什么是 GPU 加速的计算?

GPU加速计算结合了CPU和GPU的力量,显著提升了科学、分析及设计等领域的应用性能。通过数千个小而高效的核心,GPU能够同时处理大量任务,实现并行处理。本文介绍了GPU加速计算的基本原理、部署方法以及常见应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是 GPU 加速的计算?

GPU 加速计算是指同时采用图形处理单元 (GPU) 和 CPU,以加快科学、分析、设计、消费者和企业应用程序的速度。GPU 加速器于 2007 年由 NVIDIA 率先推出,现已在世界各地为政府实验室、大学、公司以及中小型企业的高能效数据中心提供支持。GPU 能够为从汽车、手机和平板电脑到无人机和机器人等平台的应用程序加快速度。

如何部署 GPU 加速应用

理解 CPU 与 GPU 之间区别的一种简单方式就是对比它们如何处理任务。 CPU 由专为顺序串行处理而优化的几个核心组成。另一方面,GPU 则由数以千计的更小、更高效的核心组成,这些核心专为同时处理多任务而设计。

如何利用 GPU 实现加速
 

CPU 对阵 GPU

理解 CPU 与 GPU 之间区别的一种简单方式就是对比它们如何处理任务。 CPU 由专为顺序串行处理而优化的几个核心组成。另一方面,GPU 则由数以千计的更小、更高效的核心组成,这些核心专为同时处理多任务而设计。

 

GPU 拥有数以千计的核心,可高效地处理并行任务

GPU 拥有数以千计的核心,可高效地处理并行任务

查看下列视频片段,即可看到 CPU 与 GPU 之间有意思的对比。

 查看下列视频片段,即可看到 CPU 与 GPU 之间有意思的对比。


数以百计的行业领先应用程序现在已经实现了 GPU 加速。 查看我们的应用程序目录,看看自己使用的应用程序是否支持 GPU 加速。




http://www.nvidia.cn/object/what-is-gpu-computing-cn.html

如何着手

有三种基本的方法来为你的应用程序添加 GPU 加速功能: 
  • 使用专为 GPU 优化的库
  • 添加指令或编译器「提示」以便实现代码的自动并行化
  • 使用针对 C 和 Fortran 等自己所熟悉的编程语言的扩展程序

学习如何使用 CUDA 并行编程模型来利用 GPU 是很简单的。

如需参加免费的在线课程以及下载开发者资源,敬请访问 CUDA 专区。


<think>我们正在处理用户关于配置Ollama优先使用GPU加速的问题。根据引用[2]的内容,Ollama在启动时会自动检测硬件资源,优先使用NVIDIA/AMD GPU(需算力≥5)加速计算。如果用户希望确保Ollama使用GPU,可以按照以下步骤操作: 1. **确保驱动和CUDA环境正确安装**:这是Ollama能够使用GPU的前提。对于NVIDIA显卡,需要安装合适的驱动和CUDA工具包。AMD显卡则需要安装ROCm。 2. **检查Ollama是否识别GPU**:运行命令`ollama serve`,然后在另一个终端中查看日志,或者使用`ollama serve | grep "library"`来查看Ollama使用的计算库(输出会显示GPU型号或CPU类型)。如果显示的是GPU型号,则说明正在使用GPU加速。 3. **强制使用GPU**:虽然Ollama默认优先使用GPU,但有时可能需要手动指定。在运行模型时,可以通过环境变量`OLLAMA_GPU_LAYERS`来设置使用GPU的层数(这个变量通常用于指定在GPU上运行多少层模型,其余在CPU上)。例如,设置`OLLAMA_GPU_LAYERS=50`(具体数值取决于模型和GPU显存大小)。另外,也可以尝试在运行模型命令前设置环境变量`OLLAMA_GPUS=1`(这个变量可能用于强制使用GPU,具体取决于Ollama版本)。 4. **更新Ollama**:确保使用最新版本的Ollama,因为GPU支持在持续改进。 5. **检查模型是否支持GPU加速**:不是所有模型都支持GPU加速,但DeepSeek模型通常支持。 根据引用[3],Ollama有自动化的性能调优功能,会尽量优化资源使用。因此,在正确配置GPU环境后,Ollama应该会自动使用GPU。 具体操作步骤: - 步骤1:安装NVIDIA驱动和CUDA(以NVIDIA显卡为例) 参考NVIDIA官方文档安装对应显卡驱动和CUDA版本。 - 步骤2:安装Ollama(如果尚未安装) 前往Ollama官网下载并安装。 - 步骤3:验证CUDA环境 运行`nvidia-smi`查看显卡状态,确保驱动和CUDA可用。 - 步骤4:运行Ollama并检查是否使用GPU 启动Ollama服务:`ollama serve` 在另一个终端窗口运行:`ollama run deepseek-ai/deepseek-coder:6.7b-instruct`,然后输入一个问题,观察日志或使用`nvidia-smi`查看GPU使用情况。 或者,使用命令`ollama serve | grep "library"`来查看使用的计算库。 - 步骤5:如果未使用GPU,尝试设置环境变量 在运行`ollama run`之前,设置环境变量: ```bash export OLLAMA_GPU_LAYERS=50 # 这个值根据模型和显存调整,一般越大则越多层在GPU上,但超出显存会失败 export OLLAMA_GPUS=1 # 强制使用GPU数量 ``` 然后再次运行模型。 注意:环境变量的具体使用可能因Ollama版本而异,请参考最新文档。 如果以上步骤仍无法使用GPU,可能需要检查Ollama的日志以获取更详细的错误信息。 相关问题: 1. 如何检查Ollama是否正在使用GPU加速? 2. 在配置GPU加速时常见的错误有哪些? 3. 如何调整Ollama的GPU层数以适应不同的显存大小? 引用说明: - 引用[2]提到Ollama自动检测硬件资源,优先使用GPU[^2]。 - 引用[3]提到Ollama的自动化性能调优[^3]。</think>根据引用内容[2],Ollama 默认会自动检测并优先使用 GPU 加速计算。若需确保或强制使用 GPU,请按以下步骤操作: ### 配置 GPU 加速步骤 1. **验证驱动环境**(NVIDIA 显卡示例): ```bash nvidia-smi # 确认驱动和CUDA状态 ``` 应显示 GPU 信息及 CUDA 版本(需 ≥11.0) 2. **设置环境变量**: ```bash export OLLAMA_GPU_LAYERS=50 # 指定GPU计算层数(根据显存调整) export OLLAMA_GPUS=1 # 强制使用GPU数量 ``` 3. **启动时指定模型**: ```bash ollama run deepseek-ai/deepseek-coder:6.7b-instruct --gpu ``` 4. **验证 GPU 使用**: ```bash ollama serve | grep "library" # 输出应显示GPU型号而非CPU watch -n 1 nvidia-smi # 实时监控GPU利用率 ``` ### 关键配置说明 | 配置项 | 推荐值 | 作用 | |--------|--------|------| | `OLLAMA_GPU_LAYERS` | 30-50 (8GB显存)<br>50-100 (16GB+显存) | GPU 计算层数 | | `OLLAMA_GPUS` | 1 (单卡)<br>2 (双卡) | 强制 GPU 数量 | | `--gpu` 参数 | 模型运行时添加 | 显式启用 GPU 加速 | > 💡 **性能提示**:若遇到 `CUDA out of memory` 错误,需降低 `OLLAMA_GPU_LAYERS` 值或使用量化模型(如 `:6.7b-instruct-q4`) ### 故障排查 1. **GPU 未启用**: ```bash # 重装GPU版本Ollama curl -fsSL https://ollama.com/install.sh | sh --gpu ``` 2. **驱动问题**: ```bash sudo apt install nvidia-cuda-toolkit # Ubuntu/Debian ``` > 引用[3]指出 Ollama 会自动优化硬件资源配置,但显式指定可确保 GPU 优先[^3]。若配置后仍使用 CPU,需检查硬件兼容性(NVIDIA GPU 算力需 ≥5.0)[^2]。 --- ### 相关问题 1. 如何验证 Ollama 是否正在使用 GPU 加速计算? 2. 调整 GPU 计算层数时有哪些显存优化技巧? 3. 多 GPU 环境下如何配置 Ollama 实现分布式计算
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值