Java 8 Stream 之 collect() 的奇技淫巧

本文介绍Java中Stream API的收集与聚合操作,包括将Stream转换为其他集合类型的方法,如HashSet、Set和ArrayList等;并展示了如何进行聚合操作,例如求和、求最小值、最大值、平均值及分组。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、Stream流 其实操作分三大块

创建
处理
收集
我今天想分享的是 收集 这part的玩法。

2、代码准备

UserDTO.java

@Data
public class UserDTO {
 
    /**
     * 姓名
     */
    private  String name;
    /**
     * 年龄
     */
    private  Integer age;
    /**
     * 性别
     */
    private  String sex;
    /**
     * 是否有方向
     */
    private  Boolean hasOrientation;
 
}

准备一个模拟获取List的函数:

private static List<UserDTO> getUserList() {
    UserDTO userDTO = new UserDTO();
    userDTO.setName("小冬");
    userDTO.setAge(18);
    userDTO.setSex("男");
    userDTO.setHasOrientation(false);
    UserDTO userDTO2 = new UserDTO();
    userDTO2.setName("小秋");
    userDTO2.setAge(30);
    userDTO2.setSex("男");
    userDTO2.setHasOrientation(true);
    UserDTO userDTO3 = new UserDTO();
    userDTO3.setName("春");
    userDTO3.setAge(18);
    userDTO3.setSex("女");
    userDTO3.setHasOrientation(true);
    List<UserDTO> userList = new ArrayList<>();
    userList.add(userDTO);
    userList.add(userDTO2);
    userList.add(userDTO3);
    return userList;
}

3、玩法1:通过Stream.collect() 转换成其他集合/数组

// 转成  HashSet<UserDTO> :
List<UserDTO> userList = getUserList();
Stream<UserDTO> usersStream = userList.stream();
HashSet<UserDTO> usersHashSet = usersStream.collect(Collectors.toCollection(HashSet::new));
// 转成  Set<UserDTO> usersSet :
List<UserDTO> userList = getUserList();
Stream<UserDTO> usersStream = userList.stream();
Set<UserDTO> usersSet = usersStream.collect(Collectors.toSet());
// 转成  ArrayList<UserDTO> :
List<UserDTO> userList = getUserList();
Stream<UserDTO> usersStream = userList.stream();
ArrayList<UserDTO> usersArrayList = usersStream.collect(Collectors.toCollection(ArrayList::new));
// 转成  Object[] objects :
List<UserDTO> userList = getUserList();
Stream<UserDTO> usersStream = userList.stream();
Object[] objects = usersStream.toArray();
// 转成  UserDTO[] users :
List<UserDTO> userList = getUserList();
Stream<UserDTO> usersStream = userList.stream();
UserDTO[] users = usersStream.toArray(UserDTO[]::new);

4、玩法2:聚合(求和、最小、最大、平均值、分组)

找出年龄最大:

写法 1:

List<UserDTO> userList = getUserList();
Stream<UserDTO> usersStream = userList.stream();
Optional<UserDTO> maxUserOptional = 
        usersStream.max((s1, s2) -> s1.getAge() - s2.getAge());
if (maxUserOptional.isPresent()) {
    UserDTO masUser = maxUserOptional.get();
    System.out.println(masUser.toString());
}

写法2:

List<UserDTO> userList = getUserList(); Stream<UserDTO> usersStream = userList.stream();
Optional<UserDTO> maxUserOptionalNew = usersStream.max(Comparator.comparingInt(UserDTO::getAge));
if (maxUserOptionalNew.isPresent()) {
    UserDTO masUser = maxUserOptionalNew.get();
    System.out.println(masUser.toString());
}

找出年龄最小:

写法 1:

Optional<UserDTO> minUserOptional = usersStream.min(Comparator.comparingInt(UserDTO::getAge));
if (minUserOptional.isPresent()) {
    UserDTO minUser = minUserOptional.get();
    System.out.println(minUser.toString());
}

写法2:

Optional<UserDTO> min = usersStream.collect(Collectors.minBy((s1, s2) -> s1.getAge() - s2.getAge()));

求平均值:

List<UserDTO> userList = getUserList();
Stream<UserDTO> usersStream = userList.stream();
Double avgScore = usersStream.collect(Collectors.averagingInt(UserDTO::getAge));

求和:

写法1:

Integer reduceAgeSum = usersStream.map(UserDTO::getAge).reduce(0, Integer::sum);

写法2:

int ageSumNew = usersStream.mapToInt(UserDTO::getAge).sum();

统计数量:

long countNew = usersStream.count();

简单分组:

按照具体年龄分组:

//按照具体年龄分组
Map<Integer, List<UserDTO>> ageGroupMap = usersStream.collect(Collectors.groupingBy((UserDTO::getAge)));

分组过程加写判断逻辑:

//按照性别 分为"男"一组  "女"一组
Map<Integer, List<UserDTO>> groupMap = usersStream.collect(Collectors.groupingBy(s -> {
    if (s.getSex().equals("男")) {
        return 1;
    } else {
        return 0;
    }
}));

多级复杂分组:

//多级分组
// 1.先根据年龄分组
// 2.然后再根据性别分组
Map<Integer, Map<String, Map<Integer, List<UserDTO>>>> moreGroupMap = usersStream.collect(Collectors.groupingBy(

   //1.KEY(Integer)             VALUE (Map<String, Map<Integer, List<UserDTO>>)
   UserDTO::getAge, Collectors.groupingBy(
           //2.KEY(String)             VALUE (Map<Integer, List<UserDTO>>)
           UserDTO::getSex, Collectors.groupingBy((userDTO) -> {
               if (userDTO.getSex().equals("男")) {
                   return 1;
               } else {
                   return 0;
               }
           }))));
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值