【速通RAG实战:数据库】6.RAG向量数据库原理

在 RAG(检索增强生成)系统中,向量数据库扮演着至关重要的角色,它负责存储文本经过 Embedding 处理后的向量表示,并能高效地进行向量检索,以找出与查询向量最相似的文档。

1.向量数据库原理

1.向量表示

在 RAG 系统里,文本首先会通过 Embedding 模型(如 OpenAI Embeddings、Sentence Transformers 等)转化为固定维度的向量。这些向量能够捕捉文本的语义信息,使得语义相近的文本在向量空间中距离较近。例如,“苹果公司推出了新产品”和“苹果公司发布了新的产品”这两句话经过 Embedding 后,它们对应的向量在向量空间中的距离会比较小。

2.索引结构

为了实现高效的向量检索,向量数据库通常会采用特定的索引结构。常见的索引结构有:

  1. KD - Tree(K - Dimensional Tree)
    1. 原理:它是一种对 k 维空间中的点进行划分的数据结构,通过递归地将 k 维空间划分为两个半空间,从而实现对数据的快速查找。
    2. 优点:实现相对简单,适用于低维数据(维度通常小于 20)。
    3. 缺点:随着数据维度的增加,其查询效率会显著下降,出现“维度灾难”问题。
  2. Ball Tree
    ### 构建本地环境中的RAG系统 #### 准备工作 为了在本地环境中成功部署检索增强生成(RAG)系统,需先安装必要的软件包和工具。这包括但不限于Python及其开发环境、Docker用于容器化服务、Milvus作为向量数据库以及Elasticsearch来提高文本检索能力[^2]。 #### 安装依赖项 建议创建一个新的虚拟环境以隔离项目所需的特定版本库文件。接着可以使用pip命令安装`rag`, `elasticsearch`, `pymilvus`等Python包: ```bash python3 -m venv rag_env source rag_env/bin/activate pip install elasticsearch pymilvus rag ``` 对于非Python组件如Milvus或Elasticsearch,则推荐采用Docker镜像快速启动实例: ```dockerfile version: '3' services: milvus: image: milvusdb/milvus:v2.0-cpu-d070521-8c1fbb ports: - "19530:19530" - "9091:9091" elasticsearch: image: docker.elastic.co/elasticsearch/elasticsearch:7.10.1 environment: discovery.type: single-node ports: - "9200:9200" - "9300:9300" ``` 保存上述配置到名为`docker-compose.yml`的文件中,并执行`docker-compose up -d`指令一键搭建所需的服务集群[^1]。 #### 数据准备与导入 完成基础设施建设之后,下一步就是准备好要被索引的数据集并将其加载至相应的存储引擎内。针对结构化表格类资料可以直接过API接口写入Milvus;而对于非结构化的文档则可能需要预先转换成适合的形式再提交给Elasticsearch进行全文搜索优化处理。 #### 集成应用逻辑 最后一步是在应用程序层面实现对这两个后台系统的调用。常情况下会涉及到编写一段中间件代码负责接收前端请求后分别查询两个不同的搜索引擎并将结果汇总返回给客户端展示。这里给出一个简单的Flask Web API例子说明这一过程: ```python from flask import Flask, request, jsonify import requests app = Flask(__name__) @app.route('/query', methods=['POST']) def query(): data = request.json['text'] # Query Elasticsearch for text-based search results. es_response = requests.post('http://localhost:9200/_search?q=' + data).json() # Query Milvus for vector similarity matching. mv_response = requests.get(f'http://localhost:9091/vectors/search?data={data}').json() combined_results = { "es": es_response, "milvus": mv_response } return jsonify(combined_results) if __name__ == '__main__': app.run(debug=True) ``` 此段脚本展示了如何同时访问Elasticsearch和Milvus来进行综合性的信息检索操作,并将两者的结果合并起来提供给最终用户查看。
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    无心水

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值