【Python时序预测系列】基于多层LSTM实现单变量时间序列预测(源码)

这是我的第238篇原创文章。

一、引言

多层长短期记忆网络(Multiple Layer Long Short-Term Memory,简称多层LSTM)是一种深度学习模型,通常用于处理序列数据。在多层LSTM中,多个LSTM层依次堆叠在一起,前一层的输出作为后一层的输入。每一层都可以学习不同抽象级别的特征表示,使得模型能够更好地理解数据的复杂结构和模式。

通过堆叠多个LSTM层,模型可以学习更加复杂和抽象的序列特征,从而提高模型的表达能力和预测性能。然而,需要注意的是,增加层数也会增加模型的复杂度和训练时间,有时也可能导致过拟合问题,因此在实际应用中需要进行适当的调参和模型选择。

二、实现过程

2.1 读取数据集

# 读取数据集
data = pd.read_csv('data.csv')
# 将日期列转换为日期时间类型
data['Month'] = pd.to_datetime(data['Month'])
# 将日期列设置为索引
data.set_index('Month', inplace=True)

data:

图片

2.2 划分数据集

# 拆分数据集为训练集和测试集
train_size = int(len(data) * 0.8)
train_data = data[:train_size]
test_data = data[train_size:]

# 绘制训练集和测试集的折线图
plt.figure(figsize=(10, 6))
plt.plot(train_data, label='Training Data')
plt.plot(test_data, label='Testing Data')
plt.xlabel('Year')
plt.ylabel('Passenger Count')
plt.title('International Airline Passengers - Training and Testing Data')
plt.legend()
plt.show()

共144条数据,8:2划分:训练集115,测试集29。

训练集和测试集:

图片

2.3 归一化

# 将数据归一化到 0~1 范围
scaler = MinMaxScaler()
train_data_scaler = scaler.fit_transform(train_data.values.reshape(-1, 1))
test_data_scaler = scaler.transform(test_data.values.reshape(-1, 1))

2.4 构造数据集

# 定义滑动窗口函数
def create_dataset(data, look_back=1):
    pass

# 定义滑动窗口大小
window_size = 2

# 创建滑动窗口数据集
X_train, Y_train = create_sliding_windows(train_data_scaler, window_size)
X_test, Y_test = create_sliding_windows(test_data_scaler, window_size)

# 将数据集转换为 LSTM 模型所需的形状(样本数,时间步长,特征数)
X_train = np.reshape(X_train, (X_train.shape[0], window_size, 1))
X_test = np.reshape(X_test, (X_test.shape[0], window_size, 1))

2.5 建立模拟合模型进行预测

# 构建 多层LSTM 模型
model = Sequential()
model.add(LSTM(4, input_shape=(window_size, 1), return_sequences=True))
model.add(LSTM(4))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
# 训练 多层LSTM 模型
model.fit(X_train, Y_train, epochs=100, batch_size=32)

# 使用 多层LSTM 模型进行预测
train_predictions = model.predict(X_train)
test_predictions = model.predict(X_test)

# 反归一化预测结果
train_predictions = scaler.inverse_transform(train_predictions)
test_predictions = scaler.inverse_transform(test_predictions)

test_predictions:

图片

2.6 预测效果展示

# 绘制测试集预测结果的折线图
plt.figure(figsize=(10, 6))
plt.plot(test_data, label='Actual')
plt.plot(list(test_data.index)[-len(test_predictions):], test_predictions, label='Predicted')
plt.xlabel('Month')
plt.ylabel('Passengers')
plt.title('Actual vs Predicted')
plt.legend()
plt.show()

测试集真实值与预测值:

图片

# 绘制原始数据、训练集预测结果和测试集预测结果的折线图
plt.figure(figsize=(10, 6))
plt.plot(data, label='Actual')
plt.plot(list(train_data.index)[look_back:train_size], train_predictions, label='Training Predictions')
plt.plot(list(test_data.index)[-(len(test_data)-look_back):], test_predictions, label='Testing Predictions')
plt.xlabel('Year')
plt.ylabel('Passenger Count')
plt.title('International Airline Passengers - Actual vs Predicted')
plt.legend()
plt.show()

原始数据、训练集预测结果和测试集预测结果:

图片

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。

内容概要:本文档详细介绍了一个基于时间卷积神经网络(TCN)、双向长短期记忆网络(BiLSTM)和注意力机制的深度学习模型,用于单变量时间序列的多步预测。项目旨在解决时间序列预测中的长期依赖、多步预测不确定性、关键时间点识别等问题,提出了综合性解决方案。模型结构由三大核心模块组成:TCN负责提取局部时序特征,BiLSTM捕获双向依赖,注意力机制赋予模型动态关注序列关键时刻的能力。文档还提供了详细的代码实现、数据处理方法、模型训练与评估流程,以及GUI界面设计,确保模型在实际应用中的易用性和高效性。 适用人群:具备一定编程基础,尤其是对深度学习和时间序列预测有一定了解的研发人员和技术爱好者。 使用场景及目标:①理解TCN、BiLSTM和注意力机制在时间序列预测中的应用;②掌握单变量时间序列多步预测的完整流程,包括数据预处理、模型构建、训练和评估;③学习如何通过注意力机制提升模型的解释性和预测准确性;④应用该模型到金融、工业、气象、交通、能源、医疗等多个领域的实际预测任务中。 其他说明:此资源不仅包含理论讲解,还提供了完整的代码实现和GUI设计,帮助用户从头开始构建和部署一个高效的时间序列预测系统。项目设计考虑到了计算资源的限制,采用了GPU加速、自动化CI/CD管道、实时数据流处理等技术,确保模型在实际环境中的高效运行和稳定性。此外,文档还探讨了未来的改进方向,如多变量时间序列预测扩展、融合图神经网络、增强模型自适应能力等,为后续研究和发展提供了参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据杂坛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值