
Wing Pro Quick Start Guide

This is a minimalist guide for getting started quickly with Wing Pro. For a more in-depth introduction, try the
Tutorial.

Wing Pro is a light-weight yet powerful integrated development environment that was designed from the ground
up for Python. Once you're up to speed with Wing you should find that:

• Wing speeds up your development of new code

• Wing makes it easier to understand and work with existing code

• Wing reveals errors earlier in the development process

• Wing makes it easier to find and fix bugs

• Wing adapts to your needs and style

This is made possible through deep code analysis (both static and runtime), a focus on interactive development
in the live runtime, high-level editing operations and refactoring, continuous early error detection, support for
test-driven development, powerful always-on debugger, seamless support for remote and containerized
development, and extreme configurability.

Let's get started with Wing Pro!

https://wingware.com/doc/intro/tutorial


Install Python
If you don't already have Python on your system, install it now. Two good options are:

• Obtain the standard Python distribution from python.org

• Use Anaconda for seamless access to many third party Python libraries. See Anaconda package lists for a
list of the available libraries.

See Supported Python Versions for other options.

You may need to restart Wing after installing Python, so that it can recognize the new installation.

Set up a Project
After Wing is running, select New Project from the Project menu to create a new project. This dialog lets you
choose or create the source directory and choose or create the Python environment you want to use for your
new project. When creating a new source directory, you can optionally pull a revision control repository into it.
Wing Pro can also create and install packages into new virtualenv, Poetry env, uv env, pipenv, Anaconda env,
and Docker container environments.

If you choose Create Blank Project, you can configure your project later with the following steps:

1. Use Add Existing Directory in the Project menu to add your sources to the project. It's best to
constrain this to the directories you are actively working with and let Wing find the libraries you use through
the Python Path.

2. Use Project Properties in the Project menu to set Python Executable to the python.exe or
other interpreter executable you want to use with your project. If Python is not on the PATH, set this to the
the full path that is in sys.executable in the desired Python installation.

3. If your code alters sys.path or loads modules in a non-standard way then you may need to set
Python Path in Project Properties so that Wing can find your modules for auto-completion,
refactoring, debugging, testing, and other features.

4. You may want to right-click on your main entry point in the Project tool and select
Set As Main Entry Point so that debugging always starts there.

5. Use Save Project As in the Project menu to save your project to disk.

6. Use the Packages tool in the Tools menu to manage Python packages in your selected Python
environment.

See Project-Wide Properties and Per-File Properties for a description of all available properties.

Notice that Wing also offers other project types in the New Project dialog, including one for connecting to a
remote host via SSH, running with Docker or other containers, accessing a Vagrant instance, working with
Windows Subsystem for Linux, and a project type for each of the frameworks, tools, and libraries listed in
How-Tos.

Wing may consume significant CPU time when it first analyzes your code base. Progress is indicated in the lower
left of the IDE window. Once this is done, the results are cached across sessions and Wing should run with a
snappy and responsive interface. See Source Code Analysis to learn how Wing's source analysis system works.

Basic Configuration
You are now ready to start working with code, but may want to make a few configuration changes first:

Display Colors - The User Interface > Display Mode preference selects whether Wing runs with a light
or dark display style. This is also available in the high-level configuration menu in the top right of Wing's window.
The specific styles used are selected with the User Interface > Light Theme and User Interface >

https://python.org/downloads
https://www.anaconda.com/
https://docs.anaconda.com/anaconda/packages/pkg-docs
https://wingware.com/doc/install/supported-python-versions
https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/proj/file-properties
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/howtos/docker
https://wingware.com/doc/proj/containers
https://wingware.com/doc/howtos/vagrant
https://wingware.com/doc/howtos/wsl
https://wingware.com/doc/howtos/index
https://wingware.com/doc/edit/source-code-analysis


Dark Theme preferences. The editor's colors can be configured separately with the
User Interface > Light Editor and User Interface > Dark Editor preference.

Key Bindings - Wing can emulate VI/Vim, Visual Studio, Emacs, Eclipse, XCode, MATLAB, and Brief editors, as
selected from Keyboard Personality in the Edit menu or with the
User Interface > Keyboard > Personality preference.

Tab Key - The default tab key action depends on the selected keyboard personality and in some cases file type,
context, and whether or not there is a selection in the editor. This can be changed from the
User Interface > Keyboard > Tab Key Action preference.

Completion Keys - By default, the auto-completer uses the Tab key for completion, but other keys can be
added using the Editor > Auto-completion > Completion Keys preference.

There are many other options in Preferences.

Navigating Code
Wing Pro provides a number of different ways to navigate the structure of your code, and several methods for
quickly finding symbols or files by name:

Source Index menus at the top of the editor provide quick access to other parts of a source file.

Goto-definition is available from the Source menu, and by right-clicking on symbols in the editor,
Python Shell and Debug Console. Use the forward/back history buttons at the top left of the editor to return
from the point of definition.

Find Points of Use in Wing Pro's Source menu shows where the current symbol is being used. This
distinguishes between separate but like-named symbols.

Find Symbol in the Source menu in Wing Pro and Wing Personal jumps to a symbol defined in the current file
when you type a fragment of its name.

Find Symbol in Project in the Source menu in Wing Pro works the same way but searches all files in the
project.

Open From Project in the File menu in Wing Pro and Wing Personal provides a similar interface for quickly
opening project files.

See Navigating Source for details on the above.

Source Browser in the Tools menu in Wing Pro and Wing Personal provides module or class oriented display
of the structure of your code. Details

Source Assistant in the Tools menu shows detailed information about symbols selected in the editor,
auto-completer, Source Browser, Python Shell, Project, and other tools. Details

Searching
Wing Pro provides several different interfaces for searching your code. Which you use depends on what you
want to search and how you prefer to interact with the search and replace functionality:

Toolbar search is a quick way to search the current file. Details

Search in the Tools menu shows the Search tool, which provides incremental text, wildcard, and regular
expression search and replace in selections and the current file or documentation page. Details

Mini-search in Wing Pro and Wing Personal provides powerful keyboard-driven search and replace. The key
bindings listed in the Mini-search area of the Edit menu display the search entry area at the bottom of the
window. Details

https://wingware.com/doc/edit/navigating-source
https://wingware.com/doc/browser/index
https://wingware.com/doc/edit/source-assistant
https://wingware.com/doc/edit/toolbar-quick-search
https://wingware.com/doc/edit/search-tool
https://wingware.com/doc/edit/mini-search


Search in Files in the Tools menu in Wing Pro and Wing Personal shows the Search in Files tool, which
provides wildcard and regular expression search and replace in filtered sets of files, directories, named file sets,
and within the project and documentation. Details.

Editing Code
Wing Pro's editor is designed to speed up the process of writing and modifying Python code, and to reduce the
incidence of coding errors. Its features include:

Auto-completion in Wing's editor, Python Shell and Debug Console speeds up typing and reduces coding
errors. The auto-completer uses Tab by default for completion, but this can be changed in the
Editor > Auto-completion > Completion Keys preference. This feature is disabled by default in Wing
101. Details

Auto-indent in Wing Pro and Wing Personal matches the file's existing indentation. When multiple lines are
pasted, they are re-indented according to context. A single Undo reverts an unwanted indentation change. A
selected range of code may be re-indented as a block using Indentation in the Source menu or the
indentation toolbar group. The Indentation tool may be used to convert a whole file's indentation style. Details

Auto-Editing in Wing Pro implements a range of operations such as auto-entering closing parentheses,
brackets, braces, and quotes. Among other things, Wing also auto-enters invocation arguments, manages new
blocks with the : key, and corrects out-of-order typing. Auto-editing operations can be enabled and disabled in
the Editor > Auto-editing preferences group. The default set includes those operations that don't affect
finger memory. The others are well worth learning. Details

Refactoring operations in Wing Pro, accessed from the Refactoring menu, implement automated renaming
and moving of symbols, creating functions or methods out of existing code, and introducing variables much more
quickly than by manually editing code. Details

Multiple Selections can be made with Multiple Selections in the Edit menu, the multiple selections
toolbar item, and by pressing Ctrl+Alt (or Command+Option on macOS) while making a selection with the
mouse. Once multiple selections have been made, edits made will be applied to all the selections at once.
Details

Code Warnings are shown in Wing Pro for syntax errors, indentation problems, unreachable code, use of
undefined variables and attributes, unresolvable imports, and some other problems. External checkers like ruff,
flake8, mypy, pep8, and pylint may also be configured as sources for the code warnings. Warnings are shown on
the editor with details shown in a tooltip when the mouse hovers over the warning indicator. Warnings can be
navigated from the warnings menu in the top right of the editor and managed from the Code Warnings tool.
Details

Snippets in Wing Pro are included in Wing's auto-completer as a quick way to enter commonly repeated
patterns for coding standards, documentation, testing, and so forth. Data entry for snippet arguments is inline in
the editor. Use the Tab key to move between the fields. Edit or add snippets in the Snippets tool. Details

Turbo Completion in Wing Pro is an optional auto-completion mode for Python, made possible by Wing's
powerful source analysis engine. When the Editor > Auto-completion > Python Turbo Mode
preference is enabled, Wing turns every non-symbol key into a completion key in contexts where a new symbol
name is not being typed. Details

Quick Selection operations in the Edit > Select menu allow selecting whole statements, blocks, or scopes
before copying, editing, or searching through them. Details

https://wingware.com/doc/edit/search-in-files
https://wingware.com/doc/edit/auto-completion
https://wingware.com/doc/edit/indentation
https://wingware.com/doc/edit/auto-editing
https://wingware.com/doc/refactoring/index
https://wingware.com/doc/edit/multiple-selections
https://wingware.com/doc/warnings/index
https://wingware.com/doc/edit/snippets
https://wingware.com/doc/edit/turbo-completion
https://wingware.com/doc/edit/selecting


Debugging Code
Wing's debugger is a powerful tool for finding and fixing bugs, understanding unfamiliar code, and writing new
code interactively. You can launch code from the Debug menu or toolbar, from the Python Shell, or from outside
of the IDE either on the same machine or on another host. Wing also supports working with code running on
containers like those provided by Docker.

Breakpoints can be set by clicking on the breakpoint margin to the left of the editor. Stepping operations are in
the Debug menu and toolbar.

The Stack Data tool is used to inspect or change program data. Right-click on items to display the item as an
array or in textual form. Hovering the mouse over a symbol in the editor shows the value for that symbol in a
tooltip, if available on the active debug stack. Pressing Shift-Space shows tooltips for all symbols visible in the
editor.

Debug process I/O is shown in the Debug I/O tool, or optionally in an external console.

Other debugger features include:

Interactive Debugging is supported by Wing Pro's Debug Console, which provides a Python prompt that
executes code in the current debug stack frame. When the debugger is paused, Wing also uses the live runtime
state to populate the auto-completer in the editor, Source Assistant, goto-definition, and other tools. Details

Conditional Breakpoints can be used in Wing Pro to isolate and understand complex bugs by stopping before
they occur. Using a conditional breakpoint to isolate a broken case and the Debug Console to design a fix is far
more productive than relaunching code repeatedly. Details

Move Program Counter is supported by Wing Pro, by right-clicking in the editor and selecting
Move Program Counter Here. Because of how Python is implemented, this feature works only in the
innermost stack frame and it does not work when the debugger is stopped on an exception.

Watching Values in Wing Pro by right-clicking on the editor or any of the data views tracks values over time by
symbolic name or object reference in the Watch tool. Expressions can be also be watched. Details

Launch Configurations in the Project menu in Wing Pro and Wing Personal define different runtime
environments for debugging, executing, and unit testing your code. Details.

Named Entry Points in the Debug menu in Wing Pro and Wing Personal provide a way to launch the same file
with different debug environments. Details

Other Features
Wing Pro includes a number of other features designed to make Python coding easier and more productive:

Python Shell -- Wing's Python Shell lets you try out code in an independent sandbox process. To enable
debugging, click the bug icon in the top right of the Python Shell. In Wing Pro and Wing Personal, the shell
provides auto-completion, goto-definition, and is integrated with the Source Assistant. Details

Unit Testing in Wing Pro's Testing tool works with unittest, doctest, pytest, nose, and Django unit tests. You
can run tests suites, view the results, and debug tests. Details

Version Control in Wing Pro supports revision control with Mercurial, Git, Subversion, Perforce, and CVS. Wing
auto-detects which systems are used in your project and shows the appropriate additional menus and tools in the
Tools menu. Details.

Difference and Merge in the Source menu can be used to compare and merge files and directories on disk,
files open in the IDE, an unsaved buffer with disk, and a working copy with its revision control repository. Details

Remote Development is easy in Wing Pro, to remote hosts, virtual machines, or containers that are accessible
via SSH. In this model of remote development, Wing works seamlessly and securely with files stored entirely on
the remote host. Use the Remote Hosts item in the Project menu to configure a remote host, then set the

https://wingware.com/doc/debug/shell-debugging
https://wingware.com/doc/debug/debugging-externally-launched-code
https://wingware.com/doc/debug/remote-debugging
https://wingware.com/doc/proj/containers
https://wingware.com/doc/howtos/docker
https://wingware.com/doc/debug/setting-breakpoints
https://wingware.com/doc/debug/flow-control
https://wingware.com/doc/debug/details-view
https://wingware.com/doc/debug/editor-data
https://wingware.com/doc/debug/external-i-o-consoles
https://wingware.com/doc/debug/debug-console
https://wingware.com/doc/debug/setting-breakpoints
https://wingware.com/doc/debug/tracking-values
https://wingware.com/doc/proj/launch-configs
https://wingware.com/doc/debug/named-entry-points
https://wingware.com/doc/debug/python-shell
https://wingware.com/doc/testing/index
https://wingware.com/doc/versioncontrol/index
https://wingware.com/doc/diff/index


Python Executable in Project Properties to that remote host, and use Add Existing Directory in
the Project menu to add your remote directories to the project. Wing can edit, debug, test, search, inspect, and
manage files, run the Python Shell, and execute OS Commands on the remote host in the same way as it
does when working locally. Details

Package management is available for virtualenv, Poetry, pipenv, uv, and Anaconda environments, using the
Packages tool in the Tools menu. This can be used to install, remove, and manage the packages that are
installed into your project's Python environment. Details.

Containers like those provided by Docker are also supported. In this development model, files are stored locally
but code is run inside a containerized environment. Details OS Commands in the Tools menu in Wing Pro and
Wing Personal's displays the OS Commands tool, which execute external tools for build, code generation, and
other purposes. Details.

Preferences in the Edit menu (or Wing Pro menu on macOS) gives you control of the overall layout and color
of the IDE, among many other options. Right click on tool and editor tabs for layout options, or drag tabs to move
them or create new splits. Right-click on the toolbar to configure which tools are visible or to add your own. See
Customization for details.

Perspectives in Wing Pro and Wing Personal let you save named tool panel layouts. Details.

Other Features like bookmarks, code folding, keyboard macros are also available, and you can extend Wing by
writing Python scripts.

Further Reading
As you work with Wing Pro on your own software development projects, the following resources may be useful:

• Wing Support Website which includes a Q&A support forum, mailing lists, documentation, links to social
media, and other information for Wing users.

• Wing Reference Manual which documents all the features in detail.

• How-Tos with instructions for using Wing with third party frameworks, applications, and tool, like Django,
Jupyter, matplotlib, Autodesk Maya, Raspberry Pi, pygame, and many others.

• A collection of Wing Tips, available on our website and by weekly email subscription, provides additional
tips and tricks for using Wing productively.

Thanks for using Wing Pro!

https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/packages/intro
https://wingware.com/doc/howtos/docker
https://wingware.com/doc/proj/containers
https://wingware.com/doc/oscommands/index
https://wingware.com/doc/custom/index
https://wingware.com/doc/custom/perspectives
https://wingware.com/doc/edit/bookmarks
https://wingware.com/doc/edit/folding
https://wingware.com/doc/edit/keyboard-macros
https://wingware.com/doc/scripting/index
https://wingware.com/doc/scripting/index
https://wingware.com/support
https://wingware.com/doc/manual
https://wingware.com/doc/howtos/index
https://wingware.com/hints

	Wing Pro Quick Start Guide
	Install Python
	Set up a Project
	Basic Configuration
	Navigating Code
	Searching
	Editing Code
	Debugging Code
	Other Features
	Further Reading


