CCF计算机软件能力认证试题练习:202006-2 稀疏向量

该博客介绍了如何使用稀疏向量表示法节省空间,并给出了计算两个稀疏向量内积的方法。通过阅读,读者可以理解稀疏向量的概念及其在解决特定问题时的优势。博客提供了具体的输入输出样例和解题思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

稀疏向量

来源:CCF

标签:

参考资料:

相似题目:

题目

对于一个 n 维整数向量 v ∈ Zn,其在第 index 个维度上的取值记作 vindex。这里我们约定 index 的取值从 1 开始,即 v = (v1, v2, · · · , vn)。下面介绍一种向量的稀疏表示方法。
如果 v 仅在少量维度上的取值不为 0,则称其为稀疏向量。
例如当 n = 10 时,v = (0, 0, 0, 5, 0, 0,; 3, 0, 0, 1) 就是一个稀疏向量。
由于稀疏向量的非零值较少,我们可以通过仅存储非零值的方式来节省空间。具体来说,每个非零值都可以用一个 (index, value) 对来表示,即该向量在第 index 个维度上的取值 vindex = value ≠ 0。在上面的例子中,v 就可以表示为 [(4, 5), (7, 3), (10, 1)]。
接下来给出这种稀疏表示一般化的定义。
• 对于任意一个 n 维整数向量 v ∈ Zn,如果其在且仅在 a 个维度上取值不为 0,则可以唯一表示为:
[(index1, value1), (index2, value2), · · · , (indexa, valuea)] • 其中所有的 index 均为整数且满足:
1 ≤ index1 < index2 < · · · < indexa ≤ n
• valuei 表示向量 v 在对应维度 indexi 上的非零值。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wingrez

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值