LeetCode | 0279. Perfect Squares完全平方数【Python】

本文探讨了LeetCode上编号为279的题目“完全平方数”的解决方案,通过BFS算法和Lagrange四平方和定理,详细解析了如何找出最少数量的完全平方数,使它们的和等于给定的正整数n。文章提供了Python代码实现,并分析了两种解法的时间和空间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LeetCode 0279. Perfect Squares完全平方数【Medium】【Python】【BFS】

Problem

LeetCode

Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.

Example 1:

Input: n = 12
Output: 3 
Explanation: 12 = 4 + 4 + 4.

Example 2:

Input: n = 13
Output: 2
Explanation: 13 = 4 + 9.

问题

力扣

给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。

示例 1:

输入: n = 12
输出: 3 
解释: 12 = 4 + 4 + 4.

示例 2:

输入: n = 13
输出: 2
解释: 13 = 4 + 9.

思路

解法一

BFS

把每个整数都看成图中的节点,如果两个整数之差为一个平方数,表示两点之间存在一条边连通。
求最小平方数,就是求 n 到 0 的最短路径,于是就可以用 BFS。

时间复杂度: O(n^2)
空间复杂度: O(n^2)

Python3代码

class Solution:
    def numSquares(self, n: int) -> int:
        # solution one: BFS
        q = [(n, 0)]
        visited = [False for i in range(n + 1)]  # initialize all False
        visited[n] = True

        while any(q):  # any: if all elements are False, return False, or return True
            num, step = q.pop(0)

            i = 1
            Num = num - i ** 2
            while Num >= 0:
                if Num == 0:
                    return step + 1
                if not visited[Num]:  # not visited
                    q.append((Num, step + 1))
                    visited[Num] = True
                
                i += 1
                Num = num - i ** 2

解法二

四平方和定理

Lagrange 四平方定理:任何一个正整数都可以表示成不超过四个整数的平方之和。
于是答案只可能是:1,2,3,4。
还有一个定理:满足四数平方和定理的数 n(这里要满足由四个数构成,小于四个不行),必定满足 n=(8b+7)*4^a。
于是先缩小 n。
再判断,这个缩小后的数是否可以通过两个平方数的和或一个平方数组成,不能的话我们返回3,能的话我们返回平方数的个数。

Python3代码

class Solution:
    def numSquares(self, n: int) -> int:
        # solution two: Lagrange's Four-square Theorem
        while n % 4 == 0:  # reduce n
            n /= 4

        if n % 8 == 7:
            return 4

        a = 0
        while a ** 2 <= n:
            b = int((n - a ** 2) ** 0.5)
            if a ** 2 + b ** 2 == n:
                return (not not a) + (not not b)  # whether a and b are positive integers
            a += 1

        return 3

代码地址

GitHub链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wonz

创作不易,一块就行。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值