deepseek - 笔记

414 篇文章 ¥19.90 ¥99.00

1. deepseek - API

curl https://api.deepseek.com/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-****" \
  -d '{
        "model": "deepseek-chat",
        "messages": [
          {"role": "system", "content": "You are a helpful assistant."},
          {"role": "user", "content": "Hello!"}
        ],
        "stream": false
      }'
{"error":{"message":"Insufficient Balance","type":"unknown_error","param":null,"code":"invalid_request_error"}}

2.deepseek部署 

2.1 ollama

### 关于 DeepSeek-R1 笔记本性能评测 DeepSeek-R1 是一款强大的大型语言模型,其性能表现尤其受到硬件配置的影响。当考虑在笔记本电脑上运行此类大规模模型时,主要关注的是计算资源的有效利用和响应时间。 对于 DeepSeek-R1 在笔记本上的速度性能测试,通常会涉及以下几个方面: - **推理延迟**:这是指从输入请求到获得输出结果之间的时间间隔。由于 DeepSeek-R1 拥有庞大的参数量(超过 670亿),即使是在高性能的台式机环境中也可能存在一定的延迟[^1]。 - **吞吐量**:衡量单位时间内可以处理的任务数量。这不仅取决于 CPU/GPU 的运算能力,还与内存带宽密切相关。如果笔记本配备的是集成显卡而非独立 GPU,则可能显著影响吞吐效率[^2]。 - **功耗情况**:长时间运行大型模型会对设备电池寿命造成较大压力,尤其是在移动场景下使用笔记本时更需注意这一点。某些轻薄型笔记本或许无法持续支持高强度的工作负载而不发热降频[^3]。 为了具体评估某款特定型号笔记本执行 DeepSeek-R1 推理任务的表现,建议参考实际用户的反馈或第三方测评机构发布的报告数据。这些资料往往包含了详细的跑分成绩对比图表以及不同应用场景下的体验分享,有助于形成更为直观的认识[^4]。 ```python import time from transformers import AutoModelForCausalLM, AutoTokenizer def measure_inference_time(model_name="deepseek-r1", input_text="你好"): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) start_time = time.time() inputs = tokenizer(input_text, return_tensors='pt') outputs = model.generate(**inputs) end_time = time.time() elapsed_time = end_time - start_time print(f"Inference took {elapsed_time:.4f} seconds.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wishfly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值