- 博客(615)
- 收藏
- 关注

原创 AI炼丹日志-00- Ollama:本地部署大模型的便捷新选择 | 快速安装 & 多卡运行实战
Ollama 是一个轻量级、本地化的大语言模型(LLM)运行平台,专为开发者快速部署和运行模型设计。它支持 GPU 加速、多卡并行,并内置模型下载、环境配置与推理后端,极大简化了部署流程。用户仅需一行命令即可安装,使用如 ollama pull 和 ollama run 快速启动模型。Ollama 支持 GGUF 格式模型,并基于 llama.cpp 实现高效推理,适配多平台(NVIDIA GPU、Apple Silicon 等)。它提供 HTTP API,方便集成至本地系统或应用中。
2025-04-23 09:53:34
1407
3

原创 Java-01 深入浅出 MyBatis - MyBatis 概念 ORM映射关系 常见ORM 详细发展历史
MyBatis 是一款优秀的 基于 ORM 的半自动轻量级持久层框架,它支持定制化的 SQL、存储过程以及高级映射,MyBatis 避免了几乎所有 JDBC 代码和手动设置参数以及获取结果集。MyBatis 可以使用简单的 XML 或注解来配置和映射原生类型、接口和 Java 的 POJO(Plain Old Java Objects,普通老式 Java 对象)为数据库记录。
2024-11-15 09:30:50
3588
2

原创 大数据-02-Hadoop集群 XML core-site.xml hdfs-site.xml HDFS Yarn MapRedece
HDFS(Hadoop Distributed File System)是Hadoop框架中专为大数据存储设计的分布式文件系统,具备高容错和高扩展能力。系统采用NameNode与DataNode的主从架构,支持文件分块存储与多副本机制,适合批处理和一次写入多次读取场景。HDFS集群部署涉及对core-site.xml、hdfs-site.xml等配置文件的设置,并需完成NameNode、SecondaryNameNode和DataNode节点配置。
2024-06-28 09:37:28
6038
3
原创 Java-116 深入浅出 MySQL Sharding-JDBC 深入理解分片机制:真实表、逻辑表与绑定表全解析
在分布式数据库中,分片机制通过真实表、逻辑表、数据节点和绑定表实现数据的高效存储与查询。真实表是最终存储数据的物理表,通常带数字后缀分布在不同实例中;逻辑表是应用层使用的抽象表名,由中间件自动路由到对应真实表;数据节点由数据源与真实表构成,明确了数据存储位置。绑定表则确保主表与子表使用相同分片规则,从而提升关联查询效率并保证事务一致性。此外,广播表适合小规模、低频更新的基础数据,如地区或字典表,其副本分布于所有节点,避免跨节点开销。分片算法是核心组件,常见类型包括精确、范围、复合与Hint算法
2025-09-04 09:23:45
114
原创 AI-调查研究-68-具身智能 应用全景:家庭、工业、医疗、交通到虚拟交互的未来趋势
具身智能在多个领域展现出广泛应用潜力。在家庭服务场景中,清洁类、陪伴型及送物机器人占据主要市场,预计2030年规模突破500亿美元。当前挑战包括复杂环境下的识别与精细操作,但多模态感知和柔性机械臂等技术将推动发展。工业制造与物流方面,传统机械臂正向“移动+操作”转型,新一代机器人通过多模态融合和实时规划提升柔性生产效率,2030年市场规模预计达260亿美元。医疗领域应用涵盖手术、康复与护理,重点在于高精度、安全性与智能交互,未来将演进为智能医疗助手。自动驾驶与智能交通则重塑出行模式,L4级自动驾驶、车路协同
2025-09-03 12:17:48
921
原创 Java-115 深入浅出 MySQL Sharding-JDBC 全面解析:轻量级分库分表与读写分离解决方案
Sharding-JDBC 是一款轻量级的 Java 数据库中间件,主要解决分库分表、读写分离及分布式事务等问题。它基于 JDBC 协议实现,无需额外部署代理,应用只需引入 Jar 包即可使用,属于增强版 JDBC 驱动。其核心优势在于对业务代码无侵入、与主流 ORM 框架(如 MyBatis、Hibernate)及连接池(如 Druid、HikariCP)高度兼容,并支持 MySQL、Oracle、PostgreSQL 等多种数据库。技术上,Sharding-JDBC 内置 SQL 解析、路由、执行与结果
2025-09-03 11:40:04
619
原创 AI-调查研究-67-具身智能 核心技术构成全解析:感知、决策、学习与交互的闭环系统
具身智能的技术构成可概括为“感知—决策—控制—学习—交互”闭环系统。感知层由多种传感器(视觉、雷达、IMU、触觉等)和算法(SLAM、目标检测、多模态融合)组成,为机器人提供环境建模与物体识别能力。决策控制模块是核心“大脑”,高层采用深度学习、规划与强化学习进行策略生成,低层通过PID、MPC等算法实现精确动作执行,并逐渐发展为端到端和分布式架构。学习与适应依托深度强化学习、模仿学习和进化算法,辅以仿真训练、迁移学习提升现实表现。多模态感知与交互使系统具备视觉、语音、触觉等协同理解与自然交互能力。
2025-09-02 09:56:34
594
原创 Java-114 深入浅出 MySQL 开源分布式中间件 ShardingSphere 深度解读
Apache ShardingSphere 是一个面向关系型数据库的分布式中间件生态系统,核心定位是增强而非替代传统数据库。它通过插件化架构提供水平扩展、分片、读写分离和分布式事务等能力,帮助企业应对海量数据和高并发访问挑战。其生态包含三大组件:Sharding-JDBC 以轻量级框架形式嵌入应用层,适合 Java 项目快速集成;Sharding-Proxy 作为透明代理,兼容 MySQL/PostgreSQL 协议,适用于多语言或遗留系统;Sharding-Sidecar 则面向云原生环境。
2025-09-02 09:10:36
604
原创 AI-调查研究-66-机器人 机械臂 软件算法体系:轨迹规划·视觉定位·力控策略
机械臂的软件算法涵盖运动学、轨迹规划、视觉定位、AI智能以及力控策略等多个层面。运动学方面包括正运动学和逆运动学计算,分别用于求解末端位姿和关节角度;轨迹规划则通过多项式插值、梯形或S型曲线等方法生成平滑路径,并结合笛卡尔插补实现复杂运动。高级方法涉及时间/能耗最优与避障算法(RRT、PRM)。视觉与定位通过相机和深度传感器结合目标检测、位姿估计和3D重建,广泛应用于分拣、装配和避障。AI方面,强化学习和模仿学习提升了机械臂在动态环境中的适应与自学习能力,同时支持预测性维护与多机协同。
2025-09-01 09:41:41
1027
原创 Java-113 深入浅出 MySQL 扩容全攻略:触发条件、迁移方案与性能优化
数据库横向扩容方案主要解决单库在容量、性能和并发上的瓶颈问题。当磁盘使用率过高、响应时间超出阈值或连接数逼近上限时,扩容成为必然选择。实施步骤包括容量评估、数据迁移、分片策略调整和应用层适配。扩容方式分为停机扩容和平滑扩容:停机扩容简单直接,适合小型系统,但需中断服务;平滑扩容则通过双主复制和渐进式迁移实现不中断扩展,更适合高可用场景。常见挑战包括数据倾斜、跨分片事务和扩容成本,需通过复合分片键、分布式事务框架和冷热数据分离等手段解决。最佳实践显示,合理规划和在线迁移可显著提升系统性能,延迟降低30%以上。
2025-09-01 08:50:43
1113
原创 AI-调查研究-65-机器人 机械臂控制技术的前世今生:从PLC到MPC
机械臂系统的实现需要软硬件协同,从控制层到安全机制均有严格要求。控制系统方面,PLC以高可靠性和模块化特性承担产线级协调和安全联锁,并通过ProfiNet、EtherCAT等工业总线与机器人控制器协作;底层运动控制器需实现毫秒级插补和力矩补偿。随着嵌入式架构发展,关节级分布式控制(如STM32+驱动芯片)简化布线并增强实时性,协作机器人常采用双闭环与FPGA方案满足ISO/TS 15066安全要求。ROS作为上层操作系统提供任务规划、感知与运动控制的开源框架,推动软硬件解耦与标准化。
2025-08-30 11:03:33
1259
原创 Java-112 深入浅出 MySQL 分片技术全景解析:范围、哈希与一致性哈希对比
分片(Sharding)是分布式数据库中实现横向扩展的核心技术,将完整数据库按规则拆分成多个部分并存储在不同节点,以解决单机容量和性能瓶颈问题。分片是逻辑层面的划分策略,而分库分表是物理层面的实现。常见扩展方式包括纵向扩展(升级硬件)和横向扩展(增加节点),其中分片是典型的横向扩展方案。常见分片策略有三类:基于范围分片,适合时间或数值范围查询,但容易产生热点问题;哈希取模分片,分布均匀且实现简单,但扩容代价高;一致性哈希分片,通过哈希环和虚拟节点实现平滑扩容,广泛用于Redis、存储系统和负载均衡。
2025-08-30 08:49:27
764
原创 AI-调查研究-64-机器人 从零构建机械臂:电机、减速器、传感器与控制系统全剖析
构建与控制一台高性能机械臂,需要融合电机驱动、减速器、机械结构、传感器系统、控制器与末端执行器等多个核心模块。在硬件层面,从RC舵机到集成关节模组,涵盖入门到工业级全线方案;减速器如谐波、RV、行星齿轮等类型各具优势,满足不同精度与负载需求;结构材料则兼顾轻量与刚性,多采用碳纤维或航空铝合金。控制系统包括运动控制器与驱动电路,支持实时反馈与安全机制,常见协议为EtherCAT。传感器融合力控、视觉、位置等信息,实现高精度交互控制。末端执行器种类丰富,从夹爪到焊枪广泛应用于制造、装配、食品等领域。整套技术体系
2025-08-29 08:55:03
789
原创 Java-111 深入浅出 MySQL 分布式主键策略:UUID、SnowFlake、COMB、Redis、数据库ID表优劣全对比
在分布式系统中,主键策略决定了系统的扩展性和稳定性。传统自增ID虽简单,但在分库分表环境下易引发冲突。UUID具备全局唯一性与离线生成能力,适用于多系统合并与隐藏数据规模等场景,但无序性对数据库性能影响较大。COMB作为UUID的改进型,将时间戳嵌入UUID中,提升了插入效率和索引性能。SnowFlake以时间戳+机器ID+序列号组合生成64位整数ID,兼顾唯一性与有序性,适合高并发系统。数据库ID表通过独立表自增生成ID,虽简单直观,但存在性能瓶颈和单点风险。
2025-08-29 08:43:23
1090
原创 AI-调查研究-63-机器人 机械臂在现代制造业的全场景应用 正在取代人类的哪些工作?
现代机械臂在工业自动化中承担多种关键任务:在搬运方面,通过Pick-and-Place、码垛、上下料等方式提升效率与安全;在装配中,从微型元件到大型结构实现高精度组装;焊接领域涵盖弧焊、点焊、激光焊等工艺,保障一致性与生产节拍;喷涂与打磨作业中,其高重复性确保涂层均匀与表面质量;非结构化抓取则依赖AI与多模态感知实现柔性拣选;绘图加工中可执行3D打印、数控铣削、激光打标等多工艺融合;检测测试方面,可完成尺寸测量、功能验证与表面缺陷识别,推动智能制造发展。
2025-08-28 09:24:56
884
原创 Java-110 深入浅出 MySQL 数据库高并发架构实战:深入理解分库分表的原理与应用
在高并发、大数据量的互联网系统中,传统关系型数据库面临写入瓶颈、查询延迟等挑战。分库分表作为主流扩展方案,通过垂直拆分(按业务或字段)和水平拆分(按ID、哈希或时间)实现数据解耦和存储压力分散。垂直拆分提升模块清晰度与访问效率,适用于字段过多或业务分离场景;水平拆分则适用于单表数据过大,支持高并发并可线性扩展。尽管拆分带来查询优化、缓存命中提升等优势,但也引入分布式事务、跨库JOIN、数据迁移复杂等挑战,需合理设计与实施。
2025-08-28 09:08:22
1173
原创 AI-调查研究-62-机器人 机械臂五大应用场景详解:从焊接到手术,从农田到太空
机械臂作为现代自动化的重要工具,已广泛应用于制造、医疗、农业、服务与科研等多个领域。在制造业中,其在焊接、涂装、装配、电子贴片与检测等方面极大提升了效率与精度;医疗领域通过微创手术、康复训练与护理辅助等实现精准治疗;农业机械臂则用于果蔬采摘、挤奶、施肥等任务,提高了作业智能化水平;服务业中涵盖烹饪、调饮、迎宾及家务等环节,显著改善服务体验;科研教育则借助机械臂进行算法验证、实验自动化及教学训练。随着AI与传感技术进步,机械臂正朝着更智能、更安全、更灵活方向演进,成为推动社会进步的重要力量。
2025-08-27 10:33:56
723
原创 Java-109 深入浅出 MySQL MHA主从故障切换机制详解 高可用终极方案
MHA 是一款由日本 DeNA 公司开发的 MySQL 高可用解决方案,主要用于主从架构下的自动主从切换与故障恢复。其核心优势在于30秒内快速完成故障转移,通过比对 relay log 差异、补全 binlog 等机制,确保数据一致性。MHA 由 Manager 和 Node 两大组件构成,前者负责监控与切换流程控制,后者运行在各个 MySQL 节点上执行日志管理与恢复操作。典型应用场景包括金融、电商、社交等高可用需求场景。相比 DRBD 等方案,MHA 不依赖共享存储,部署灵活,对业务透明。
2025-08-27 10:23:05
747
原创 AI-调查研究-61-机器人 工业机器人全谱系解析:关节型、SCARA、直角坐标、Delta与协作臂详解
关节型机械臂自由度高、仿人设计强,适用于汽车制造、焊接、装配等复杂轨迹任务;SCARA臂则以高速、平面精密装配见长,广泛用于电子、半导体行业;直角坐标型结构刚性强、适合大负载与搬运场景;Delta机器人具备极高速度和重复精度,适用于食品包装、电子分拣等轻型任务;协作机械臂主打安全、灵活与易用,适合人机共工场景。此外,圆柱与极坐标型逐渐被淘汰,而双臂、软体与模块化重构等新型机器人正在兴起。整体趋势向更智能、更柔性、更安全发展,持续推动智能制造升级。
2025-08-26 09:01:35
1014
原创 Java-108 深入浅出 MySQL 双主架构+MMM高可用:原理与故障切换机制详解
双主架构通过主主互为主从、双向复制机制实现容灾和负载均衡,是电商、金融、社交等高可用场景的主流方案。推荐采用“双主单写”以规避主键冲突和更新丢失等问题。配合Keepalived、MHA或MMM等工具可实现秒级故障切换。MMM(Master-Master Replication Manager)作为经典解决方案,通过Monitor+Agent架构,实现主节点故障自动切换、VIP漂移、Slave重构等全链路自治运维能力,保障数据库7x24稳定运行。适用于对连续性要求极高的场景,是构建企业级数据库高可用体系的重要
2025-08-26 08:43:17
574
原创 AI-调查研究-60-机器人 机械臂技术发展趋势详解:工业、服务与DIY三大阵营全解析
近年来,机械臂技术发展迅速,呈现高精度、协作化、轻量化、智能化和互联化五大趋势。工业机械臂在重复精度与负载能力上持续突破,协作机器人则因安全灵活广泛应用于中小企业。轻量级机械臂配合移动平台适用于多样场景,视觉与AI技术的集成使其更智能易用。服务型机械臂广泛用于物流、医疗、餐饮与农业,推动自动化普及。与此同时,DIY与教育机械臂因成本下降和开源支持而快速普及,虽性能与工业级仍有差距,但已广泛用于教学、创客和轻度自动化任务,预计未来几年将在多个领域实现低门槛部署。
2025-08-25 09:16:21
952
原创 Java-107 深入浅出 MySQL 主从模式下 读写分离全流程详解:原理、实现与优化方案
在“读多写少”的典型互联网业务场景中,数据库性能瓶颈常出现在读取环节。引入读写分离架构可有效缓解主库压力,提高系统整体吞吐量。该架构通过主从同步(如 MySQL binlog、PostgreSQL WAL)将写操作定向至主库、读操作分担至多个从库。为解决主从延迟导致的一致性问题,可采用“写后读主”“二次查询”“业务分级”等方案。实现层面可选应用代码实现(如Spring多数据源)、数据库驱动层支持或通过中间件(如ShardingSphere、MyCat)实现自动路由与负载均衡。
2025-08-25 08:46:37
996
原创 AI-调查研究-59-机器人 行业职业地图:发展路径、技能要求与薪资全解读
机器人行业正处于快速发展阶段,对具备机械、电子、控制与软件交叉能力的复合型人才需求激增。职业路径起始于助理工程师,随着项目经验积累,工程师可成长为中高层技术负责人或管理者。主流技术栈涵盖ROS、OpenCV、运动控制、SLAM等,强调“做中学”的工程实践。美国年薪中位数达10-15万美元,中国薪酬呈现快速上升趋势,头部企业应届生待遇达50万以上。未来趋势显示机器人人才将持续紧缺,具备系统设计能力与跨学科协作力者将脱颖而出。持续学习与国际视野将成为核心竞争力。
2025-08-24 09:53:50
1285
原创 Java-106 深入浅出 MySQL 并行复制技术详解:从5.6到8.0的演进深入详解
MySQL为解决主从复制延迟问题,从5.6版本起引入并行复制机制。5.6采用基于库(Database)级别的并行方式,不同数据库可并发执行,适合多租户架构;5.7增强为**基于组提交(Group Commit)的逻辑时钟机制,即使同库不同表的事务也能并行;8.0进一步发展为基于写集合(WriteSet)**的行级并行复制,可自动识别无冲突事务,大幅提升性能。实践表明,在合理配置slave_parallel_workers等参数后,复制延迟可降低60%~80%,显著提升CPU利用率。
2025-08-24 09:42:56
747
原创 AI-调查研究-58-机器人 从工厂到家庭,机器人正悄悄改变世界的每个角落
机器人作为通用技术,已广泛应用于制造、医疗、农业、物流与家庭等领域。在制造业,工业机器人以六轴机械臂为核心,实现高精度自动化生产;医疗领域中,手术机器人已大规模落地,康复与护理机器人正逐步商业化;农业机器人通过自动驾驶、智能喷洒与采摘等缓解劳动力紧缺;物流仓储通过AGV/AMR与终端配送机器人大幅提升效率;家庭服务机器人涵盖清洁、陪护与教育娱乐,持续优化用户体验。各行业的技术发展路径各异,但共同呈现出智能化、网络化与融合化趋势。
2025-08-22 10:19:33
804
原创 Java-105 深入浅出 MySQL 主从复制详解:读写分离、高可用与半同步复制全覆盖
MySQL 主从复制是一种通过主库将数据变更实时同步到一个或多个从库的机制,常用于读写分离、高可用性保障、数据备份与分析卸载等场景。主库处理写操作,从库承担读操作,有效缓解性能瓶颈。其核心流程包括:主库生成 Binlog → 从库 I/O 线程拉取 Binlog 写入 Relay Log → SQL 线程重放日志实现同步。默认为异步复制,存在延迟与数据不一致风险。为提升一致性,可采用半同步复制(主库需等待至少一个从库确认写入日志)或并行复制机制。该架构广泛用于电商、金融、报表系统与多地部署场景
2025-08-22 09:08:42
670
原创 AI-调查研究-57-机器人 五大类机器人指南:工业/服务/人形/移动/特种详解
机器人作为现代智能装备的核心,广泛应用于工业制造、医疗服务、灾难救援等领域。根据功能和形态,可分为五大类:工业机器人是制造业自动化主力,具备高精度、多自由度的机械臂结构;服务机器人广泛应用于家庭、医疗、物流等,强调人机交互和环境适应能力;人形机器人模仿人类外形与动作,融合AI与控制技术,推动交叉学科发展;移动机器人拥有自主导航与路径规划能力,覆盖物流、农业、清洁等场景;特种机器人则用于极端环境任务,如军事、深海、太空等,代表机器人技术的最前沿。随着AI、传感器、通信等技术进步,各类机器人正加速智能
2025-08-21 09:55:14
1065
原创 Java-104 深入浅出 MySQL 设计攻略:可用性、扩展性、一致性详解
在构建分布式系统时,需从可用性、扩展性与一致性三方面统筹设计。可用性通过冗余部署、多地容灾、服务熔断与自动故障转移实现;扩展性则依赖无状态服务、读写分离、分库分表等手段应对高并发读写;一致性设计需权衡强一致与最终一致,结合共识算法与同步策略优化体验。常见架构模式如主从复制与双主架构,在提升性能同时也带来数据同步复杂性。最终,借助路由层优化、缓存中间层与中间件,可在吞吐量与一致性之间取得平衡,构建稳定、高性能的分布式系统。
2025-08-21 09:01:42
589
原创 AI-调查研究-56-机器人 技术迭代:从液压驱动到AI协作的进化之路
机器人技术经历了从早期液压驱动和模拟控制,到现代电驱动、数字控制和感知系统的深刻演化。硬布线、开环控制、机械限位等传统方案因性能局限逐渐被淘汰。如今,电动伺服、PLC控制、视觉与力觉传感、ROS系统等技术构成主流,广泛应用于工业、物流、医疗等场景。与此同时,人工智能、群体智能、多模态感知、仿生结构等前沿方向正在重塑机器人能力边界,使其具备学习、适应、协作与高复杂任务执行能力,推动机器人从“自动化设备”走向“智能体”,不断拓展应用疆界。
2025-08-20 09:12:40
964
原创 Java-103 深入浅出 MySQL 死锁全解析:原理、场景复现与优化
数据库中的死锁是指多个事务因资源互相等待,形成循环依赖,最终都无法继续执行。它的产生通常满足四个必要条件:互斥、不可抢占、请求与保持、循环等待。在表级或行级锁中,常见的死锁情形包括事务交叉请求资源、索引缺失导致全表锁、共享锁转排他锁等。应对死锁,数据库通常通过死锁检测与超时机制解决,并可通过固定资源访问顺序、缩短事务时间、合理设置隔离级别、优化SQL与索引结构等方式有效预防。此外,利用数据库日志工具(如 MySQL 的 SHOW ENGINE INNODB STATUS)可辅助定位死锁源头。
2025-08-20 08:57:44
1300
原创 AI-调查研究-55-机器人 百年进化史:从Unimate到人形智能体的技术跃迁
机器人技术自1921年“Robot”一词首次提出以来,经历了从科幻走向现实的百年演进。从1959年Unimate开创工业机器人时代开始,机器人经历了液压驱动向电动伺服、磁鼓控制向微处理器控制的关键技术变革。70年代至90年代,德国KUKA、日本川崎、美国Unimation等公司推动了关节结构、传感融合、机器视觉等方面的突破。1988年HelpMate标志服务机器人商业化的起点。进入21世纪,机器人加速向医疗、家庭、物流等领域扩展,波士顿动力的人形与四足机器人展现出极强的环境适应性与运动能力。
2025-08-19 09:40:37
1105
原创 Java-102 深入浅出 MySQL 锁机制图文详解:从表锁到行锁,从理论到实战
数据库的锁机制是确保数据一致性与并发安全的核心手段。悲观锁采用“先上锁再操作”的方式防止冲突,包括行级锁、表级锁、读锁和写锁,适用于银行转账、库存扣减等高一致性场景。乐观锁则通过版本号或时间戳在提交阶段校验数据是否被修改,适合读多写少的业务,如商品浏览。MySQL支持表级读写锁和行级共享锁(S锁)、排他锁(X锁),InnoDB引擎在更新时会自动加锁,且依赖索引避免锁表。选择锁机制应依据业务并发性、数据一致性要求和性能权衡。
2025-08-19 08:56:31
1009
原创 AI-调查研究-54-大数据调研报告 行业应用场景+技术选型趋势全解析
大数据在金融、电商、互联网、通信、制造、医疗、教育等行业中实现深度融合,成为业务创新的核心引擎。金融领域以风险管理、智能投顾和保险科技为重点,构建Kafka+Flink等高实时架构。电商侧重推荐系统、库存预测和精细化营销,架构向云原生与AI驱动演进。互联网行业则聚焦社交推荐、搜索引擎、O2O调度等场景,全面推进Kappa架构与智能增强。其他行业如通信、制造和医疗亦在网络优化、预测性维护、精准医疗等方面加速部署大数据方案。Lakehouse、联邦学习、数据中台等新技术加快落地,推动数据驱动从支撑系统迈向业务
2025-08-18 09:36:30
1036
原创 Java-101 深入浅出 MySQL InnoDB 锁机制全景图:行锁原理、Next-Key Lock、Gap Lock 详解
MySQL 锁机制是保障数据一致性和并发性能的核心组件,主要分为表级锁、行级锁、页级锁三类,按粒度由粗到细,其中 InnoDB 默认采用行级锁以支持高并发事务处理。按锁类型区分,包括共享锁(S锁)和排他锁(X锁),用于读写控制,配合表级的意向锁(IS、IX)提升加锁效率。锁策略上,可分为悲观锁与乐观锁,分别适用于高冲突与低冲突场景。InnoDB 中行锁通过索引加锁实现,涉及 Record Lock、Gap Lock 和 Next-Key Lock,隔离级别不同会影响加锁行为,如 RR 下默认采用临键锁
2025-08-18 09:04:22
1125
原创 AI-调查研究-53-大数据调研报告 人才现状深度解析:经验分布、成长路径与行业趋势
大数据行业的人才结构呈现出年轻化与快速成长并存的特征。25-30岁群体是主力军,30-35岁逐渐成为中坚力量,而35岁以上占比偏低,反映出行业发展尚短。从经验分布看,5-8年经验人才最多,已具备完整项目与架构设计能力;10-15年经验群体开始主导大型平台建设并向管理岗位转型;15年以上资深专家稀缺,多为早期技术探索者。人才成长路径大致为:0-3年夯实开发技能,3-5年向数据仓库、实时计算或分析方向深化,5-8年进入架构与管理层,8年以上则承担战略级职责。整体上,大数据岗位需求旺盛,薪酬水平高。
2025-08-16 09:27:48
884
原创 Java-100 深入浅出 MySQL事务隔离级别:读未提交、已提交、可重复读与串行化
在数据库中,事务隔离级别用于控制并发事务之间的相互影响,是保证数据一致性的重要机制。SQL 标准定义了四种隔离级别:读未提交允许读取未提交的数据,性能高但可能出现脏读;读已提交只允许读取已提交数据,解决脏读问题,但仍可能出现不可重复读;可重复读是 MySQL InnoDB 的默认级别,可避免脏读和不可重复读,但可能产生幻读,InnoDB 通过 MVCC 与间隙锁减轻这一问题;串行化则完全串行化执行事务,彻底解决所有并发问题,但性能最差。在实际应用中,隔离级别的选择需在性能与一致性之间权衡:
2025-08-16 08:44:44
587
原创 AI-调查研究-52-大数据调研报告 前沿技术全景解析:Lakehouse、Data Mesh、Serverless 与新趋势
当前大数据技术正迎来新一轮变革,Lakehouse架构融合数据湖与数据仓库优势,依托Iceberg、Delta Lake、Hudi等事务型表格式,实现ACID事务、时间旅行、Schema演进等能力,显著降低成本并提升实时性。Data Mesh理念以领域驱动的数据所有权、数据即产品和自助式平台为核心,适应大型组织分布式数据治理需求。Apache Beam提供批流一体的跨平台编程模型,支持多引擎执行与事件时间处理。云原生与Serverless推动大数据平台向弹性、低运维、按需付费演进
2025-08-15 10:04:38
820
原创 Java-99 深入浅出 MySQL 并发事务控制详解:更新丢失、锁机制与MVCC全解析
并发事务在数据库中可能引发更新丢失、脏读、不可重复读和幻读等问题。更新丢失包括回滚覆盖和提交覆盖两种类型,分别因事务回滚或提交覆盖其他已提交数据而发生。防范措施包括锁机制、乐观/悲观并发控制和MVCC。全局排队机制通过串行执行事务消除并发异常,但性能受限,多用于一致性要求极高的场景。排他锁确保数据独占访问,防止其他事务在锁持有期间进行读写;读写锁则允许并发读、写独占,提高读多写少场景的性能。MVCC基于多版本存储,实现快照读,减少锁争用并提升并发性能,被InnoDB、PostgreSQL等广泛应用。
2025-08-15 09:49:30
830
原创 AI-调查研究-51-大数据调研报告 技术更迭史:被淘汰的框架与架构,以及背后的原因
在大数据技术迭代中,不少早期方案因性能、架构或功能限制而被淘汰。MapReduce(Hadoop v1)因磁盘I/O开销大、调度粗粒度、无法低延迟交互,已被内存计算和DAG调度的Spark,以及优化Hive查询的Tez取代。Storm虽开创实时流处理先河,但缺乏事件时间与状态管理,仅支持“至少一次”语义,难适应复杂实时需求,最终被具备精确一次语义、流批一体化的Flink取代。Pig因语法专有、可读性差而退出主流,Hive虽在批处理仍有优势,但核心计算已转向Spark SQL、Presto/Trino等高性能
2025-08-14 09:22:45
666
原创 Java-98 深入浅出 MySQL 深入理解数据库事务与锁机制:ACID特性全解析
必须满足ACID特性:原子性、一致性、隔离性、持久性。原子性确保事务中的操作要么全部成功,要么全部回滚,通过Redo/Undo日志和WAL技术实现;一致性保证事务前后数据库状态符合完整性约束,依赖外键、唯一索引及日志机制维护;隔离性确保并发事务互不干扰,常用隔离级别有读未提交、读已提交、可重复读、串行化,分别平衡性能与一致性需求;持久性保证已提交事务的修改永久保存,即使系统故障也能通过Redo日志恢复。InnoDB等存储引擎通过Buffer Pool、日志文件、检查点机制实现上述特性。
2025-08-14 09:09:12
822
空空如也
Git的基本内容介绍
2024-10-08
大模型对生活和工作的改变
2024-09-28
人工智能时代,程序员如何保持核心竞争力?
2024-09-25
关于#Spark# #Flink#的问题,如何解决?
2024-09-24
TA创建的收藏夹 TA关注的收藏夹
TA关注的人