给你二叉树的根结点 root ,请你设计算法计算二叉树的 垂序遍历 序列。
对位于 (row, col) 的每个结点而言,其左右子结点分别位于 (row + 1, col - 1) 和 (row + 1, col + 1) 。树的根结点位于 (0, 0) 。
二叉树的 垂序遍历 从最左边的列开始直到最右边的列结束,按列索引每一列上的所有结点,形成一个按出现位置从上到下排序的有序列表。如果同行同列上有多个结点,则按结点的值从小到大进行排序。
返回二叉树的 垂序遍历 序列。
示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:[[9],[3,15],[20],[7]]
解释:
列 -1 :只有结点 9 在此列中。
列 0 :只有结点 3 和 15 在此列中,按从上到下顺序。
列 1 :只有结点 20 在此列中。
列 2 :只有结点 7 在此列中。
示例 2:
输入:root = [1,2,3,4,5,6,7]
输出:[[4],[2],[1,5,6],[3],[7]]
解释:
列 -2 :只有结点 4 在此列中。
列 -1 :只有结点 2 在此列中。
列 0 :结点 1 、5 和 6 都在此列中。
1 在上面,所以它出现在前面。
5 和 6 位置都是 (2, 0) ,所以按值从小到大排序,5 在 6 的前面。
列 1 :只有结点 3 在此列中。
列 2 :只有结点 7 在此列中。
示例 3:
输入:root = [1,2,3,4,6,5,7]
输出:[[4],[2],[1,5,6],[3],[7]]
解释:
这个示例实际上与示例 2 完全相同,只是结点 5 和 6 在树中的位置发生了交换。
因为 5 和 6 的位置仍然相同,所以答案保持不变,仍然按值从小到大排序。
提示:
树中结点数目总数在范围 [1, 1000] 内
0 <= Node.val <= 1000
代码:
class Solution {
public List<List<Integer>> verticalTraversal(TreeNode root) {
if(root==null) {
return null;
}
Map<Integer,List<Integer>> map=new TreeMap<>();
Map<Integer,List<Integer>> map1=new TreeMap<>();
Queue<Node> queue=new LinkedList<>();
List<List<Integer>> list=new ArrayList<>();
queue.add(new Node(root,0));
while(!queue.isEmpty()) {
int len=queue.size();
while(len>0) {
len--;
Node pNode=queue.poll();
List<Integer> set=map1.getOrDefault(pNode.col,new ArrayList<>());
set.add(pNode.node.val);
map1.put(pNode.col,set);
if(pNode.node.left!=null) {
queue.add(new Node(pNode.node.left,pNode.col-1));
}
if(pNode.node.right!=null) {
queue.add(new Node(pNode.node.right,pNode.col+1));
}
}
for (Map.Entry<Integer,List<Integer>> entry:map1.entrySet()) {
List<Integer> list1=map.getOrDefault(entry.getKey(),new ArrayList<>());
Collections.sort(entry.getValue());
list1.addAll(entry.getValue());
map.put(entry.getKey(),list1);
}
map1.clear();
}
for (Map.Entry<Integer,List<Integer>> listEntry:map.entrySet()) {
list.add(listEntry.getValue());
}
return list;
}
class Node{
TreeNode node;
int col;
Node(TreeNode node,int col) {
this.node=node;
this.col=col;
}
}
}