✅ 关键词:Qwen-Agent、MCP、阿里云、运维、LLM、Function Calling
在现代云运维场景中,我们不仅希望大语言模型(LLM)能回答文本问题,更希望它能直接调用云端 API、查询资源,实现「智能运维」。
本文将分享如何 基于 Qwen-Agent 和 MCP,快速实现一个“云资源助手”,能帮你查询阿里云 ECS 实例信息。
📝 什么是 MCP?
MCP (Model-Computing Platform) 是阿里云提供的一种“模型驱动 API 调用”能力,可以让 LLM 自动识别用户意图,生成对应参数,然后调用 MCP 后端服务完成查询。
它非常类似 Function Calling 的思路:
- 用户:用自然语言提问
- LLM:生成 JSON 参数
- MCP:根据 JSON 执行 API
- LLM:将结果转换为用户易懂的答案
你不需要写复杂的 API 请求,只要配置好 MCP,LLM 就能帮你干活。
🎯 MCP 配置
在 MCP 中,需要告诉 Qwen-Agent:
- 哪些服务可用
- 服务对应的调用方式(比如
npx
)
比如,以下就是一个 MCP 配置片段:
"mcpServers": {
"cst": {
"command": "npx",
"args": [
"mcp-remote-alibaba-cloud",
"https://openapi-mcp.cn-hangzhou.aliyuncs.com/accounts/xxxxxxxx/custom/cst/id/xxxxxxxxxxx/mcp"
]
}
}
其中:
-
cst
→ 自定义服务别名 -
command
→ 使用npx
执行 MCP CLI -
args
→ MCP CLI 参数- 第一个是脚本名
- 第二个是 MCP Server 的地址
MCP Server 地址需要你从以下页面获取:
如图所示: