LeetCode5. 最长回文子串(2024冬季每日一题 35)

给你一个字符串 s,找到 s 中最长的 回文子串。

示例 1:

输入:s = “babad”
输出:“bab”
解释:“aba” 同样是符合题意的答案。

示例 2:

输入:s = “cbbd”
输出:“bb”

提示:

1<=s.length<=10001 <= s.length <= 10001<=s.length<=1000
s 仅由数字和英文字母组成


思路:动态规划

  • 如果 s[i…j] 是回文串(长度大于1),则一定有 s[i] == s[j],并且 s[i+1…j-1] 是回文串,也就是说,对于一个回文串,取掉两边的字符后,其也依旧是回文串
  • 可以发现 s[i,j] 是否是回文串,依赖于 s[i+1…j-1] 是否是回文串,可以考虑用 动态规划 解决
  • f[i,j] 表示,字符串 s[i…j] 是否时一个回文串
    • 可以发现,当s[i] != s[j] 时,s[i…j] 一定不是一个回文串
    • 当 s[i] == s[j],s[i…j] 是不是一个回文串取决于 s[i+1…j-1] 是否是一个回文串,也就是依赖于 f[i+1,j-1] 的取值
  • 就有如下状态转移方程
    • 枚举子字符串长度:len,当 len == 1 时,字符串一定是回文串
    • 当 len >= 2 时, 枚举左右边界 i 和 j
    • 当 s[i] != s[j] 时,f[i, j] = false
    • 当 s[i] == s[j] 时,f[i, j] = s[i] == s[j] ^ f[i+1, j-1];
  • 当是回文串时,需要更新回文串最大长度 和 其实位置
#include<iostream>
#include<cstring>
#include<vector>

using namespace std;

class Solution {
public:
    // 表示字符串 s[i...j] 是否是回文串
    bool f[1010][1010];
    string longestPalindrome(string s) {
        int n = s.size();
        if(n < 2){
            return s;
        }
        int maxLen = 1;
        int startIdx = 0;
        for(int i = 0; i < n; i++) f[i][i] = true;
        for(int len = 2; len <= n; len++){
            for(int i = 0; i + len - 1 < n; i++){
                int j = i + len - 1;
                if(s[i] == s[j]){
                    if(len == 2) f[i][j] = true;
                    else f[i][j] = f[i+1][j-1];
                    if(f[i][j] && len > maxLen){
                        maxLen = len;
                        startIdx = i;
                    }
                } else {
                    f[i][j] = false;
                } 
            }
        }
        //cout << maxLen << endl;
        return s.substr(startIdx, maxLen);
    }
};

解法二:中心扩散法

  • 求出以每个节点最为中心时,可以左右扩散的最大回文长度
  • 记得考虑中心是奇数和偶数的区别(1个或2个)
  • 求出最大长度即可
class Solution {
public:
    string longestPalindrome(string s) {
        int n = s.size();
        string res = "";
        for(int i = 0; i < n; i++){
            string s1 = calPalindrome(s, i, i);
            if(s1.size() > res.size()) res = s1;
            if(i != n - 1){
                string s2 = calPalindrome(s, i, i + 1);
                if(s2.size() > res.size()) res = s2;
            }
        }
        return res;
    }
    string calPalindrome(string &s, int l, int r){
        while(l >= 0 && r <= s.size() - 1 && s[l] == s[r]){
            l--;
            r++;
        }
        return s.substr(l + 1, r - l - 1);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值