sigmoid函数及其导数的python实现与可视化

一、sigmoid函数的概念

sigmoid函数,也就是s型曲线函数,经常被用作神经网络中输出层的激活函数,它和它的导数的数学表达式如下:

函数:
在这里插入图片描述
导数:
在这里插入图片描述
求导过程如下所示:
在这里插入图片描述

二、sigmoid函数的优点

sigmoid的优点在于输出范围有限,所以数据在传递的过程中不容易发散。当然也有相应的缺点,就是饱和的时候梯度太小。

第二个有点就是导数比较容易计算,这样求梯度的时候就非常方便,导数求导过程如第一节所示。

sigmoid还有一个优点是输出范围为(0, 1),所以可以用作输出层,输出表示概率。

三、sigmoid函数的python实现代码

import numpy as np
from matplotlib import pyplot as plt

def sigmoid(x
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值