python 二分查找树

这篇博客介绍了二叉搜索树(BinarySearchTree)的实现,包括插入、查找和删除操作,并提供了用于类似字典映射的访问方式。此外,还详细讲解了AVL树的插入操作以及如何通过旋转保持平衡,以确保高效查找。博客内容涵盖了树的中序、前序和后序遍历。
class BinarySearchTree:
    def __init__(self):
        # 定义根节点
        self.root = None
        # 用于记录树的大小,即树中有多少个node
        self.size = 0
    
    def put(self,key,val):
    	# 新node加入树中
        if self.root:
            self._put(key,val,self.root)
        else:
            self.root = TreeNode(key,val)
        self.size = self.size + 1

    def _put(self,key,val,currentNode):
    	# 如果key小于根节点key则插入左子树,如果key大于根节点key则插入右子树
        if key < currentNode.key:
            if currentNode.hasLeftChild():
                self._put(key,val,currentNode.leftChild)
            else:
                currentNode.leftChild = TreeNode(key,val,parent=currentNode)
        else:
            if currentNode.hasRightChild():
                self._put(key,val,currentNode.rightChild)
            else:
                currentNode.rightChild = TreeNode(key,val,parent=currentNode)
            
    def __setitem__(self,k,v):
        self.put(k,v)

    def get(self,key):
    	# 通过key过去bst树的val
        if self.root:
            res = self._get(key,self.root)
            if res:
                return res.payload
            else:
                return None
        else:
            return None
        
    def _get(self,key,currentNode):
        if not currentNode:
            return None
        elif currentNode.key == key:
            return currentNode
        elif key < currentNode.key:
            return self._get(key,currentNode.leftChild)
        else:
            return self._get(key,currentNode.rightChild)
            
        
    def __getitem__(self,key):
    	# 用于类似map的访问比如a['key']=
        res = self.get(key)
        if res:
            return res
        else:
            raise KeyError('Error, key not in tree')
            

    def __contains__(self,key):
    	# 用于判断是否含有key
        if self._get(key,self.root):
            return True
        else:
            return False
        
    def length(self):
        return self.size

    def __len__(self):
        return self.size

    def __iter__(self):
        return self.root.__iter__()
    
    # 删除bst树中的节点
    def delete(self,key):
    	# 通过key找到要删除的node,将node从树中摘离
        if self.size > 1:
            nodeToRemove = self._get(key,self.root)
            if nodeToRemove:
                self.remove(nodeToRemove)
                self.size = self.size-1
            else:
                raise KeyError('Error, key not in tree')
        elif self.size == 1 and self.root.key == key:
            self.root = None
            self.size = self.size - 1
        else:
            raise KeyError('Error, key not in tree')

    def __delitem__(self,key):
        self.delete(key)
    
    # 移除node
    def remove(self,currentNode):
    	# 如果是叶子节点则直接摘离节点
        if currentNode.isLeaf(): #leaf
            if currentNode == currentNode.parent.leftChild:
                currentNode.parent.leftChild = None
            else:
                currentNode.parent.rightChild = None
        # 如果本节点左右子节点都有则需找到后继节点,将后继节点摘落并插入本节点位置
        elif currentNode.hasBothChildren(): #interior
            succ = currentNode.findSuccessor()
            succ.spliceOut()
            currentNode.key = succ.key
            currentNode.payload = succ.payload
        else: # this node has one child
        	# 如果本节点只有一个子节点则选择性变更左右指针即可
            if currentNode.hasLeftChild():
                if currentNode.isLeftChild():
                    currentNode.leftChild.parent = currentNode.parent
                    currentNode.parent.leftChild = currentNode.leftChild
                elif currentNode.isRightChild():
                    currentNode.leftChild.parent = currentNode.parent
                    currentNode.parent.rightChild = currentNode.leftChild
                else:
                    currentNode.replaceNodeData(currentNode.leftChild.key,
                                       currentNode.leftChild.payload,
                                       currentNode.leftChild.leftChild,
                                       currentNode.leftChild.rightChild)
            else:
                if currentNode.isLeftChild():
                    currentNode.rightChild.parent = currentNode.parent
                    currentNode.parent.leftChild = currentNode.rightChild
                elif currentNode.isRightChild():
                    currentNode.rightChild.parent = currentNode.parent
                    currentNode.parent.rightChild = currentNode.rightChild
                else:
                    currentNode.replaceNodeData(currentNode.rightChild.key,
                                       currentNode.rightChild.payload,
                                       currentNode.rightChild.leftChild,
                                       currentNode.rightChild.rightChild)
	
	# 中序遍历bst树
    def inorder(self):
        self._inorder(self.root)

    def _inorder(self,tree):
        if tree != None:
        	# ldr中序遍历
            self._inorder(tree.leftChild)
            print(tree.key)
            self._inorder(tree.rightChild)

    def postorder(self):
        self._postorder(self.root)

    def _postorder(self, tree):
        if tree:
            self._postorder(tree.rightChild)
            self._postorder(tree.leftChild)
            print(tree.key)            

    def preorder(self):
        self._preorder(self,self.root)

    def _preorder(self,tree):
        if tree:
            print(tree.key)            
            self._preorder(tree.leftChild)
            self._preorder(tree.rightChild)

                
class TreeNode:
    def __init__(self,key,val,left=None,right=None,parent=None):
    	# 可以用于代表这个node
        self.key = key
        # 该node的值
        self.payload = val
        # 该node的左子节点(指向另一个node)
        self.leftChild = left
        # 该node的右子节点
        self.rightChild = right
        # 该node的父节点
        self.parent = parent
        # 用于保存平衡因子(在avl树中有使用)
        self.balanceFactor = 0
        
    def hasLeftChild(self):
        return self.leftChild

    def hasRightChild(self):
        return self.rightChild
    
    def isLeftChild(self):
    	# 判断自身这个节点是否是左子节点
        return self.parent and self.parent.leftChild == self

    def isRightChild(self):
        return self.parent and self.parent.rightChild == self

    def isRoot(self):
    	# 判断自身是否是根节点
        return not self.parent

    def isLeaf(self):
     	# 判断自身是否是叶子节点
        return not (self.rightChild or self.leftChild)

    def hasAnyChildren(self):
    	# 判断自身是否存有子节点
        return self.rightChild or self.leftChild

    def hasBothChildren(self):
    	# 判断自身节点是否都有左节点和右节点
        return self.rightChild and self.leftChild
    
    def replaceNodeData(self,key,value,lc,rc):
    	# 更改节点的数据额或者指针
        self.key = key
        self.payload = value
        self.leftChild = lc
        self.rightChild = rc
        if self.hasLeftChild():
            self.leftChild.parent = self
        if self.hasRightChild():
            self.rightChild.parent = self
        
    def findSuccessor(self):
    	# 找到后继节点,删除一个节点时需要左旋或右旋,在avl树中需要找到后继节点
    	# 后继节点是一定是右子树中最小的那个节点(这里不懂看书)
        succ = None
        if self.hasRightChild():
        	# 获取右子树中最小的节点
            succ = self.rightChild.findMin()
        else:
            if self.parent:
                if self.isLeftChild():
                    succ = self.parent
                else:
                    self.parent.rightChild = None
                    succ = self.parent.findSuccessor()
                    self.parent.rightChild = self
        return succ


    def spliceOut(self):
    	# 找到后继节点后,需要将后继点从原来的bst中剥离
        if self.isLeaf():
        	# 如果是叶子节点则直接剥离
            if self.isLeftChild():
                self.parent.leftChild = None
            else:
                self.parent.rightChild = None
        elif self.hasAnyChildren():
            if self.hasLeftChild():
                if self.isLeftChild():
                    self.parent.leftChild = self.leftChild
                else:
                    self.parent.rightChild = self.leftChild
                self.leftChild.parent = self.parent
            else:
                if self.isLeftChild():
                    self.parent.leftChild = self.rightChild
                else:
                    self.parent.rightChild = self.rightChild
                self.rightChild.parent = self.parent

    def findMin(self):
    	# 找到最小的节点,这里的小于大都是关于key的比较
        current = self
        while current.hasLeftChild():
            current = current.leftChild
        return current

    def __iter__(self):
        """The standard inorder traversal of a binary tree."""
        # 遍历整个树,使用迭代器
        if self:
            if self.hasLeftChild():
            	# 此处可理解成递归调用
                for elem in self.leftChild:
                    yield elem
            yield self.key
            if self.hasRightChild():
                for elem in self.rightChild:
                    yield elem

avl树 

# 继承bst树
class AVLTree(BinarySearchTree):
    def _put(self,key,val,currentNode):
        if key < currentNode.key:
            if currentNode.hasLeftChild():
                self._put(key,val,currentNode.leftChild)
            else:
                currentNode.leftChild = TreeNode(key,val,parent=currentNode)
                self.updateBalance(currentNode.leftChild)
        else:
            if currentNode.hasRightChild():
                self._put(key,val,currentNode.rightChild)
            else:
                currentNode.rightChild = TreeNode(key,val,parent=currentNode)
                self.updateBalance(currentNode.rightChild)                

    def updateBalance(self,node):
    	# 更新平衡因子,当本节点的平衡因子被破坏了需要更新平衡因子
        if node.balanceFactor > 1 or node.balanceFactor < -1:
            self.rebalance(node)
            return
        if node.parent != None:
            if node.isLeftChild():
                node.parent.balanceFactor += 1
            elif node.isRightChild():
                node.parent.balanceFactor -= 1

            if node.parent.balanceFactor != 0:
                self.updateBalance(node.parent)

    def rebalance(self,node):
        if node.balanceFactor < 0:
            if node.rightChild.balanceFactor > 0:
                # Do an LR Rotation
                self.rotateRight(node.rightChild)
                self.rotateLeft(node)
            else:
                # single left
                self.rotateLeft(node)
        elif node.balanceFactor > 0:
            if node.leftChild.balanceFactor < 0:
                # Do an RL Rotation
                self.rotateLeft(node.leftChild)
                self.rotateRight(node)
            else:
                # single right
                self.rotateRight(node)
	
	# 左旋,左旋将右子节点的左子节点挂在本节点的右子树上
    def rotateLeft(self,rotRoot):
        newRoot = rotRoot.rightChild
        rotRoot.rightChild = newRoot.leftChild
        if newRoot.leftChild != None:
            newRoot.leftChild.parent = rotRoot
        # 右子节点成为本节点parent
        newRoot.parent = rotRoot.parent
        if rotRoot.isRoot():
            self.root = newRoot
        else:
            if rotRoot.isLeftChild():
                rotRoot.parent.leftChild = newRoot
            else:
                rotRoot.parent.rightChild = newRoot
		# 本节点挂在右子节点的左子树上
        newRoot.leftChild = rotRoot
        # 本节点的parent变成右子节点
        rotRoot.parent = newRoot
        # 维护各节点的平衡因子
        rotRoot.balanceFactor = rotRoot.balanceFactor + 1 - min(newRoot.balanceFactor, 0)
        newRoot.balanceFactor = newRoot.balanceFactor + 1 + max(rotRoot.balanceFactor, 0)

	# 右旋
    def rotateRight(self,rotRoot):
        newRoot = rotRoot.leftChild
        # 本节点左子节点的右子节点挂在本节点的左子树上
        rotRoot.leftChild = newRoot.rightChild
        if newRoot.rightChild != None:
            newRoot.rightChild.parent = rotRoot
        # 本节点的parent成为左子节点的parent
        newRoot.parent = rotRoot.parent
        if rotRoot.isRoot():
            self.root = newRoot
        else:
            if rotRoot.isRightChild():
                rotRoot.parent.rightChild = newRoot
            else:
                rotRoot.parent.leftChild = newRoot
        newRoot.rightChild = rotRoot
        rotRoot.parent = newRoot
        rotRoot.balanceFactor = rotRoot.balanceFactor - 1 - max(newRoot.balanceFactor, 0)
        newRoot.balanceFactor = newRoot.balanceFactor - 1 + min(rotRoot.balanceFactor, 0)
        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值