有序矩阵查找

本文介绍了一种高效的查找算法,用于在一个行和列均已排序的矩阵中查找特定元素。该算法利用了矩阵的有序特性,通过从右上角开始比较目标值与矩阵元素,逐步缩小搜索范围,最终确定目标值是否存在。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

现在有一个行和列都排好序的矩阵,请设计一个高效算法,快速查找矩阵中是否含有值x。

给定一个int矩阵mat,同时给定矩阵大小nxm及待查找的数x,请返回一个bool值,代表矩阵中是否存在x。所有矩阵中数字及x均为int范围内整数。保证n和m均小于等于1000。

测试样例:
[[1,2,3],[4,5,6],[7,8,9]],3,3,10
返回:false

我的提交

# -*- coding:utf-8 -*-

class Finder:
    def findX(self, mat, n, m, x):
        # write code here
        i = 0
        j = m - 1
        while i < n and j >= 0:
            if mat[i][j] == x:
                return True
            if x > mat[i][j]:
                i += 1
            else:
                j -= 1
        return False

if __name__ == '__main__':
    f = Finder()
    print(f.findX([[109,204,260,270],[452,602,671,917],[1106,1343,1467,1585],[1627,1866,1948,1980],[2108,2164,2295,2577],[2681,2749,2915,3026],[3187,3250,3465,3518],[3562,3773,3966,4101]],8,4,2108))
<think>好的,我现在需要帮助用户查找关于“排序矩阵”的资料、算法、实现方法等相关信息。首先,我需要明确用户所说的“排序矩阵”具体指什么,因为不同的领域可能有不同的定义。可能的方向包括数学中的特殊矩阵结构、计算机科学中的矩阵排序算法,或者是推荐系统中的矩阵分解排序应用。 首先,用户提到的参考引用是关于矩阵分解算法的,其中提到了用户和物品的偏差向量,以及消除打分偏差的方法。这可能与推荐系统中的矩阵分解有关,例如用于协同过滤的排序任务。因此,用户可能是在寻找与推荐系统相关的排序矩阵方法,比如如何通过矩阵分解对物品进行排序推荐。 另一方面,数学中的排序矩阵可能指行和列按特定顺序排列的矩阵,比如每行每列都是升序或降序排列的矩阵,或者置换矩阵的一种形式。例如,在算法问题中,常见的“排序矩阵搜索”问题,矩阵的行和列都是已排序的,需要高效查找元素。这种情况下,可能需要介绍相关的算法如二分查找或分治策略。 此外,排序矩阵还可能涉及到矩阵的行或列排序操作,例如对矩阵的每一行进行排序,或者根据某一列的值对整个矩阵进行行排序。这在数据处理中很常见,用户可能需要相关的算法实现,比如使用编程语言中的排序函数处理矩阵。 接下来需要确定用户具体需求。用户的问题中提到“排序矩阵 算法 实现 方法 资料”,结合参考引用的内容,可能更偏向于推荐系统中的矩阵分解排序,但也不能排除数学或算法中的排序矩阵。因此,在回答中应该涵盖这两方面的信息,确保覆盖用户可能的意图。 首先,解释排序矩阵的不同定义,然后分别讨论相关算法和实现方法。对于推荐系统部分,可以结合矩阵分解,介绍如何利用隐向量进行排序,并引用用户提供的参考内容。对于数学或算法中的排序矩阵,可以举例如行和列有序矩阵,以及相关的搜索算法,如LeetCode题目中的例子,同时给出实现代码示例。 需要确保回答的结构清晰,分点说明,并提供参考资料或引用来源。同时,按照用户的要求生成相关问题,帮助用户进一步探索该主题。 在实现方法部分,需要提供具体的代码示例,例如Python中对矩阵进行行排序或列排序的代码,以及推荐系统中矩阵分解的简单实现。同时,要确保代码格式正确,使用代码块包裹,并遵循用户给出的格式要求。 最后,生成的相关问题需要围绕排序矩阵的不同方面,如数学结构、算法应用、推荐系统中的应用等,帮助用户深入了解。</think>### 排序矩阵的相关资料与实现方法 #### 1. **排序矩阵的定义** - **数学中的排序矩阵**:通常指满足特定排序规则的矩阵,例如每行/列元素按升序或降序排列。例如: $$ \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \\ 7 & 8 & 9 \end{bmatrix} $$ 这类矩阵在算法问题中常用于高效搜索(如“在行列均有序矩阵查找目标值”)。 - **推荐系统中的排序矩阵**:指通过矩阵分解(如协同过滤)生成用户-物品隐向量,进而对物品进行排序推荐。例如,加入用户和物品的偏差向量后,目标函数更贴近真实评价数据[^1]。 --- #### 2. **排序矩阵的算法与实现** - **数学/算法中的排序矩阵**: - **搜索算法**:针对行列有序矩阵,使用**二分查找**或**分治策略**。例如从右上角开始逐步缩小搜索范围。 ```python def search_matrix(matrix, target): if not matrix: return False row, col = 0, len(matrix[0])-1 while row < len(matrix) and col >= 0: if matrix[row][col] == target: return True elif matrix[row][col] > target: col -= 1 else: row += 1 return False ``` - **矩阵排序操作**:对矩阵的行或列进行排序。 ```python # 对每行升序排序 sorted_matrix = [sorted(row) for row in matrix] # 按某一列排序整个矩阵 sorted_by_col = sorted(matrix, key=lambda x: x[column_index]) ``` - **推荐系统中的排序矩阵**: 通过矩阵分解(如SVD、ALS)生成用户和物品的隐向量,预测评分并排序: ```python import numpy as np # 示例:简单矩阵分解(未加入偏差项) def matrix_factorization(R, k, steps=100, alpha=0.01, beta=0.02): m, n = R.shape P = np.random.rand(m, k) Q = np.random.rand(n, k) for _ in range(steps): for i in range(m): for j in range(n): if R[i][j] > 0: eij = R[i][j] - np.dot(P[i], Q[j]) P[i] += alpha * (2 * eij * Q[j] - beta * P[i]) Q[j] += alpha * (2 * eij * P[i] - beta * Q[j]) return P, Q ``` 加入用户和物品的偏差项后,预测公式为: $$ \hat{r}_{ui} = \mu + b_u + b_i + \mathbf{p}_u \cdot \mathbf{q}_i^T $$ 其中$\mu$为全局平均分,$b_u$和$b_i$分别为用户和物品偏差[^1]。 --- #### 3. **参考资料** - **算法类**:LeetCode题目[240. 搜索二维矩阵 II](https://leetcode.com/problems/search-a-2d-matrix-ii/)。 - **推荐系统类**:《推荐系统实践》(项亮著)中关于矩阵分解的章节。 - **数学类**:MIT线性代数课程中关于特殊矩阵结构的讨论。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值