Wording for [[fallthrough]] attribute.

Document No.: PO188R0O

Revises: POO68RO In Part

Project: Programming Language C++ - Evolution

Author: Andrew Tomazos <andrewtomazos@gmail.com>
Date: 2016-01-03

Summary

Wording for the [[fallthrough]] attribute described in POO68RO is proposed for application to the
C++17 working draft. [[fallthrough]] captures an intent to use the feature of “falling-through”
from one case block to the next, in a switch statement. It has heavy use in existing practice.
Kona EWG voted SF=15, F=5, N=0, A=0, SA=0 in favor of [[fallthrough]] from POO68R0. See
P0O068RO for detailed motivation/rationale.

Wording

7.6.8 Fallthrough attribute [dcl.attr.fallthrough]

1. A null statement marked with the attribute-token £allthrough, is a fallthrough statement. The
fallthrough attribute-token shall appear at most once in each attribute-list, with no
attribute-argument-clause.

2. A fallthrough statement may appear within an enclosing switch statement, on some path of
execution immediately between a preceding statement and a succeeding case-labeled statement.

3. [Note: If an implementation would have otherwise issued a warning about implicit fall through on a
path of execution immediately after a fallthrough statement, it is encouraged not to. -- end note]

Example

Compiled with an implementation-defined implicit fallthrough warning enabled:

switch (n) {

case 22:

case 33: // OK: no statements between case labels
£();

case 44: // WARNING: no fallthrough statement
g0

[[fallthrough]];


mailto:andrewtomazos@gmail.com

case 55: // OK
if (x) |
h();
break;
}
else {
i();
[[fallthrough]];
}
case 66: // OK
pQO);
[[fallthrough]]; // WARNING: fallthrough statement out-of-place
al);:
case 77: // WARNING: no fallthrough statement

r();

FAQ

1. Why does [[fallthrough]] need a trailing semi-colon? Why
doesn’t it annotate the case label?

On 2015-09-09, at 7:41 AM, Richard Smith <richard@metafoo.co.uk> wrote:

The argument when we designed [[fallthrough]] was that [[fallthrough]] doesn't notionally appertain
to the label -- it appertains to the *preceding* sequence of labelled statements. Note that when you
have a sequence of case labels with no intervening statements, it allows fallthrough through all of
them, so it doesn't meaningfully apply to just one label. Also observe Example 3, where the
fallthrough within the 'case 55:' block is not even immediately lexically preceding a case label.

We viewed [[fallthrough]] as being more of a flow control keyword (being provided as an extension)
than a source annotation, and from that perspective it made sense for it to be a new kind of
statement (like a break statement or continue statement). (This also allows source compatibility with
existing systems that already have such a keyword -- see for instance the "__fallthrough;" statement
provided by MS SAL, which can be implemented with this proposal as "#define __fallthrough
[[fallthrough]]", but cannot be implemented with a label attribute.)

On 2015-09-09, at 8:48 AM, Andrew Tomazos <andrewtomazos@gmail.com> wrote:
Consider the following:
switch (n) {

case 2:
if (cl) {



£0) 7
break;
} else 1if (c2) {
g(); // WARNING: no fallthrough statement
} else if (c3) {
h();
break;
} else if (c4) {
g();
h();
[[fallthrough]];
}
case 3:
h();

}

This can be addressed with this:

switch (n) {
case 2:
if (cl) |
£tO:
break;
} else if (c2) {
g();
break; // <---- bug fixed
} else if (c3) {
h();
break;
} else if (c4d) {
gQ);
h();
[[fallthrough]];
}

case 3:
h();
}
or this:

switch (n) {

case 2:
if (cl) |
£07
break;
} else if (c2) {
gQ);

[[fallthrough]]; // <--- nope, intentional



} else 1if (c3) {
h();
break;

} else 1f (c4) {
g();
h();
[[fallthrough]];

}

case 3:
h();

Had we specified fallthrough as appertaining to the label, and not as statements, this bug would
have been missed. Or rather, the programmer would not be able to express the fallthrough intent of
each block individually within the if-else chain as shown above.

fallthrough appertains to points on one or more paths of execution. It can be thought of as an
assertion statement that the next thing that will happen at run-time is the next case block will be
executed. (This assertion is checked statically at compile-time.)



