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1 Introduction
These days, we are all data pack rats. Storage is cheap,
so if there’s a chance the data could possibly be useful,
we keep it. And we know that storage isn’t completely
reliable, so we keep backup copies as well. But the more
data we keep, and the longer we keep it, the greater the
chance that some of it will be unrecoverable when we
need it.

There is an obvious question we should be asking -
how many copies in storage systems with what reliability
do we need to get a given probability that the data will
be recovered when we need it? This may be an obvious
question to ask, but it is a surprisingly hard question to
answer. Let’s look at the reasons why.

To be specific, let’s suppose we need to keep a
petabyte for a century, and have a 50% chance that ev-
ery bit will survive undamaged. This may sound like a
lot of data and a long time, but there are already data
collections bigger than a petabyte that are important to
keep forever. The Internet Archive is already multiple
petabytes.

The state of our knowledge about keeping bits safe can
be summarized as:

• The more copies the safer. As the size of the data
increases, the per-copy cost increases, reducing the
number of backup copies that can be afforded.

• The more independent the copies the safer. As the
size of the data increases, there are fewer affordable
storage technologies. Thus the number of copies in
the same storage technology increases, decreasing
the average level of independence.

• The more frequently the copies are audited the safer.
As the size of the data increases, the time and cost
needed for each audit to detect and repair damage
increases, reducing their frequency.

2 Claims
At first sight, keeping a petabyte for a century isn’t
hard. Storage system manufacturers make claims for
their products that far exceed the reliability we need.
For example, Sun claimed that their ST5800 “Honey-
comb” product had a mean time to data loss (MTTDL)
of 2.4×106 years.”1 [41]. Off-the-shelf solutions appear
so reliable that backups are unnecessary.

Should we believe these claims? Where do they come
from?

Before using Sun’s claim for its ST5800 as an exam-
ple, I should stipulate that the ST5800 was an excellent
product. It represented the state of the art in storage tech-
nology, and Sun’s marketing claims represent the state of
the art in storage marketing. Nevertheless, Sun did not
guarantee that data in the ST5800 would last2.4 × 106

years. Sun’s terms and conditions explicitly disclaim any
liability whatsoever for loss of, or damage to, the data the
ST5800 stores [40] whenever it occurs.

All that Sun was saying is that if you watched a large
number of ST5800 systems for a long time, recorded the
time at which each of them first suffered a data loss, and
then averaged these times, the result would be2.4 × 106

years. Suppose Sun watched 10 ST5800s and noticed
that three of them lost data during the first year, four of
them lost data after2.4 × 106 years, and the remaining
three lost data after4.8×106 years, they would be correct
that the MTTDL was2.4 × 106 years. But we would
not consider that a system with a30% chance of data
loss in the first year was adequate to keep a petabyte safe
for a century. A single MTTDL number isn’t a useful
characterization of a solution.

Let’s look at the slightly more scientific claim made
at the recent launch of the SC5800 by the marketing de-
partment of Sirius Cybernetics2: “SC5800 has a MTTDL

1Numbers are expressed in powers-of-ten notation to help readers
focus on the scale of the problems and the extraordinary levelof relia-
bility required.

2Purveyors of chatty doors, existential elevators and paranoid an-



of (2.4 ± 0.4) × 106 years”. Sirius implictly assumes
the failures are normally distributed and thus claims that
about2/3 of the failures would occur between2.0× 106

and 2.8 × 106 years after the start of the experiment.
They didn’t start watching a batch of SC5800s2.8 mil-
lion years ago. So how would they know?

Sirius says they will sell2 × 104 SC5800s per year at
$5×104 each (a billion-a-year business), and they expect
the product to be in the market for 10 years. The SC5800
has a service life of 10 years. So if Sirius watched
their entire production of SC5800s ($1010 worth of stor-
age systems) over their entire service life the experiment
would end 20 years from now after accumulating about
2 × 106 system-years of data. If their claim is correct
they would have about a17% chance of seeing a single
data loss event.

In other words, Sirius claims that the probability that
no SC5800 will ever lose any data is over80%. Or, since
each SC5800 stores5 × 1013 bytes, that there is an80%
probability that1019 bytes of data will survive 10 years
undamaged.

If one could believe Sirius’ claim, the petabyte would
look pretty safe for a century. But the claim clearly isn’t
based on an experiment that, even if Sirius were to do it,
would not provide results for 20 years and even when it
did would not validate the number in question. In fact,
claims like Sun’s and Sirius’ are not the result of exper-
imentation at all. No feasible experiment could validate
them. They areprojections, based on models of how
components of the system such as disks and software be-
have.

3 Models
The state of the art in this kind of modeling is exem-
plified by the Pergamum project at UC Santa Cruz [39].
Their model includes disk failures at rates derived from
measurements [35, 30] and sector failures at rates derived
from disk vendor specifications. Their system attempts
to conserve power by spinning the disks down whenever
possible; they make an allowance for the effect of doing
so on disk lifetime but it isn’t clear upon what they base
this allowance. They report that the simulations were dif-
ficult:

“This lack of data is due to the extremely
high reliability of these configurations - the
simulator modeled many failures, but so few
caused data loss that the simulation ran very
slowly. This behavior is precisely what we
want from an archival storage system: it can
gracefully handle many failure events without
losing data. Even though we captured fewer
data points for the triple inter-parity configura-

droids to the nobility and gentry of this galaxy [1].

tion, we believe the reported MTTDL is a rea-
sonable approximation.” [39]

Although the Pergamum team’s effort to obtain “a rea-
sonable approximation” to the MTTDL of their system
is praiseworthy, there are a number of reasons to believe
that it overestimates the reliability of the system in prac-
tice:

• The model draws its failures from exponential dis-
tributions. They thus assume that both disk and sec-
tor failures are uncorrelated, although all observa-
tions of actual failures [5, 42] report significant cor-
relations. Correlated failures greatly increase the
probability of data loss [6, 13].

• Other than a small reduction in disk lifetime from
each power-on event, they assume that failure rates
observed in always-on disk usage translate to their
mostly-off environment. A study [43] published af-
ter their paper reports a quantitative accelerated life
test of data retention in almost-always-off disks. It
shows that some of the 3.5¨ disks anticipated by the
Pergamum team have data life dramatically worse
in this usage mode than 2.5¨ disks using the same
head and platter technology.

• They assume that disk and sector failures are the
only failures contributing to the system failures, al-
though a study [17] shows that other hardware com-
ponents contribute significantly.

• They assume that their software is bug-free, de-
spite several studies of file and storage implementa-
tions [20, 14, 31] that uniformly report finding bugs
capable of causing data loss in all systems studied.

• They also ignore all other threats to stored data [34]
as possible causes of data loss. Among these are op-
erator error, insider abuse and external attack. Each
of these has been the subject of anecdotal reports of
actual data loss.

What can models like this tell us? Their results depend
on both:

• the details of the simulation of the system being
studied which, one hopes, accurately reflect its be-
havior, and

• the data used to drive the simulation which, one
hopes, accurately reflect the behavior of the sys-
tem’s components.

Under certain conditions, it is reasonable to use these
models to compare different storage system technolo-
gies. The most important condition is that the models of



the two systems use the same data. A claim that model-
ing showed systemA to be more reliable than systemB
when the data used to model systemA had much lower
failure rates for components such as disk drives would
not be credible.

These models may well be the best tools available to
evaluate different techniques for preventing data loss, but
they aren’t good enough to answer our question. We need
to know themaximum rate at which data will be lost. The
models assume things, such as uncorrelated errors and
bug-free software, that all real-world studies show are
false. The models exclude most of the threats to which
stored data is subject. And in those cases where similar
claims, such as those for disk reliability [35, 30], have
been tested they have been shown to be optimistic. The
models thus provide an estimate of theminimum data loss
rate to be expected.

4 Metrics
Even if we believed the models, the MTTDL number
doesn’t tell us how much data was lost in the average data
loss event. Is petabyte systemA with a MTTDL of 106

years better than a similar size systemB with a MTTDL
of 103 years? If the average data loss event in system
A loses the entire petabyte, where the average data loss
event in systemB loses a kilobyte, it would be easy to
argue that system B was109 times better.

Mean time to data loss is not a useful metric for how
well a system stores bits through time, because it relates
to time but not to bits. Nor is the Unrecoverable Bit Error
Rate (UBER) typically quoted by disk manufacturers; it
is the probability that a bit will be read incorrectly irre-
spective of how long it has been sitting on the disk. It
relates to bits but not to time. Thus we see that we lack
even the metric we would need to answer our question.

Let us over-simplify the problem to get a clearer pic-
ture. Suppose we had eliminated all possible sources of
correlated data loss, from operator error to excess heat.
All that remained would be “bit rot”, a process that ran-
domly flips the bits the system stores with a constant
small probability per unit time. In this model we can treat
bits like radioactive atoms, so that the time after which
there is a50% probability that a bit will have flipped is
the “bit half-life”.

The requirement of a50% chance that a petabyte will
survive for a century translates into a bit half-life of
8 × 1017 years. The current estimate of the age of the
universe is1.4 × 1010 years, so this is a bit half-life ap-
proximately6 × 107 times the age of the universe.

This bit half-life requirement clearly shows how diffi-
cult the problem we have set ourselves is. Suppose we
want to know whether a system we are thinking of buy-
ing is good enough to meet the 50% chance of keeping
a petabyte for a century. Even if we are sublimely confi-

dent that every source of data loss other than “bit rot” has
been totally eliminated, we still have to run a benchmark
of the system’s bit half-life to confirm that it is longer
than 6 × 107 times the age of the universe. And this
benchmark has to be complete in a year or so; it can’t
take a century.

So we take103 systems just like the one we want to
buy, write a petabyte of data into each so we have an
exabyte of data altogether, wait a year, read the exabyte
back and check it. If the system is just good enough, we
might see 5 bit flips. Or, because “bit rot” is a random
process, we might see more, or less. We would need
either a lot more than an exabyte of data or a lot more
than a year to be reasonably sure that the bit half-life was
long enough for the job. But even an exabyte of data for
a year costs 10 times as much as the system we want to
buy.

What this thought-experiment tells us is that we are
now dealing with such large numbers of bits for such a
long time that we are never going to know whether the
systems we use are good enough:

• The known causes of data loss are too various and
too highly correlated for models to produce credible
projections.

• Even if we ignore all those causes, the experiments
that would be needed to be reasonably sure random
“bit rot” is not significant are too expensive, or take
too long, or both.

5 Measuring Failures
It wasn’t until 2007 that researchers started publishing
studies of the reliability that actual large-scale storage
systems were delivering in practice. Enterprises such as
Google [9] and institutions such the Sloan Digital Sky
Survey [37] and the Large Hadron Collider [8] were col-
lecting petabytes of data with long-term value that had to
remain on-line to be useful. The annual cost of keeping a
petabyte on-line was more than a million dollars [27].
It is easy to see why questions of the economics and
reliability of storage systems became the focus of re-
searchers’ attention.

Papers at the 2007 FAST conference used data from
NetApp [35] and Google [30] to study disk replacement
rates in large storage farms. They showed that the man-
ufacturer’s MTTF numbers were optimistic. Subsequent
analysis of the NetApp data [17] showed that all other
components contributed to the storage system failures,
and that:

‘Interestingly, [the earlier studies] found
disks are replaced much more frequently (2–
4 times) than vendor-specified [replacement
rates]. But as this study indicates, there are



other storage subsystem failures besides disk
failures that are treated as disk faults and lead
to unnecessary disk replacements.” [17]

Two studies, one at CERN [18] and one using data
from NetApp [5], greatly improved on earlier work us-
ing data from the Internet Archive [6, 36]. They studied
silent data corruption in state-of-the-art storage systems;
events in which the content of a file in storage changes
with no explanation or recorded errors.

The NetApp study looked at the incidence of silent
storage corruption in individual disks in RAID arrays.
The data was collected over 41 months from NetApp’s
filers in the field, covering over1.5 × 106 drives. They
found over4×105 silent corruption incidents. More than
3×104 of them were not detected until RAID restoration
and could thus have caused data loss despite the repli-
cation and auditing provided by NetApp’s row-diagonal
parity RAID [11].

The CERN study used a program that wrote large
files into CERN’s various data stores, which represent
a broad range of state-of-the-art enterprise storage sys-
tems (mostly RAID arrays), and checked them over a pe-
riod of 6 months. A total of about9.7 × 1016 bytes was
written and about1.92 × 108 bytes was found to have
suffered silent corruption, of which about 2/3 was persis-
tent; re-reading did not return good data. In other words,
about1.2 × 10−9 of the data written to CERN’s storage
was permanently corrupted within six months. We can
place an upper bound on the bit half-life in this sample
of current storage systems by assuming that the data was
written instantly at the start of the 6 months and checked
instantly at the end; the result is2 × 108 or about10−2

times the age of the universe. Thus to reach the petabyte
for a century requirement we would need to improve the
performance of current enterprise storage systems by a
factor of at least109.

6 Tolerating Failures
Despite the manufacturer’s claims, current research
shows that state-of-the-art storage systems fall so many
orders of magnitude below our bit preservation require-
ments that we cannot expect even dramatic improve-
ments in technology to fill the gap. Maintaining a sin-
gle replica in a single storage system is not an adequate
solution to the bit preservation problem.

Practical digital preservation systems must therefore:

• Maintain more than one copy byreplicating their
data on multiple, ideally different, storage systems.

• Audit or (scrub) the replicas to detect damage, and
repair it by overwriting the known-bad copy with
data from another.

The more replicas and the more frequently they are
audited and repaired the longer the bit half-life we can
expect. This is, after all, the basis for the backups and
checksums technique in common use. In fact, current
storage systems already use techniques like this inter-
nally, for example in the form of RAID [29]. Despite
this the bit half-life they deliver is inadequate. Unfortu-
nately adding the necessary inter-storage-system replica-
tion and scrubbing is expensive.

2008 cost figures from the San Diego Supercomputer
Center3 show that maintaining a single on-line copy of
a petabyte for a year then cost about$1.05 × 106. A
single near-line copy on tape cost about$4.2 × 105 a
year. These costs decrease with time, albeit not as fast as
raw disk costs. The British Library estimates a30% per
annum decrease. Assuming that this rate continues for at
least a decade, if you can afford about3.3 times the first
year’s cost to store an extra replica for a decade, you can
afford to store it indefinitely. So, adding a second replica
of a petabyte on disk would cost about$3.5 × 106 and
on tape would cost about$1.4 × 106. Adding cost to a
preservation effort to increase reliability in this way is a
two-edged sword; doing so necessarily increases the risk
that preservation will fail for economic reasons.

Further, without detailed understanding of the rates at
which different mechanisms cause loss and damage, it
still isn’t possible to answer the question we started with,
and know how many replicas would make us as safe as
we need to be, and thus the cost of the necessary replica-
tion. At small scales the response to this uncertainty is to
add more replicas, but as the scale increases this rapidly
becomes unaffordable.

Replicating among identical systems is much less ef-
fective than replicating among diverse systems. Identical
systems are subject to common mode failures, for exam-
ple caused by a software bug in all the systems damaging
the same data in each. On the other hand, purchasing and
operating a number of identical systems will be consid-
erably cheaper than operating a set of diverse systems.

Each replica is vulnerable to loss and damage. Unless
they are regularly audited they contribute little to increas-
ing bit half-life. The bandwidth and processing capac-
ity needed to scrub the data are both costly, and adding
these costs increases the risk of failure. Custom hard-
ware [25] could compute the SHA-1 [28] checksum of
a petabyte of data in a month, but doing so requires im-
pressive bandwith - the equivalent of three gigabit Eth-
ernet interfaces running at full speed the entire month.
User access to data in long-term storage is typically in-
frequent; they are therefore rarely architected to provide
such high-bandwidth read access. System cost increases
rapidly with I/O bandwidth, and the additional accesses

32007 figures are in [27]



to the data (whether on disk or on tape) needed for scrub-
bing themselves potentially increase the risk of failure.

The point of writing software that reads and verifies
the data systems store in this way is to detect damage and
exploit replication among systems to repair it, thereby in-
creasing bit half-life. How well can we do this? RAID is
an example of a software technique of this type applied
to disks. In practice, the CERN study [18] looking at real
RAID systems from the outside showed a significant rate
of silent data corruption, and the NetApp study [5] look-
ing at them from the inside showed a significant rate of
silent disk errors that would lead to silent data corrup-
tion. A study [20] of the full range of current algorithms
used to implement RAID found flaws leading to poten-
tial data loss in all of them. Both this study, and another
from IBM [16], propose improvements to the RAID al-
gorithms but neither claim that they can eliminate silent
corruption, or even accurately predict its incidence:

“while we attempt to use as realistic prob-
ability numbers as possible, the goal is not
to provide precise data loss probabilities, but
to illustrate the advantage of using a model
checker, and discuss potential trade-offs be-
tween different protection schemes.” [20]

Thus, although inter-system replication and scrubbing
are capable of decreasing the incidence of data loss, they
cannot eliminate it completely. And the replication and
scrubbing software itself will contain bugs that can cause
data loss. It must be doubtful that we can implement
these techniques well enough to increase the bit half-life
of systems with an affordable number of replicas by109.

7 Magic Media
Considering the difficulties facing disk drive technol-
ogy [12], the reliability they achieve is astonishing, but
it clearly isn’t enough. News sites regularly feature sto-
ries reporting claims that some new storage medium has
solved the problem of long-term data storage. Stone
DVDs [23] claimed to last 1000 years were a recent ex-
ample. These claims should be treated as skeptically as
those of Sun and other storage system manufacturers. It
may well be that the media in question are more reliable
than their competitors, but as we have seen raw media
reliability is only a part of the story. Our petabyte would
be a stack of2× 105 stone DVDs. A lot can happen to a
stack that big in 100 years. Truly magic media that were
utterly reliable would make the problems better, but they
would not make them go away completely.

I remember magnetic bubble memory, so I have a feel-
ing of deja vu, but it is starting to look possible that flash
memory, or possibly more exotic solid-state technologies
such as memristors or phase change memory, may sup-
plant disks. There is a lot to like about these technologies

Year Seconds
1990 240
2000 720
2006 6450
2009 8000
2013 12800

Table 1: The time to read an entire disk of various gener-
ations.

for long-term storage, but will they improve storage reli-
ability?

Again, we don’t know the answer yet. Despite flash
memory’s ubiquity, it isn’t even clear yet how to measure
its UBER:

“UBER values can be much better than
10−15 but UBER is a strong function of pro-
gram/erase cycling and subsequent retention
time, so UBER specifications must be coupled
with maximum specifications for these quanti-
ties.” [26]

In other words, it depends how you use it, which
doesn’t appear to be the case for disk. Flash memory
used for long-term data storage, which is written once
and read infrequently, should in principle perform very
well. And the system-level effects of switching from
hard disk to flash can be impressive:

“FAWN [Fast Array of Wimpy Nodes]
couples low-power embedded CPUs to small
amounts of local flash storage, and balances
computation and I/O capabilities to enable ef-
ficient, massively parallel access to data. ...
FAWN clusters can handle roughly 350 key-
value queries per Joule of energy – two or-
ders of magnitude more than a disk-based sys-
tem” [3]

Fast CPUs, fast RAM and fast disks all use lots of
power, so the low power draw of FAWN is not a surprise.
But the high performance comes from another aspect of
disk evolution. Table 1 shows how long it would take to
read the whole of a state-of-the-art disk of various gen-
erations.

Disks have been getting bigger but they haven’t been
getting equivalently faster. This is to be expected, the
data rate depends on the inverse of the diameter of a
bit, but the capacity depends on the inverse of the area
of a bit. FAWN nodes can read their entire contents
very quickly, useful for scrubbing as well as answering
queries.

This is all encouraging, but once it became possible
to study the behavior of disk storage at a large scale it



became clear that system-level reliability fell far short of
the media specifications. This should make us cautious
about predicting a revolution from flash or any other new
storage technology.

8 Economics

Ever since Clayton Christensen publishedThe Innova-
tor’s Dilemma [10] it has been common knowledge that
disk drive cost per byte halves every two years. So
you might argue that you don’t need to know how many
copies you need to keep your data safe for the long term,
you just need to know how many you need to keep it safe
for the next few years. After that, you can keep more
copies.

In fact, what has been happening is that the capacity at
constant cost has been doubling every two years, which
isn’t quite the same thing. As long as this exponential
grows faster than you generate new data, adding copies
through time is a feasible strategy.

Alas, exponential curves can be deceiving. Moore’s
Law has continued to deliver smaller and smaller tran-
sistors. However, a few years ago it effectively ceased
delivering faster and faster CPU clock rates. It turned
out that, from a business perspective, there were more
important things to spend the extra transistors on than
making a single CPU faster. Like putting multiple CPUs
on a chip.

At a recent Library of Congress meeting, Dave An-
derson of Seagate warned [4] that something similar is
about to happen to hard disks. Technologies (HAMR
and PMR) are in place to deliver the 2013 disk gener-
ation, i.e. a consumer 3.5¨ drive holding 8TB. But the
business case for building it is weak. The cost of the
transition to PMR in particular is daunting [24]. Lap-
tops, netbooks and now tablets are destroying the market
for the desktop boxes that 3.5¨ drives go into. And very
few consumers fill up the 2009 2TB disk generation, so
what value does having an 8TB drive add? Let alone the
problem of how to back up an 8TB drive on your desk!
What is likely to happen, indeed is already happening, is
that the consumer market will transition rather quickly to
2.5” drives. This will eliminate the high-capacity $100
3.5¨ drive, since it will no longer be produced in con-
sumer quantities. Consumers will still buy $100 drives,
but they will be 2.5¨ and have perhaps 1/3 the capacity.
For a while the $/byte curve will at best flatten, and more
likely go up. The problem this poses is that large-scale
disk farms are currently built from consumer 3.5¨ drives.
The existing players in the market have bet heavily on the
exponential cost decrease continuing; if they’re wrong it
will be disruptive.

9 The Bigger Picture
Our inability to compute how many backup copies we
need to achieve a reliability target is something we’re just
going to have to live with. In practice, we aren’t going
to have enough backup copies, and stuff will get lost or
damaged. This should not be a surprise, but somehow
it is. The fact that bitscan be copied correctly leads to
an expectation that they alwayswill be copied correctly,
and then to an expectation that digital storage will be re-
liable. There is an odd cognitive dissonance between this
and people’s actual experience of digital storage, which
is that loss and damage are routine occurrences [22].

The fact that storage isn’t reliable enough to allow us
to ignore the problem of failures is just one aspect of a
much bigger problem looming over computing as it con-
tinues to scale up. Current long-running Petascale high
performance computer applications require complex and
expensive checkpoint and restore schemes because the
probability of a failure during execution is so high that
restarting from scratch is infeasible. This approach will
not scale to the forthcoming generation:

“... it is anticipated that Exascale systems
will experience various kind of faults many
times per day. It is also anticipated that the
current approach for resilience, which relies
on automatic or application level checkpoint-
restart, will not work because the time for
checkpointing and restarting will exceed the
mean time to failure of a full system. ...

Some projections estimate that, with the
current technique, the time to checkpoint and
restart may exceed the mean time to interrupt
of top supercomputers before 2015. This not
only means that a computation will do little
progress; it also means that fault-handling pro-
tocols have to handle multiple errors – current
solutions are often designed to handle single
errors.” [7]

Just as with storage, the numbers of components and in-
terconnections are so large that the incidence of failures
is significant. And the available bandwidths relatively so
low that recovering from the failures is time-consuming
enough that multiple failure situations have to handled.
There is no practical, affordable way to mask the fail-
ures from the applications. Application programmers
will need to pay much more attention to detecting and re-
covering from errors in their environment. To do so they
will need both the APIs and the system environments im-
plementing them to become much more failure-aware.

10 API Enhancements
Storage APIs are starting to move in this direction. Re-
cent interfaces to storage services [2] allow the applica-



Digest Match No Match
Unchanged Data OK Data bad

Changed Deliberate Data and/or
alteration digest bad

Table 2: The four cases of message digest comparison.

tion’s write call to provide not just a pointer to the data
and a length, but optionally also the application’s mes-
sage digest of the data. This allows the storage system
to detect whether the data was damaged during its jour-
ney from the application to the device, or while it was
sitting in the storage device, or being copied back to the
application. Recent research has shown that the memory
buffers [44] and data paths [17] between the application
and the storage devices contribute substantially to errors.

Let’s take Amazon S3’s REST API [2] as an exam-
ple to show that, while these developments are welcome,
they are far from a panacea. The PUT request supports an
optional (and recommended) Content-MD5 header con-
taining the application’s digest of the data. The responses
to most requests, including PUT, include an ETag header
with the service’s MD5 of the object. The application
can remember the digest it computed before the PUT
and, when the PUT returns, verify that the service’s di-
gest matches.

Doing so is a wise precaution, but all it really tells
the application is that the service knows what the appli-
cation thinks is the correct digest. The service knows
this digest, not because it computed the digest of the
correct data, but because the application provided it in
the Content-MD5 header. A malign or malfunctioning
service could respond correctly to PUT and HEAD re-
quests by remembering the application’s digest, without
ever storing the data or computing its digest.

The application could try to detect a malign or mal-
functioning service by using a GET to obtain the stored
data, computing the digest (a) of the returned data, and
comparing that with (b) either the digest in the response’s
ETag header, or with the digest it computed before the
original PUT and remembered (which should be the
same). It might seem that there are two cases; if the two
message digests match then the data is OK4, otherwise it
isn’t. There are actually four cases, as shown in Table 2,
depending on whether the digest (b) is unchanged or not.
The four cases illustrate two problems:

• The bits forming the digest are no different from the
bits forming the data; neither are magically incor-
ruptible. A malign or malfunctioning service could
return bad data with a digest in the ETag header that

4Assuming the digest algorithm hasn’t been broken, not a safe as-
sumption for MD5 [19]

matched the data but was not the digest originally
computed. Applications need to know whether the
digest has been changed. A system for doing so
without incorruptible storage is described in [15].

• Given the pricing structure for cloud storage ser-
vices such as Amazon S3, it is too expensive to ex-
tract the entire data at intervals to confirm that it is
being stored correctly. Some method in which the
service computes the digest of the data is needed,
but simply asking the service to return the digest
of a stored object is not an adequate check [33].
The service must be challenged toprove that its
object is good. The simplest way to do this is to
ask the service to compute the digest of a nonce (a
random string of bits) and the object; because the
service cannot predict the nonce a correct response
requires access to the dataafter the request is re-
ceived. Systems using this technique are described
in [21] and [38].

Early detection is a good thing; the shorter the time
between detection and repair the smaller the risk that a
second error will compromise the repair. But detection is
only part of the solution; the system also has to be able to
repair the damaged data. It can do so only if it has repli-
cated the data elsewhere, and some deduplication layer
has not optimized away this replication.

11 Conclusion
It would be nice to end on an up-beat note, describing
some technological fix that would allow applications to
ignore the possibility of failures in their environment,
and specifically in long-term storage. Unfortunately, in
the real world, failures are inevitable. As systems scale
up they become more frequent. Even throwing money
at the problem can only reduce the incidence of failures,
not exclude them entirely. Applications in the future will
need to be much more aware of, and careful in respond-
ing to, failures.

The high-performance computing community accu-
rately describes what needs to be done:

“We already mentioned the lack of coordi-
nation between software layers with regards to
errors and fault management. Currently, when
a software layer or component detects a fault it
does not inform the other parts of the software
running on the system in a consistent manner.
As a consequence, fault-handling actions taken
by this software component are hidden to the
rest of the system. ... In an ideal wor[l]d, if
a software component detects a potential error,
then the information should propagate to other
components that may be affected by the error



or that control resources that may be responsi-
ble for the error.” [7]

In particular, as regards storage, APIs should copy
Amazon’s S3 by providing optional data integrity ca-
pabilities that allow applications to perform end-to-end
checks. These APIs should be enhanced to allow the ap-
plication to provide an optional nonce that is prepended
to the object data before the message digest reported to
the application is computed. This would allow applica-
tions to exclude the possibility that the reported digest
has been remembered rather than re-computed.
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