基于采样的规划算法之RRT家族(三):RRT*

RRT*是一种改进的路径规划算法,旨在找到配置空间中的最优路径。它通过拓展新节点并不断检查节点间的连接是否能缩短路径来优化路径树。算法结束条件不仅考虑新节点与目标点的距离,还关注路径树的节点数量。通过Python实现,RRT*动态调整路径,最终逼近最短路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RRT算法是边随机产生节点边生长一棵路径树,当这棵树与目标点相遇,便从相遇点回溯到起点得到路径解。对于新产生的随机节点,原始RRT算法将路径树上距离它最近的节点作为它的父节点,并不能保证新节点通过该父节点就是最短路径。并且,就算新节点连接是最优的,也无法保证未来新节点出现时,原来的连接还是最优的,或许通过未来新节点时,节点能找到更短的路径。所以,对于原始RRT算法以及RRT-Connect算法来说,路径树是非最优的,生成的路径也是非最优的。RRT* 期望解决这个问题,找到同样节点下,生成最优的路径树。

一、原理

首先,假定一个构造一半的路径树如下图所示,节点9为利用RRT算法得到的新节点,按最近距离,它以6节点为父节点。
在这里插入图片描述

RRT* 与RRT算法的区别主要有两个:1)拓展新节点时增加了两个过程;2)算法的结束条件。

1.1 新增加的两个过程

首先介绍拓展新节点时增加的两个过程:

第一过程:拓展新节点时,会检查所有临近它的节点是否作为该新节的父节点会使新节点有更短的路径

如下图所示,首先,我找到第9个节点领域内的节点1、5、6、4。然后

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

windSeS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值