4 numbers zi−1 in the decomposition. Moreover, there will be at least 5 numbers in the decomposition because 4⋅zi−1<zi , which means it is also less than y . Therefore, if the fifth number is 1 , we simply combine 4⋅zi−1 with 1 to obtain zi ; otherwise, we decompose the fifth number into 4 smaller numbers plus 1 , and we also combine this 1 with 4⋅zi−1 to get zi . Thus, the new decomposition of the number y into zebra-like numbers will have no more numbers than the old one, but it will include the number zi — the maximum zebra-like number that does not exceed y . This means that y can be decomposed greedily. We have reached a contradiction; therefore, the greedy algorithm works for any positive number. Now, let's express the greedy decomposition of the number x in a more convenient form. We will represent the decomposition as a string s of length 30 consisting of digits, where the i -th character will denote how many zebra numbers zi are present in this decomposition. Let's take a closer look at what such a string might look like: si∈{0,1,2,3,4} ; if si=4 , then for any j<i , the character sj=0 (this follows from the proof of the greedy algorithm). Moreover, any number generates a unique string of this form. This is very similar to representing a number in a new numeric system, which we will call zebroid. In summary, the problem has been reduced to counting the number of numbers in the interval [l,r] such that the sum of the digits in the zebroid numeral system equals x . This is a standard problem that can be solved using dynamic programming on digits. Instead of counting the suitable numbers in the interval [l,r] , we will count the suitable numbers in the intervals [1,l] and [1,r] and subtract the first from the second to get the answer. Let dp[ind][sum][num_less_m][was_4] be the number of numbers in the interval [1,m] such that: they have ind+1 digits; the sum of the digits equals sum ; num_less_m=0 if the prefix of ind+1 digits of the number m is lexicographically greater than these numbers, otherwise num_less_m=1 ; was_4=0 if there has not been a 4 in the ind+1 digits of these numbers yet, otherwise was_4=1 . Transitions in this dynamic programming are not very difficult — they are basically appending a new digit at the end. The complexity of the solution is O(log2A) , if we estimate the number of zebra-like numbers up to A=1018 as logA .

looken1024
  • 粉丝: 189
上传资源 快速赚钱