【第六部分:项目实战与部署】【20.从 GPT 到 LLaMA:生成式 AI 的原理与应用 ——Transformer 架构、预训练与微调全解析】

在这里插入图片描述

一、Transformer架构:生成式AI的基石

1.1 自注意力机制:理解上下文的核心

自注意力机制是Transformer的核心创新,其计算过程可分为三个关键步骤(参考):

  1. 向量投影:输入词向量通过权重矩阵生成Q(Query)、K(Key)、V(Value)三组向量
  2. 相关性计算:通过Q与K的点积计算注意力分数,公式为:
    Attention(Q,K,V)=softmax(QKTdk)V\text{Attention}(Q,K,V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})VAttention</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

再见孙悟空_

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值