MPAndroidChart总结

本文介绍了在使用MPAndroidChart库时遇到的环形图表百分号显示问题。问题源于PercentFormatter的构造方法,只有当pieChart不为空且isUsePercentValuesEnabled设置为true时,百分号才会显示。解决方案是在构造PercentFormatter实例时传入pieChart对象。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、在使用环形图表的时候,我遇到一个问题,环上显示不出百分号(%)?
查看设置代码:

mChart.setUsePercentValues(true);  //使用百分比显示

这里正确设置了,然后发现下面代码有猫腻:

pieData.setValueFormatter(new PercentFormatter());

查看PercentFormatter源代码:

public class PercentFormatter extends ValueFormatter
{

    public DecimalFormat mFormat;
    private PieChart pieChart;

    public PercentFormatter() {
        mFormat = new DecimalFormat("###,###,##0.0");
    }

    // Can be used to remove percent signs if the chart isn't in percent mode
    public PercentFormatter(PieChart pieChart) {
        this();
        this.pieChart = pieChart;
    }

    @Override
    public String getFormattedValue(float value) {
        return mFormat.format(value) + " %";
    }

    @Override
    public String getPieLabel(float value, PieEntry pieEntry) {
        if (pieChart != null && pieChart.isUsePercentValuesEnabled()) {
            // Converted to percent
            return getFormattedValue(value);
        } else {
            // raw value, skip percent sign
            return mFormat.format(value);
        }
    }

}

其中getPieLabel()方法:

        if (pieChart != null && pieChart.isUsePercentValuesEnabled()) {
            return getFormattedValue(value);
        } else {
            return mFormat.format(value);
        }

只有pieChart不为空 和pieChart.isUsePercentValuesEnabled()设置为true同时满足才能显示出百分号。查看pieChart来源,原来是构造方法有猫腻,如果我没有传pieChart进来,不管怎么设置,这里永远都是空,也就是说不能显示出百分号。

    public PercentFormatter() {
        mFormat = new DecimalFormat("###,###,##0.0");
    }

    public PercentFormatter(PieChart pieChart) {
        this();
        this.pieChart = pieChart;
    }

所以在构造PercentFormatter的时候,需要传pieChart 对象进来才能正常显示出百分号。

pieData.setValueFormatter(new PercentFormatter(mChart));
内容概要:本文详细比较了GPU、TPU专用AI芯片在大模型推理优化方面的性能、成本及适用场景。GPU以其强大的并行计算能力和高带宽显存,适用于多种类型的神经网络模型和计算任务,尤其适合快速原型开发和边缘计算设备。TPU专为机器学习设计,擅长处理大规模矩阵运算密集型任务,如Transformer模型的推理,具有高吞吐量和低延迟特性,适用于自然语言处理和大规模数据中心的推理任务。专用AI芯片通过高度定制化架构,针对特定神经网络模型进行优化,如卷积神经网络(CNN),在处理特定任务时表现出色,同时具备低功耗和高能效比的优势,适用于边缘计算设备。文章还介绍了各自的优化工具和框架,如CUDA、TensorRT、TPU编译器等,并从硬件成本、运营成本和开发成本三个角度进行了成本对比。 适合人群:从事人工智能、深度学习领域的研究人员和技术人员,尤其是对大模型推理优化感兴趣的读者。 使用场景及目标:①帮助读者理解GPU、TPU和专用AI芯片在大模型推理中的优缺点;②为选择适合的硬件平台提供参考依据,以实现最优的推理性能和成本效益;③介绍各种优化工具和框架,帮助开发者高效部署和优化模型。 其他说明:本文不仅涵盖了硬件架构特性,还深入探讨了优化技术和应用场景,旨在为读者提供全面的技术参考。在选择硬件平台时,需综合考虑具体任务需求、预算限制及开发资源等因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值