【五.LangChain技术与应用】【31.LangChain ReAct Agent:反应式智能代理的实现】

在这里插入图片描述

一、ReAct Agent是啥?为什么说它比「普通AI」聪明?

想象一下,你让ChatGPT查快递物流,它可能直接编个假单号糊弄你。但换成ReAct Agent,它会先推理(Reasoning)需要调用哪个接口,再行动(Action)查询真实数据——这就是ReAct的核心:让AI学会「动脑子」再动手

举个真实案例(参考官方代码改的):

from langchain.agents import Tool, initialize_agent  
from langchain.llms import OpenAI  

### LangChain Agent 开发教程 #### 什么是LangChain Agent LangChain Agent是一种基于大型语言模型(LLM)构建的应用程序组件,能够执行特定的任务或一系列操作。通过集成不同的工具和服务,这些代理可以实现自动化处理复杂的工作流程[^1]。 #### 安装依赖库 为了创建并运行一个简单的LangChain Agent实例,首先需要安装必要的Python包: ```bash pip install langchain openai ``` #### 初始化配置 接下来定义一些基本设置,比如OpenAI API密钥和其他环境变量。这一步骤对于确保后续代码能顺利调用外部服务至关重要。 ```python import os from dotenv import load_dotenv, find_dotenv _ = load_dotenv(find_dotenv()) # 自动查找 .env 文件并加载其中的内容到环境中 openai_api_key = os.environ.get('OPENAI_API_KEY') ``` #### 构建基础Agent结构 现在有了初步准备之后就可以着手建立最简易版本的LangChain Agent框架了。这里展示了一个非常典型的例子——问答机器人。 ```python from langchain.agents import initialize_agent, Tool from langchain.llms.openai import OpenAILanguageModel llm = OpenAILanguageModel(openai_api_key=openai_api_key) tools = [ Tool( name="Search", func=... , # 这里应该填入具体的搜索功能函数 description="用于查询互联网上的信息" ), ] agent_chain = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True) ``` 请注意,在上述模板中的`func=...`部分应当替换为你想要赋予此Agent的具体能力对应的函数;而参数`agent="zero-shot-react-description"`指定了所使用的策略模式,可以根据实际需求调整为其他选项如反射式描述(`reflective`)等不同类型的反应机制。 #### 执行任务 最后一步就是让这个刚搭建好的Agent去完成某些具体工作啦! ```python result = agent_chain.run(input="请问今天天气怎么样?") print(result) ``` 这段脚本会触发之前设定的那个具有搜索技能的Agent去寻找关于当天气象状况的相关资料,并返回给用户一份简洁明了的回答。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

再见孙悟空_

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值