- 博客(523)
- 收藏
- 关注

原创 whaosoftのipsec~strongSwan~3~国产系统适配
慢慢开始写~ 完善中 strongSwan ~ ipsec vpn 适配恶心的国产系统。一、开源欧拉 openEuler。
2024-11-22 11:14:33
382
1

原创 嵌入式※~MCU~LWIP~TCPS/HTTPS等
单片机MCU中的加密通道, 使用各种的加密通道, http / tcp / mqtt 等。可能不在重复发了 ~~ 请看链接吧~~~
2024-10-24 14:36:09
723
1

原创 51c嵌入式~mbedtls~rsa
RSA算法在计算过程中存在较多的取模运算和幂运算,计算速度比对称加密算法要慢,所以不适合对大量数据进行加密和解密,在实际中常用于加密或解密小数据片段。mbedtls RSA算法中的生成秘钥对比较占用空间,再加上RSA算法计算过程涉及到大数运算,所以RSA算法对内存的消耗比较大。实际使用RSA算法中需要包含填充方案,在计算之前会对明文进行随机注入,这样在公钥和明文相同的情况下,也不会生成相同的秘文。对称加密算法,比如AES算法,在发送端(加密)和接收端(解密)使用相同的一份秘钥,称为共享秘钥。
2024-10-23 14:09:34
1303
1

原创 嵌入式※~CH395Q-UDP
注:下面还有个广播IP,255.255.255.255 ,是因为执行多播通信需要把UDP的目的地址配置为广播IP。上面的引脚分配把模块的TX引脚接到了单片机的PA3上,也就是串口2的RX上,如果用户使用了串口2,请注意!多播MAC地址是为了MAC过滤,后面会讲,用户不需要设置,默认不过滤MAC。单片机程序里面写的是把接收的服务器返回给服务器,并使用串口打印接收的消息。要想模块使用SPI通信,模块的TX引脚需要在模块重启之前设置为低电平.提醒:无论是SPI,USART,并口,程序操作步骤都是一样的!
2024-10-20 00:01:06
1320
10

原创 ipsec~strongSwan
应该这俩个导致启动失败, 其实都是一个原因arm没tun, 但一般内核是有的就是没开启 需要重新编译一下了, 每个平台不一样 ,所以自己搞吧 //1 ( 建个文件去就行,不过正常应该自己能生成啊 不用手动建,建完了 后面还是报错 )//2 ( 系统里没tun的问题上面也是~~ )
2024-10-12 14:26:13
739
1

原创 whaosoftの物联网各种设备协议
需要的可以联系我 仓库地址在 github=== /whaosoft/wdata-collection-lib 中自己搜吧 > 有没有感兴趣哒。准备开源-物联网各种PLC及各种非PLC设备(变频器等)协议 - go/c 语言版本 (适用于arm32/64及stm32)Arcnet 没什么资料 也没开发板 真正的环网呀~~西门子 smart200 , s1200。还有这3钟老外常用的。
2024-10-10 19:06:05
522
1

原创 whaosoftの各芯片各种板~使用日记
AI及非AI的开发板使用心得哦~~ 逐步完善哦~ whaosoft aiot 欢迎一起来交流哦 ~1年多过去了 记得之前东西好像不多 但还好有个微信群 看着帖子也多了 群里也很热闹 还不错哦~~美中不足 竟然cpu都不支持can rk3568还有几个 呢~~我就想知道 这个就没个带桌面的镜像吗 (发的时候还没)做了一个外围板子 准备开源一下pcb等 不知道有人需要吗。部分评估板及核心板及开发板 , 用到CAN CANFD等。这里全是cpu 不说MCU哦~atlas200 第一代。这家系统有点难用哦~~
2024-09-21 15:56:52
328
1

原创 51c嵌入式~mbedtls移植各MCU
我的嵌入式专辑 由于还没发完 请去这里看原贴~~ 待更新完 发回来~~ https://143ai.com/
2024-09-15 23:45:25
1367
1
原创 51c大模型~合集162
在WAIC,复旦与上智院的答案是开放协作、科学家为中心,以及一个「合作伙伴」今年的世界人工智能大会(WAIC)可谓热闹非凡,据说有的展台甚至一度拥挤到工作人员都难以进入。在出圈的众多机器人和终端产品之外,另一个领域也值得我们关注:科学智能(AI for Science,AI4S)。在本届大会上,科学智能的战略地位被提到了新高度,作为十大核心方向之一,拥有专属论坛和多个交叉议题。
2025-08-01 03:30:00
204
原创 51c自动驾驶~合集12
作者考虑一个由M张图像组成的 Query 集和一个由N张图像组成的参考数据库。在这个任务中,目标是给定中的,找到中的,使得和在同一位置捕获。
2025-07-31 23:19:03
782
1
原创 51c大模型~合集161
当我们使用方便快捷的卫星网络服务时,就在网络的另一边,一个名叫 “风云太空” 的系统,却平静无声地向这些为我们提供服务的卫星发送了预警信息,一场因太阳爆发活动所带来的冲击即将在大约 24 小时后到达...... 在获取预警信息后,地面运控部门启动应急预案,并在太阳风暴到来时从容应对,化解了此次空间天气危机。第三,他们提出了一个高效的元学习算法,在训练期间使用新语言中的少量标记示例优化跨语言迁移。作者提出了不同的对齐策略,利用现有资源,如机器翻译、预训练模型、相邻任务的数据,或每种新语言中的少量标注示例。
2025-07-29 18:31:46
830
1
原创 51c视觉~点云~合集1
值得注意的是,在离群点比例低于2%时,该分类准确率仍保持竞争力,这证明了所提出的点级提示器在增强点云数据方面的有效性,能够为下游任务提供经过滤的几何特征和完整的形状信息。为了解决这一困境,来自北京大学的研究者们提出了一种全新的范式——UPP (Unified Point-level Prompting),将点云去噪和补全巧妙地重构为一种统一的“点级提示”机制,以一种参数高效的方式,让点云分析模型自身具备对抗低质量数据的能力。完成提示器有效地预测了缺失的部分,为下游任务的特征提取提供了更完整的形状。
2025-07-28 20:55:54
1226
1
原创 嵌入式分享合集186
单片机执行指令我们来思考一个问题,当我们在编程器中把一条指令写进单片机内部,然后取下单片机,单片机就可以执行这条指令。那么这条指令一定保存在单片机的某个地方,并且这个地方在单片机掉电后依然可以保持这条指令不会丢失,这是个什么地方呢?这个地方就是单片机内部的只读存储器即ROM(READ ONLY MEMORY)。为什么称它为只读存储器呢?刚才我们不是明明把两个数字写进去了吗?
2025-07-28 20:53:57
736
1
原创 51c自动驾驶~合集9
轨迹预测是自动驾驶系统的关键组成部分,它连接了上游的感知模块和下游的规划模块。准确预测周围交通参与者未来的运动,需要对未知的意图进行推理,因为驾驶行为本质上具有不确定性和多模态特性。大多数现有的数据驱动运动预测模型采用模仿学习(imitative)方法,要么直接回归轨迹,要么基于训练数据集中的数据分布对终点进行分类。然而,这些方法通常对驾驶行为的考虑不足,限制了其可解释性和可靠性。
2025-07-27 19:20:28
952
1
原创 51c大模型~合集160
自己的原文哦~ https://blog.51cto.com/whaosoft/14066165开源!智元机器人正式发布首个xx操作系统框架稚晖君在WAIC主论坛发布“灵渠OS”开源计划!2025 世界人工智能大会暨人工智能全球治理高级别会议于 7 月 26 日在上海世博中心举办。本届大会主论坛以 “技术 — 合作 — 普惠” 的三层递进结构,汇聚全球人工智能顶尖专家,从技术演进、全球协同、社会赋能三重视角解读 AI 未来发展的时代价值。智元机器人联合创始人兼 CTO 彭志辉(稚晖君)作为唯
2025-07-27 19:19:40
609
1
原创 51c大模型~合集159
整个框架采用模块化和框架无关的设计理念,不仅能够与多种 Agent 架构无缝集成,更为跨框架的经验共享和协作学习开辟了新的可能性。而 Agent KB 增强的 agent 则能够应用经验驱动的规则:智能过滤 ANISOU/HETATM 记录,专注于真正的 ATOM 条目,并通过 N-CA 键长范围的合理性检查进行验证,最终精准提取骨架 N-CA 原子对,报告出正确的 1.456 Å 距离。当遇到新的数据集中的测试例子的时候,从历史经验中检索相关的解决策略,将其他 agent 的经验适配到新的任务场景。
2025-07-25 16:57:37
1005
1
原创 51c视觉~3D~合集4
即使每个块都精确对齐,在长达公里的轨迹上,微小的误差也会不断累积,导致全局尺度的漂移(例如,起点和终点无法闭合)。有趣的是,在Waymo数据集的评估中,研究者发现由于车载激光雷达(LiDAR)的扫描高度和范围有限,其采集的真值点云有时甚至不如视觉方法重建的场景完整(例如,无法感知到天桥的3D结构)。总而言之,VGGT-Long是一项优雅而实用的工作,它没有去设计一个更庞大、更复杂的网络,而是通过一套巧妙的系统级设计,释放了现有3D基础模型的全部潜力,为大规模单目3D重建这一难题提供了令人信服的解决方案。
2025-07-24 17:47:21
911
1
原创 51c自动驾驶~合集8
我们来看一下端到端自动驾驶算法的当前发展状况,并进行简要总结。首先,探讨端到端算法的研究背景。端到端算法框架是什么?它与传统算法有何区别?我们来看这个pipeline的第一行,这是传统自动驾驶算法的流程:先进行感知,然后预测,最后规划。每个模块的输入输出不同。感知模块的输入是图像或激光雷达数据,输出边界框作为预测模块的输入;预测模块 输出轨迹,再进行规划。这是传统算法的流程。端到端算法的输入是原始传感器数据,直接输出路径点。输出路径点与控制信号本质相同,因为从路径点到控制信号有固定算法转换。
2025-07-24 17:46:24
1050
1
原创 51c~嵌入式~UART~合集1
UART的帧格式包括线路空闲状态(idle,高电平)、起始位(start bit,低电平)、5~8位数据位(data bits)、校验位(parity bit,可选)和停止位(stop bit,位数可为1、1.5、2位)。数据位后面是奇偶校验位,最后是停止位,停止位是用高电平来标记一个字符的结束,并为下一个字符的传输做准备。每一个字符的传输靠起始位来同步,字符的前面一位是起始位,用下降沿通知收方开始传输,紧接着起始位之后的是数据位,传输时低位在前高位在后,字符本身由5~8位数据位组成。
2025-07-24 17:45:12
755
1
原创 51c大模型~合集158
举个例子就是,如果想要教一个徒弟同时会拳脚功夫,但师傅一次又教不了,那就同时教两个徒弟,一个学打拳,一个学踢腿,然后让他们俩天天互相打,打着打着两个就都会拳脚功夫了。最终,这个多模态模型就完成了,不仅可以完成简单的文本转语音,还能实现更复杂的任务,比如让它写一首歌并唱出来,再加上配乐。然后要让模型很好地理解和生成声音,就需要利用模型的文本空间,将语音的语义尽量地映射回文本,当中需要大量的数据支持。传统的语音和文本模型之间相互独立,李沐老师就想,欸,能不能将两者结合起来,直接让LLM用语音进行沟通。
2025-07-23 23:16:07
626
1
原创 51c多模态~合集7
然而,当前的“选手”们普遍存在一个痛点:为每一种模态数据(如光学图像、SAR图像)都训练一个独立的“大脑”(骨干网络),不仅造成了大量的参数冗余,也限制了模型对多源信息融合利用的效率。它通过一个统一、高效、强大的架构,成功地解决了当前MM-RSFM面临的核心挑战,为构建“一模通万物”的遥感AI系统迈出了坚实的一步。多模态遥感基础模型(MM-RSFM)旨在通过在一个庞大的、多来源的数据集上进行预训练,学习到通用的、可迁移的遥感知识,然后将其应用于各种下游任务(如地物分类、目标检测、变化检测等)。
2025-07-23 10:50:57
957
1
原创 51c大模型~合集157
首先,研究者从模型拒绝回答不安全输入的响应中,统计出一组高频出现的、具有明确拒绝语义的 token(如 “sorry”, “unable”, “unfortunately” 等),并利用 one-hot 编码的方式,在词汇空间中构造出一个 “拒绝语义向量” (RV),作为模型拒绝行为的表示。有趣的是,研究者发现,仅仅为一条文本攻击提示加上一张图片,就可能让模型的拒绝反应变得延迟,原本中层就能激活的拒绝信号被 “推迟” 到了后层,整体响应强度也降低,从而削弱了模型的安全防护能力。
2025-07-21 19:59:14
887
1
原创 51c视觉~合集13
图2 GKGNet网络结构在这项工作中,我们提出了第一个用于多标签分类任务的完全图卷积网络(GCN),即基于分组K近邻的图卷积网络GKGNet。GKGNet将图像块和目标标签都视为图节点,并在统一的图结构中处理它们。GKGNet构建了两种不同的图:一种是跨层次图(cross-level),建模目标标签和图像块之间的标签-对象关系;另一种是图像块层次图(patch-level),处理和更新图像块之间的图像特征。
2025-07-18 23:38:52
1254
1
原创 51c大模型~合集156
系统识别出结构性片段(如引言、技术解释等),并为其生成了包含口语风格字幕和同步语音的幻灯片,涵盖了「并行化工作流」、「代理系统架构」等技术主题,展示了系统在保持技术准确性的同时,以清晰、对话式方式传达信息的能力。然而,一些 PresentAgent 变体表现出有竞争力的性能。与 paper2poster 的方法类似,我们设计了一个测验式评估框架,即通过视觉语言模型仅根据生成视频(幻灯片+讲解)回答内容问题,以模拟观众的理解水平,同时我们还引入人工制作的视频作为参考标准,既用于评分校准,也作为性能上限对比。
2025-07-18 18:59:31
1234
1
原创 51c大模型~合集155
具体而言,研究团队利用加权融合的方式在解码前将来自视觉对齐层的知识与全局信息结合,从而优化模型输出,既保留了语义信息,又减少了幻觉的产生。对于新的测试图像,该阈值可以确保生成的2D关键点置信区间(一系列以预测均值为中心,以协方差和阈值为半径的圆形区域)能够以用户预先设定的概率(例如 )覆盖所有真实的关键点位置。实验结果表明,该方法在保证相近的真实位姿覆盖率的前提下,推理速度提升超过33%,并且生成的置信区间体积大幅度缩小——旋转置信区间体积最多减小99.9%,平移置信区间体积最多减小99.8%。
2025-07-16 14:08:41
1138
1
原创 51c自动驾驶~合集7
Transformer在建立长距离关系模型时,其计算成本为输入特征序列长度呈现二次方的关系, 因此,在大规模3D点云感知任务(如3D物体检测)中的优势往往受到限制。相比之下,Linear RNN 的计算复杂度较低,适用于远距离建模。为了实现这一目标,我们提出了一个基于Linear Group RNN(即对grouped特征执行Linear RNN)的简单而有效的3D物体检测框架,称为 LION。与基于Transformer的方法相比,LION 的关键特性是允许在更大的group中进行充分的特征交互。
2025-07-16 12:23:10
1002
1
原创 51c大模型~合集154
通过搭建「端-边-云」的层级化舞台,引入能灵活伸缩、高效接力的「家族式同源模型」,并最终催生出「1+1>2」的智能涌现,它成功地在强大的 AI 能力与有限的终端算力之间,架起了一座坚实的桥梁。RoboBrain 2.0,作为集感知、推理与规划于一体面向真实物理环境的 “通用xx大脑”,32B 版本凭借时空认知能力的突破,在多项权威xx智能基准上全面刷新纪录,此前发布的 7B 版本,具备紧凑高效的模型结构,其轻量化设计完美适配边缘设备部署需求,能在低资源环境下稳定运行,同时相比主流的开闭源模型性能依旧强劲。
2025-07-15 02:45:00
710
1
原创 51c嵌入式~单片机~合集1
有些时候在我们的应用过程中要求变量有连续性,或者现场保留,例如 Bootloader 跳转,某种原因的复位过程中我们有些关键变量不能被初始化,在不同的编译环境下有不同的设置,本文就这个操作做总结,分别介绍使用 Keil,IAR 和 CubeIDE 的操作方法,本文中所用芯片为STM32G431RBT6。
2025-07-14 02:45:00
751
1
原创 51c~嵌入式~Linux~合集1
由于线程的 mm->start_stack 栈地址和所属进程相同,所以线程栈的起始地址并没有存放在task_struct 中,应该是使用 pthread_attr_t 中的 stackaddr 来初始化 task_struct->thread->sp(sp 指向 struct pt_regs 对象,该结构体用于保存用户进程或者线程的寄存器现场)。可见每个任务都有自己的栈空间,正是有了独立的栈空间,为了代码重用,不同的任务甚至可以混用任务的函数体本身,例如可以一个main函数有两个任务实例。
2025-07-14 02:45:00
918
1
原创 51c大模型~合集153
【AI前沿研究速览】多领域创新成果涌现,大模型与AIAgent技术取得突破性进展 视频生成加速与检测技术 华中科大团队提出EasyCache框架,通过动态缓存机制实现视频扩散模型2.2倍加速 北大与腾讯优图合作开发正交子空间分解方法,显著提升AI生成图像检测泛化能力 大模型开源与创新 月之暗面开源Kimi K2万亿参数模型,在多项基准测试超越GPT-4.1 采用MuonClip优化器解决训练稳定性问题,支持大规模工具调用能力 多模态与AIAgent突破 北大清华团队提出MVAR自回归多视图生成方法,实现高一
2025-07-12 14:16:08
713
1
原创 51c视觉~合集12
自己的原文哦~ https://blog.51cto.com/whaosoft/11666420哈佛团队开发FairDomain,实现跨域医学图像分割和分类中的公平性本文提出了FairDomain,这是首次系统性研究算法在域转移下的公平性,我们测试了最先进的域适应(DA)和域泛化(DG)算法,用于医学图像分割和分类任务,旨在了解bias如何在不同域之间转移。 在人工智能(AI),特别是医疗AI领域中,解决公平性问题对于确保公平的医疗结果至关重要。最近,增强公平性的努力引入了新的方法和数据集
2025-07-11 12:35:32
433
1
原创 51c大模型~合集152
由于我的工作,这个想法一直萦绕在我的脑海中,」他说。然而,在实际应用中,预训练的 MLLM 会随着用户需求和任务类型的变化,不断面临新的适配要求。为了应对这些挑战,本研究团队提出了一种新的持续多模态指令微调框架D-MoLE,打破了传统模型结构固定的思路,允许模型在参数预算受控的条件下,根据任务需求动态地调整模型架构。为此,我们在 preliminary study 中具体量化了这一现象,发现在多模态任务的持续学习中,不同任务在模型的 Transformer 层具有明显不同的敏感程度。
2025-07-10 12:57:17
1319
1
原创 51c大模型~合集151
说实话,学生们感受到的压力更大。KAG 框架 V0.8 版本为 Thinker 模型应用提供支持,融入 KAG 框架后的 Thinker 模型, Math、Deduce 都使用框架中的求解器进行求解,再用 Thinker 模型进行答案汇总,可以看到 KAG-Thinker 7B 的平均 EM 和 F1 性能相比于 Thinker 模型平均提升 3.0%,3.8%。这种问题 Thinker 模型拆分不稳定,主要的原因有两种,第一,LLM 对复杂的纯自然语言问题拆分存在不一致,第二,7B 模型的泛化能力有限。
2025-07-08 15:57:41
1498
1
原创 51c~目标检测~合集4
这里对目标检测领域的一些共性问题进行了总结,并给出了详细的解答。是CV面试面经宝典目标检测两阶段和一阶段的核心区别目标检测技术从阶段上分为两种,一阶段和二阶段。二阶段的核心思想是首先提出proposal框,通过第一阶段的网络回归出目标框的大概位置、大小及是前景的概率,第二阶段是通过另一个网络回归出目标框的位置、大小及类别;而一阶段网络的核心是,对于输入图像,通过网络直接回归出目标大小、位置和类别。目标检测两阶段比一阶段的算法精度高的原因1.正负样本的不均衡性。
2025-07-08 11:38:01
1158
1
原创 51c自动驾驶~合集6
自驾行业通常雇用专业艺术家来制作精美的3D汽车模型。然而,制作大规模的数字资产成本高昂。由于已经有许多包含大量汽车图像的数据集,我们专注于从这些数据集中重建高质量的3D汽车模型。然而,这些数据集只包含前行场景中汽车的一侧图像。我们尝试使用现有的生成模型提供更多的监督信息,但由于这些模型是在合成数据集上训练的,而不是专门针对汽车的数据集,因此难以在汽车上泛化。此外,在处理野外图像时,由于相机姿态估计的误差较大,重建的3D汽车纹理会出现错位。这些限制使得以前的方法难以重建完整的3D汽车。
2025-07-06 12:38:55
1020
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人