【Ai】CherryStudio 详细使用:本地知识库、MCP服务器

一、CherryStudio 介绍

Cherry Studio 是一款集多模型对话、知识库管理、AI 绘画、翻译等功能于一体的全能 AI 助手平台。
Cherry Studio 高度自定义的设计、强大的扩展能力和友好的用户体验,使其成为专业用户和 AI 爱好者的理想选择。无论是零基础用户还是开发者,都能在 Cherry Studio 中找到适合自己的AI功能,提升工作效率和创造力。

二、下载安装

打开官网 https://cherry-ai.com/download 下载系统合适的版本

在这里插入图片描述

三、配置使用

1、配置模型秘钥

CherryStudio支持的模型很多,这里以“硅基流动”为例。

点击左下角的设置,在模型服务中选择“硅基流动”,然后输入对应的API Key,如果没有,可以去硅基流动网站注册一个

在这里插入图片描述

2、开启联网功能

配置 Tavily API 秘钥
在这里插入图片描述
然后在对话框中打开小地球搜索功能,在对话时模型就会实时上网搜索
在这里插入图片描述

3、本地知识库

本地知识库需要先配置嵌入模型,可以在硅基流动中搜索,然后添加到 Cherry Studio中

在这里插入图片描述

复制模型代码,然后添加

在这里插入图片描述
现在就可以添加本地知识库文档了

点击左边的知识库图标,点击添加,输入知识库明细,选择嵌入模型,最好也选择一个重排模型,可以让大模型更精准一些

在这里插入图片描述
接着把文件拖拽到这里就可以了

在这里插入图片描述
点击右上角的放大镜搜索知识库,输入对应的关键字,可以看见成本搜索到

在这里插入图片描述

在对话中引用知识库,点击知识库小图标,然后选择前面创建好的知识库

在这里插入图片描述

4、MCP使用

点击设置-MCP服务器,然后点击搜索MCP,可以看见有很多现成的MCP服务,点击+号添加即可使用
在这里插入图片描述

这里显示绿色小圆点,就代表可以使用
在这里插入图片描述
在聊天框中,点击“MCP 服务器”小图标,然后选择添加好的MCP服务(可以同时选择多个),然后直接对话就可以成功调用
在这里插入图片描述
MCP服务器配置是通用的JSON格式,也可以直接编辑配置文件,保存后界面会自动显示MCP服务

在这里插入图片描述

参考

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

顽石九变

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值